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Introduction

As wonderfully illustrated by the success of Kedlaya-type counting points algorithms [START_REF] Kedlaya | Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology[END_REF], p-adic technics are gaining nowadays more and more popularity in computer science, and more specifically in symbolic computation. A crucial issue when dealing with p-adics is those of stability. Indeed, just like real numbers, p-adic numbers are by nature infinite and thus need to be truncated in order to fit in the memory of a computer. The level of truncation is called the precision. Usual softwares implementing p-adics (e.g. magma [START_REF] Bosma | The Magma algebra system. I. The user language[END_REF], pari [START_REF] Batut | User's guide to PARI-GP[END_REF], sage [START_REF] Stein | Sage Mathematics Software[END_REF]) generally tracks the precision as follows: an individual precision is attached to any p-adic variable and this precision is updated after each basic arithmetic operation. This way of tracking precision can be seen as the analogue of the arithmetic intervals in the real setting. We refer to §2.1.2 for more details.

In the paper [START_REF] Caruso | Tracking p-adic precision[END_REF], the authors propose a new framework to control p-adic precision. The aim of this paper is to illustrate the technics of loc. cit. on the concrete example of computation of gcds and subresultants of p-adic polynomials. There is actually a real need to do this due to the combination of two reasons: on the one hand, computating gcds is a very basic operation for which it cannot be acceptable to have important instability whereas, on the other hand, easy experimentations show that all standard algorithms for this task (e.g. extended Euclide's algorithm) are very unstable. Figure 1 illustrates the instability of the classical extended Euclide's algorithm (cf Algorithm 1) when it is called on random inputs which are monic 2-adic polynomials of fixed degree (see also Example 2.3). Looking at the last line, we see that extended Euclide's algorithm outputs the Bézout coefficients of two monic 2-adic polynomials of degree 100 with an average loss of 160 significant digits by coefficient whereas a stable algorithm should only loose 3.2 digits on average. This "theoretical" loss is computed as the double of the valuation of the resultant. Indeed Cramer-like formulae imply that Bézout coefficients can be computed by performing a unique division by the resultant, inducing then only the aforementioned loss of precision (see §2.1.2, Eq. ( 8)

Degree

Loss of precision (in number of significant digits) Euclide algorithm expected 5 6.3 3.1 10 14.3 3.2 25 38.9 3.2 50 79.9 3.2 100 160.0 3.2

Figure 1: Average loss of precision when computing the gcd of two random monic polynomial of fixed degree over Z 2 .

Algorithm 1: Extended Euclide's algorithm Input : Two polynomials A, B ∈ Q p [X] (whose coefficients are known at given precision) Output: A triple D, U, V such that D = AU + BV = gcd(A, B) 

1 S 1 ← A; U 1 ← 1; V 1 ← 0 2 S 2 ← B; U 2 ← 0; V 2 ← 1 3 k ← 2 4 while S k = 0 do
U k+1 ← U k-1 -QU k 7 V k+1 ← V k-1 -QV k 8 k ← k + 1 9 return S k-1 , U k-1 , V k-1
A -a commutative ring (without any further assumption) W -a complete discrete valuation ring π -a uniformizer of W K -the fraction field of W k -the residue field of W

A <n [X] -the free A-module consisting of polynomials over A of degree < n A ≤n [X] -the free A-module consisting of polynomials over A of degree ≤ n A n [X] -the affine space consisting of monic polynomials over A of degree n.

Res dA,dB (A, B) -The resultant of A and B "computed in degree (d A , d B )" Res dA,dB j (A, B) -The j-th subresultant of A and B "computed in degree (d A , d B )"

Figure 2: Notations used in the paper for a full justification). Examining the table a bit more, we observe that the "practical" loss of precision due to Euclide's algorithm seems to grow linearly with respect to the degree of the input polynomials whereas the "theoretical" loss seems to be independant of it. In other words, the instability of Euclide's algorithm is becoming more and more critical when the degree of the input increases.

Content of the paper

The aim of this article is twofold. We first provide in §3 a theoretical study of the instability phenomenon described above and give strong evidences that the loss of precision grows linearly with respect to the degree of the input polynomials, as we observed empirically. In doing so, we determine the distribution of the valuation of the subresultants of random monic polynomials over Z p (cf Theorem 3.3). This is an independant result which has its own interest.

Our second goal, which is carried out in §4, is to rub out these unexpected losses of precision. Making slight changes to the standard subresultant pseudo-remainder sequence algorithm and using in an essential way the results of [START_REF] Caruso | Tracking p-adic precision[END_REF], we manage to design a stable algorithm for computing all subresultants of two monic polynomials over Z p (satisfying an additional assumption). This basically allows to stably compute gcds assuming that the degree of the gcd is known in advance.

Notations Figure 2 summerizes the main notations used in this paper. The definitions of many of them will be recalled in §2.

The setting

The aim of this section is to introduce the setting we shall work in throughout this paper (which is a bit more general than those considered in the introduction). Throughout this paper, we fix a discrete valuation ring W and assume that the valuation on it is normalized so that it takes the value 1. We recall that W admits a unique maximal ideal m, consisting of elements of positive valuation. This ideal is principal and generated by any element of valuation 1. Such an element is called a uniformizer. Let us fix one of them and denote it by π. The residue field of W is the quotient W/m = W/πW and we shall denote it by k.

Complete discrete valuation rings

The valuation defines a distance d on W by letting d(x, y) = e -val(x-y) for all x, y ∈ W . We say that W is complete if it is complete with respect to d, in the sense that every Cauchy sequence converges. Assuming that W is complete, any element x ∈ W can be written uniquely as a convergent series:

x = x 0 + x 1 π + x 2 π 2 + • • • + x n π n + • • • (1)
where the x i 's lie in a fixed set S of representatives of classes modulo π. Therefore, as an additive group, W is isomorphic to the set of sequences N → k. On the contrary, the multiplicative structure may vary. Let K denote the fraction field of W . The valuation v extends uniquely to K by letting val( x y ) = val(x) -val(y). Moreover, it follows from axiom 4 that K is obtained from W by inverting π. Thus, any element of K can be uniquely written as an infinite sum:

x = ∞ i=i0 x i π i (2) 
where i 0 is some relative integer and the x i 's are as above. The valuation of x can be easily read off this writing: it is the smallest integer i such that x i ≡ 0 (mod π).

Examples

A first class of examples of discrete valuation rings are rings of formal power series over a field. They are equipped with the standard valuation defined as follows: val( i≥0 a i t i ) is the smallest integer i with a i = 0. The above example is quite important because it models all complete discrete valuation rings of equal characteristic, i.e. whose fraction field and residue field have the same characteristic. On the contrary, in the mixed characteristic case (i.e. when the fraction field has characteristic 0 and the residue field has positive characteristic), the picture is not that simple. Nevertheless, one can construct several examples and, among them, the most important is certainly the ring of p-adic integers Z p (where p is a fixed prime number). It is defined as the projective limit of the finite rings Z/p n Z for n varying in N. In concrete terms, an element of Z p is a sequence (x n ) n≥0 with x n ∈ Z/p n Z and x n+1 ≡ x n (mod p n ). The addition (resp. multiplication) on Z p is the usual coordinate-wise addition (resp. multiplication) on the sequences. The p-adic valuation of (x n ) n≥0 as above is defined as the smallest integer i such that x i = 0. We can easily check that Z p equipped with the p-adic valuation satisfies the four above axioms and hence is a DVR. A uniformizer of Z p is p and its residue field is Z/pZ. A canonical set of representatives of classes modulo p is {0, 1, . . . , p -1}.

Given a p-adic integer x = (x n ) n≥0 , the i-th digit of x n in p-basis is well defined as soon as i < n and the compatibility condition x n+1 ≡ x n (mod p n ) implies that it does not depend on n. As a consequence, a p-adic integer can alternatively be represented as a "number" written in p-basis having an infinite number of digits, that is a formal sum of the shape:

a 0 + a 1 p + a 2 p 2 + • • • + a n p n + • • • with a i ∈ {0, 1, . . . , p -1}. ( 3 
)
Additions and multiplications can be performed on the above writing according to the rules we all studied at school (and therefore taking care of carries). Similarly to the equal characteristic case, we prove that Z p is complete with respect to the distance associated to the p-adic valuation.

The writing (3) corresponds to the expansion (1) provided that we have chosen π = p and S = {0, 1, . . . , p -1}. The fraction field of Z p is denoted by Q p .

Symbolic computations over DVR

We now go back to a general complete discrete valuation ring W , whose fraction field is still denoted by K. The memory of a computer being necessarily finite, it is not possible to represent exhaustively all elements of W . Very often, mimicing what we do for real numbers, we choose to truncate the expansion (1) at some finite level. Concretely, this means that we work with approximations of elements of W of the form

x = N -1 i=0 x i π i + O(π N ) with N ∈ N (4) 
where the notation O(π N ) means that the x i 's with i ≥ N are not specified.

Remark 2.2. From a theoretical point of view, the expression (4) does not represent a single element x of W but an open ball in W , namely the ball of radius e -N centered at N -1 i=0 x i π i (or actually any element congruent to it modulo π N ). In other words, on a computer, we cannot work with actual p-adic numbers and we replace them by balls which are more tractable (at least, they can be encoded by a finite amount of information).

The integer N appearing in Eq. ( 4) is the so-called absolute precision of x. The relative precision of x is defined as the difference N -v where v denotes the valuation of x. Continuing the comparison with real numbers, the relative precision corresponds to the number of significant digits since x can be alternatively written:

x = p v N -v-1 j=0 y j π j + O(π N ) with y j = x j+v and y 0 = 0.
Of course, it may happen that all the x i 's (0 ≤ i < N ) vanish, in which case the valuation of x is undetermined. In this particular case, the relative precision of x is undefined.

There exist simple formulas to following precision after each single elementary computation. For instance, basic arithmetic operations can be handled using:

a + O(π Na ) + b + O(π N b ) = a + b + O(π min(Na,N b ) ), (5) 
a + O(π Na ) -b + O(π N b ) = a -b + O(π min(Na,N b ) ), (6) 
a + O(π Na ) × b + O(π N b ) = ab + O(π min(Na+val(b),N b +val(a)) ). ( 7 
) a + O(π Na ) ÷ b + O(π N b ) = a b + O(π min(Na-val(b),N b +val(a)-2val(b)) ). 1 (8) 
with the convention that val(a) = N a (resp. val(b) = N b ) if all known digits of a (resp. b) are zero.

Combining these formulas, one can track the precision while executing any given algorithm. This is the analogue of the standard interval arithmetic over the reals. Many usual softwares (as sage, magma) implement p-adic numbers and formal series this way. We shall see later that this often results in overestimating the losses of precision.

Example 2.3. As an illustration, let us examine the behaviour of the precision on the sequence (R i ) while executing Algorithm 1 with the input:

A = X 5 + 27 + O(2 5 ) X 4 + 11 + O(2 5 ) X 3 + 5 + O(2 5 ) X 2 + 18 + O(2 5 ) X + 25 + O(2 5 ) B = X 5 + 24 + O(2 5 ) X 4 + 25 + O(2 5 ) X 3 + 12 + O(2 5 ) X 2 + 3 + O(2 5 ) X + 10 + O(2 5
) .

The remainder in the Euclidean division of A by B is S 3 = A -B. According to Eq. ( 6), we do not loose precision while performing this substraction and the result we get is:

S 3 = 3 + O(2 5 ) X 4 + 18 + O(2 5 ) X 3 + 25 + O(2 5 ) X 2 + 15 + O(2 5 ) X + 15 + O(2 5
) .

In order to compute S 4 , we have now to perform the Euclidean division of S 2 = B by S 3 . Noting that the leading coefficient of S 2 has valuation 0 and using Eq (5)-( 8), we deduce that this operation does not loose precision again. We get:

S 4 = 26 + O(2 5 ) X 3 + 17 + O(2 5 ) X 2 + 4 + O(2 5 ) X + 16 + O(2 5
) .

We observe now that the leading coefficient of S 4 has valuation 1. According to Eq. ( 8), divising by this coefficient -and therefore a fortioti computing the euclidean division of S 3 by S 4 -will result in loosing at least one digit in relative precision. The result we find is:

S 5 = 3 4 + O(2 2 ) rel. prec.=4 X 2 + 6 + O(2 3 ) rel. prec.=2 X + 3 + O(2 3 ) rel. prec.=3
.

Continuing this process, we obtain:

S 6 = 20 + O(2 5 ) X + 12 + O(2 5
) and S 7 = 7 4 + O(2).

The relative precision on the final result S 7 is then 3, which is less than the initial precision which was 5.

Subresultants

A first issue when dealing with numerical computations of gcds of polynomials over W is that the gcd function is not continuous: it takes the value 1 on an open dense subset without being constant. This of course annihilates any hope of computing gcds of polynomials when only approximations of them are known. Fortunately, there exists a standard way to recover continuity in this context: it consists in replacing gcds by subresultants which are playing an analoguous role. For this reason, in what follows, we will exclusively consider the problem of computing subresultants.

Definitions and notations

We recall briefly basic definitions and results about resultants and subresultants. For a more complete exposition, we refer to [2, §4.2], [8, §3.3] and [12, §4.1]. Let A be an arbitrary ring and let A and B be two polynomials with coefficients in A. We pick in addition two integers d A and d B greater than or equal to the degree of A and B respectively. We consider the Sylvester application:

ψ : A <dB [X] × A <dA [X] → A <dA+dB [X] (U, V ) → AU + BV 1
We observe that these formulas can be rephrased as follows: the absolute (resp. relative) precision on the result of a sum or a substraction (resp. a product or a division) is the minimum of the absolute (resp. relative) precisions on .

where A <d [X] refers to the finite free A-module of rank d consisting of polynomials over A of degree strictly less than d. The Sylvester matrix is the matrix of ψ in the canonical ordered basis, which are ((X dB -1 , 0), . . . , (X, 0), (1, 0), (0, X dA-1 ), . . . , (0, 1)) for the source and (X dA+dB -1 , . . . , X, 1) for the target. 

U dA,dB (A, B) ∈ A <dB [X] and V dA,dB (A, B) ∈ A <dA [X]
satisfying the two following conditions:

i) their coefficients are, up to a sing, maximal minors of the Sylvester matrix, and

ii) A • U dA,dB (A, B) + B • V dA,dB (A, B) = Res dA,dB (A, B).
These polynomials are called the cofactors of A and B (computed in degree d A , d B ).

The subresultants are defined in the similar fashion. Given an integer j in the range [0, d) where d = min(d A , d B ), we consider the "truncated" Sylvester application:

ψ j : A <dB-j [X] × A <dA-j [X] → A <dA+dB -j [X]/A <j [X] (U, V ) → AU + BV.
Its determinant (in the canonical basis) is the j-th principal subresultant of A and B (computed in degree d A , d B ). Just as before, we can construct polynomials U dA,dB j

(A, B) ∈ A <dB-j [X] and V dA,dB j (A, B) ∈ A <dA-j [X] such that:
i) their coefficients are, up to a sing, maximal minors of the Sylvester matrix2 , and

ii) A • U dA,dB j (A, B) + B • V dA,dB j (A, B) ≡ det ψ j (mod A <j [X]). We set R dA,dB j (A, B) = A • U dA,dB j (A, B) + B • V dA,dB j (A, B): it is the j-th subresultant of A and B (computed in degree d A , d B )
. The above congruence implies that R dA,dB j (A, B) has degree at most j and that its coefficient of degree j is the j-th principal subresultant of A and B. As before, we freely drop the exponent d A , d B when d A and d B are equal to the degrees of A and B respectively. When j = 0, the application ψ j is nothing but ψ. Therefore, Res dA,dB 0 (A, B) = Res dA,dB (A, B) and, similarly, the cofactors agree: we have U dA,dB

0 (A, B) = U dA,dB (A, B) and V dA,dB 0 (A, B) = V dA,dB (A, B).
We recall the following very classical result.

Theorem 2.4. We assume that A is a field. Let A and B be two polynomials with coefficients in A. Let j be the smallest integer such that Res j (A, B) does not vanish. Then Res j (A, B) is a gcd of A and B.

Since they are defined as determinants, subresultants behave well with respect to base change: if f : A → A ′ is a morphism of rings and A and B are polynomials over A then Res dA,dB j (f (A), f (B)) = f Res dA,dB j (A, B) where f (A) and f (B) denotes the polynomials deduced from A and B respectively by applying f coefficient-wise. This property is sometimes referred to as the functoriality of subresultants. We emphasize that, when f is not injective, the relation Res j (f (A), f (B)) = f Res j (A, B) does not hold in general since applying f may decrease the degree. Nevertheless, if d A and d B remained fixed, this issue cannot happen.

The subresultant pseudo-remainder sequence

When A is a domain, there exists a standard nice Euclide-like reinterpreation of subresultants, which provides in particular an efficient algorithm for computing them. Since it will play an important role in this paper, we take a few lines to recall it.

This reinterpretation is based on the so-called subresultant pseudo-remainder sequence which is defined as follows. We pick A and B as above. Denoting by (P % Q) the remainder in the Euclidean division of P by Q, we define two recursive sequences (S i ) and (c i ) as follows:

     S -1 = A, S 0 = B, c -1 = 1 S i+1 = (-s i ) εi+1 s -1 i-1 c -εi i • (S i-1 % S i ) for i ≥ 0 c i+1 = s εi+1 i+1 • c 1-εi+1 i for i ≥ -1. (9) 
Here

n i = deg S i , ε i = n i+1 -n i and s i is the leading coefficient of S i if i ≥ 0 and s -1 = 1 by convention.
These sequences are finite and the above recurrence applies until S i has reached the value 0.

Proposition 2.5. With the above notations, we have:

Res j (A, B) = S i if j = n i-1 -1 = 0 if n i < j < n i-1 -1 = si si-1 εi-1 • S i if j = n i
for all i such that S i is defined.

Remark 2.6. The Proposition 2.5 provides a formula for all subresultants. We note moreover that, in the common case where n i-1 = n i -1, the two formulas giving Res ni (A, B) agree.

Mimicing ideas behind extended Euclide's algorithm, one can define the "extended subresultant pseudo-remainder sequence" as well and obtains recursive formulae for cofactors at the same time.

Important simplifications occur in the "normal" case, which is the case where all principal subresultants do not vanish. Under this additional assumption, one can prove that the degrees of the S i 's decrease by one at each step; in other words, deg S i = d B -i for all i. The sequence (S i ) then stops at i = d B . Moreover, the ε i 's and the c i 's are now all "trivial": we have ε i = 1 and c i = s i for all i. The recurrence formula then becomes:

S i+1 = s 2 i • s -2 i-1 • (S i-1 % S i ) for i ≥ 1.
and Proposition 2.5 now simply states that R j = S dB-j . In other words, still assuming that all principal subresultants do not vanish, the sequence of subresultants obeys to the recurrence:

R d+1 = A, R d = B, R j-1 = r 2 j • r -2 j+1 • (R j+1 % R j ) ( 10 
)
where r j is the leading coefficient of R j for j ≤ d and r d+1 = 1 by convention. Moreover, a similar recurrence exists for cofactors as well:

U d+1 = 1, U d = 0, U j-1 = r 2 j • r -2 j+1 • (U j+1 -Q j U j ) (11) 
V d+1 = 0, U d = 1, V j-1 = r 2 j • r -2 j+1 • (V j+1 -Q j V j ) ( 12 
)
where Q j is quotient in the Euclidean division of R j+1 by R j . Proposition 2.5 of course yields an algorithm for computing subresultants. In the normal case and assuming further for simplicity that the input polynomials are monic of same degree, it is Algorithm 2, which uses the primitive prem for computing pseudo-remainders. We recall that the pseudo-remainder of the division of A by B is the polynomial prem(A, B) defined by prem(A, B) = lc(B) deg B-deg A+1 (A%B) where lc(B) denotes the leading coefficient of B.

Unfortunately, while working over a complete discrete valuation field K, the stability of Algorithm 2 is as bad as that of standard Euclide algorithm. The use of Algorithm 2 is interesting because it avoids denominators (i.e. we always work over W instead K) but it does not improve the stability. 1 

R d ← B; r d ← 1 2 R d-1 ← B -A 3 for j = (d -1), (d -2), . . . , 1 do 4 r j ← coefficient in X j of R j 5 if r j = 0 then raise NotImplementedError; 6 R j-1 ← prem(R j+1 , R j )/r 2 j+1 7 return R d-1 , . . . ,
R 4 = 29 + O(2 5 ) X 4 + 14 + O(2 5 ) X 3 + 5 + O(2 5 ) X 2 + 17 + O(2 5 ) X + 17 + O(2 5 ) R 3 = 4 + O(2 5 ) X 3 + 13 + O(2 5 ) X 2 + 4 + O(2 5 ) X + 16 + O(2 5 ) R 2 = 5 + O(2 5 ) X 2 + 20 + O(2 5 ) X + O(2 5 ) R 1 = 1 + O(2) X + 1 + O(2) R 0 = 1 + O(2)
We observe in particular that the absolute precision on R 0 is 1, although it should be at least 5 since R 0 is given by an integral polynomial expression in terms of the coefficients of A and B.

We note moreover that the relative precision on R 0 (which is 1 as well) is worse that the relative precision we got on S 7 (which was 3) while executing Algorithm 1 (cf Example 2.3).

Unstability of Euclide-like algorithms

In this section, we provide strong evidences for explaining the average loss of precision observed while executing Algorithm 2. Concretely, in §3.1 we establish3 a lower bound on the losses of precision which depends on extra parameters, that are the valuations of the principal subresultants.

The next subsections ( § §3.2 and 3.3) aim at studying the behaviour of these valuations on random inputs; they thus have a strong probabilistic flavour.

Remark 3.1. The locution Euclide-like algorithms (which appears in the title of the Section) refers to the family of algorithms computed gcds or subresultants by means of successive Euclidean divisions. We believe that the stability of all algorithms in this family is comparable since we are precisely loosing precision while performing Euclidean divisions. Among all algorithms in this family, we chose to concentrale ourselves on Algorithm 2 because it is simpler due to the fact that it only manipulates polynomials with coefficients in W . Nevertheless, our method extends to many other Euclide-like algorithms including Algorithm 1; this extension is left as an exercice to the reader.

A lower bound on losses of precision

We consider two fixed polynomials A and B with coefficients in W whose coefficients are known with precision O(π N ) for some positive integer N . For simplicity, we assume further that A and B are both monic and share the same degree d. For any integer j between 0 and d -1, we denote by R j the j-th subresultant of A and B.

In this subsection, we estimate the loss of precision if we compute the R j 's using the recurrence [START_REF] Lairez | Computation of power series solutions with p-adic coefficients of certain differential equations[END_REF]. In what follows, we are going to use a flat precision model : this means that a polynomial P (X) is internally represented as:

P (X) = n i=1 a i X i + O(π N ) with a i ∈ K and N ∈ Z.
In other words, we assume that the software we are using does not carry a precision data on each coefficient but only a unique precision data for the whole polynomial. Concretely this means that, after having computing a polynomial, the software truncates the precision on each coefficient to the smallest one. One can argue that this assumption is too strong (compared to usual implementations of p-adic numbers). Nevertheless, it defines a simplified framework where computations can be performed and experiments show that it rather well reflects the behaviour of the loss of precision in Euclide-like algorithms.

Let V j be the valuation of the principal j-th subresultant of A, B and W j be the minimum of the valuations of the coefficients of R j . We of course have V j ≥ W j and we set δ j = V j -W j . Proposition 3.2. Let A and B as above. Either Algorithm 2 fails or it outputs the subresultants R j 's at precision O(π Nj ) with:

N j ≤ N + V j+1 -2 • (δ j+1 + δ j+2 + • • • + δ d-1 ).
Proof. Using that R j+1 and R j have the expected degrees, the remainder (R j+1 % R j ) is computed as follows:

we set:

S = R j+1 -r j+1 • r -1 j • R j and we have: R j+1 % R j = S -s • r -1 j • R j
where s is the coefficient of degree j of S. Let us first estimate the precision of S. Using ( 7)-( 8), we find that the computed relation precision on

r j+1 • r -1 j • R j is min(N j+1 -V j+1 , N j -V j )
. The absolute precision of this value is then M = min(N j+1 -δ j , N j -δ j + V j+1 -V j ). This quantity is also the precision of S since the other summand R j+1 is known with higher precision. Repeating the argument, we find that the precision of (R j+1 % R j ) is equal to min(M -δ j , N j -δ j +val(s)-V j ) and therefore is lower bounded by M -δ j ≤ N j -2δ j + V j+1 -V j . From this, we derive N j-1 ≤ N j -2δ j -V j+1 + V j and the proposition finally follows by summing up these inequalities.

The difference N -N 0 = -V 1 + 2 d k=1 δ j is a lower bound on the number of digits lost after having computed the resultant using the subresultant pseudo-remainder sequence algorithm. In the next subsection (cf Corollary 3.6), we shall see that V 1 and all δ j 's are approximatively equal to 1 p-1 on average. The loss of precision then grows linearly with respect to d. This confirms the precision benchmarks shown in Figure 1. We emphasize one more time that this loss of precision is not intrinsic but an artefact of the algorithm we have used; indeed, one should not loose any precision when computing resultants because they are given by polynomial expressions.

Behaviour on random inputs

Proposition 3.2 gives an estimation of the loss of precision in Euclide-like algorithms in terms of the quantities V j and δ j . It is nevertheless a priori not clear how large these numbers are. The aim of this paragraph is to compute their order of magnitude when A and B are picked randomly among the set of monic polynomials of degree d with coefficients in W . In what follows, we assume that the residue field k = W/πW is finite and we use the letter q to denote its cardinality.

We endow W with its Haar measure. The set Ω of couples of monic polynomial of degree d with coefficients in W is canonically in bijection with W 2d and hence inherits the product measure. We consider V j , W j and δ j as random variables defined on Ω. Theorem 3.3. We fix j ∈ {0, . . . , d -1}. Let X 0 , . . . , X d-1 be d pairwise independant discrete random variables with geometric law of parameter (1 -q -1 ), i.e.

P[X

i = k] = (1 -q -1 ) • q -k (with 0 ≤ i < d and k ∈ N).
Then V j is distributed as the random variable

Y j = d i=0 min(X j-i , X j-i+1 , . . . , X j+i ) with X i = +∞ if i < 0 and X i = 0 if i ≥ d.
Remark 3.4. The above Theorem does not say anything about the correlations between the X j 's. In particular, we emphasize that it is false that the tuple (V d-1 , . . . , V 0 ) is distributed as (Y d-1 , . . . , Y 0 ). For instance, one can prove that (V d-1 , V d-2 ) is distributed as (X, X ′ + min(X ′ , [X/2])) where X and X ′ are two independant discrete random variables with geometric law of parameter (1 -q -1 ) and the notation [•] stands for the integer part function. In particular, we observe that (V d-2 , V d-1 ) = (2, 1) almost surely although the events {V d-1 = 2} and {V d-2 = 1} both occur with positive probability.

Nonetheless, a consequence of Proposition 3.10 below is that the variables Vj = ½ {Vj =0} are mutually independant. Theorem 3.5. For all j ∈ {0, . . . , d -1} and all m ∈ N, we have:

P[δ j ≥ m] ≥ (q -1)(q j -1) q j+1 -1 q -m .
The proof of these two theorems will be given in §3.3. We now derive some consequences. Let σ denote the following permutation:

1 2 • • • d 2 d 2 + 1 d 2 + 2 • • • d 1 3 • • • d -1 d d -2 • • • 2 if 2 | d 1 2 • • • d+1 2 d+3 2 d+5 2 • • • d 1 3 • • • d d -1 d -3 • • • 2 if 2 ∤ d.
In other words, σ takes first the odd values in [1, d] in increasing order and then the even values in the same range in decreasing order.

Corollary 3.6. For all j ∈ {0, . . . , d -1}, we have:

(1) E[V j ] = d-j i=1 1 q σ(i) -1 ; in particular 1 q-1 ≤ E[V j ] < q (q-1) 2 (2) q j -1 q j+1 -1 ≤ E[δ j ] ≤ E[V j ] (3) σ[V j ] 2 = d-j i=1 (2i -1) • q σ(i) (q σ(i) -1) 2 ; in particular √ q q-1 ≤ σ[V j ] < q √ q+1 (q-1) 2 (4) P[V j ≥ m] ≤ q -m+O( √ m) (5) E[max(V 0 , . . . , V d-1 )] ≤ log q d + O( log q d) Proof. By Theorem 3.3, we have E[V j ] = d i=0 E[Z i ] with Z i = min(X j-i , .
. . , X j+i ) (j is fixed during all the proof). Our conventions imply that Z i vanishes if i ≥ d -j. On the contrary, if i < d-j, let us define τ (1), . . . , τ (d-j) as the numbers σ(1), . . . , σ(d-j) sorted in increasing order. The random variable Z i is then the minimum of τ (i) independant random variables with geometric distribution of parameter (1 -q -1 ) and thus its distribution is geometric of parameter (1 -q -τ (i) ). Its expected value is then 1 q τ (i)-1 and the first formula follows. The inequality 1 q-1 ≤ E[V j ] is clear because 1 q-1 is the first summand in the expansion of E[V j ]. The upper bound is derived as follows:

E[V j ] < ∞ i=0 1 q i -1 ≤ ∞ i=0 1 q i -q i-1 = q (q -1) 2 .
The first inequality of claim ( 2) is obtained from the relation

E[δ j ] = ∞ m=1 m • P[δ j = m] = ∞ m=1 P[δ j ≥ m]
using the estimation of Theorem 3.5. The second inequality is clear because δ j ≤ V j .

The variance of V j is related to the covariance of Z i 's thanks to the formula

Var(V j ) = 1≤i,i ′ ≤d-j Cov(Z i , Z i ′ ).
Moreover, given X and X ′ two independant variables having geometric distribution of parameter (1 -a -1 ) and (1 -b -1 ) respectively, a direct computation gives:

Cov(X, min(X, X ′ )) = ab (ab -1) 2 .
Applying this to our setting, we get:

Cov(Z i , Z i ′ ) = q e(i,i ′ ) (q e(i,i ′ ) -1) 2
where e(i, i ′ ) = min(τ (i), τ (i ′ )) = τ (min(i, i ′ )). Summing up these contributions, we get the equality in [START_REF] Batut | User's guide to PARI-GP[END_REF]. The inequalities are derived from this similarly to what we have done in [START_REF] Andrews | The Theory of Partitions[END_REF].

We now prove (4). Let (Z i ) i≥0 be a countable family of independant random variable having all geometric distribution of parameter (1 -q -1 ). We set Z = ∞ i=1 min(Z 1 , . . . , Z i ). Cleary V j ≤ Z and it is then enough to prove:

P[Z ≥ m] ≤ q -m+O( √ m) .
We introduce the event E m formulated as follows: there exists a partition (m 1 , . . . , m ℓ ) of m such that X i ≥ m i for all i ≤ ℓ. Up to a measure-zero subset, E m contains the event {Z ≥ m}. We obtain this way:

P[Z ≥ m] ≤ P[E m ] ≤ ℓ i=1 P[X 1 ≥ m i ]
where the latter sum runs over all partitions (m 1 , . . . , m ℓ ) of m. Replacing P[X 1 ≥ m i ] by q -mi , we get P[E m ] ≤ p(m) • q -m where p(m) denotes the number of partitions of m. By a famous formula [START_REF] Andrews | The Theory of Partitions[END_REF], we know that log p(m) is equivalent to π 2m/3. In particular it is in q O( √ m) and ( 4) is proved. We now derive (5) by a standard argument. It follows from (4) that

P[max(V 0 , . . . , V d-1 )] ≤ d • q -m+c √ m
for some constant c. Therefore:

E[max(V 0 , . . . , V d-1 )] ≤ ∞ m=1 min(1, d • q -m+c √ m ).
Let m 0 denote the smallest index such that d • q -m0+c √ m 0 , i.e. m 0 -c √ m 0 ≥ log q d. Solving the latest equation, we get m 0 = log q +O( log q d). Moreover ∞ m=m0 d q -m+c √ m is bounded independantly of d. The result follows.

Proof of Theorems and 3.5

During the proof, A and B will always refer to monic polynomials of degree d and R j (resp. U j and V j ) to their j-th subresultant (resp. their j-th cofactors). If P is a polynomial and n is a positive integer, we use the notation P [n] to refer to the coefficient of X n in P . We set r j = R j [j].

Preliminaries on subresultants. We collect here various useful relations between subresultants and cofactors. During all these preliminaries, we work over an arbitrary base ring A.

Proposition 3.7. The following relations hold:

• U j-1 V j -U j V j-1 = (-1) j r 2 j ; • U j [d-j-1] = -V j [d-j-1] = (-1) j r j+1 ; • Res j,j-1 k (R j , R j-1 ) = r 2(j-k-1) j R k for k < j; • Res d-j,d-j-1 k (U j-1 , U j ) = r 2(d-j-k-1) j U d-1-k for k < d -j.
Moreover r j depends only on the 2(d -j) -1 coefficients of highest degree of A and B.

Proof. By functoriality of subresultants, we may assume that A = Z[a 0 , . . . , a d-1 , b 0 , . . . , b d-1 ] and that A and B are the two generic monic polynomials A = X d + i=0 a i X i and B = X d + i=0 b i X i . Under this additional assumption, all principal subresultant are nonzero. Therefore, the sequences (R j ) j , (U j ) j and (V j ) j are given by the recurrences ( 10)- [START_REF] Winkler | Polynomial Algorithms in Computer Algebra[END_REF]. The two first announced relations follow easily. Let now focus on the third one. We set Rj = R j and Rk = r 2(j-k-1) j R k for k < j. An easy decreasing induction on k shows that this sequence obeys to the recurrence:

Rk-1 = r2 k • r-2 k+1 • ( Rk+1 % Rk )
where rj = 1 and rk is the coefficient of Rk of degree k for all k < j. Comparing with [START_REF] Lairez | Computation of power series solutions with p-adic coefficients of certain differential equations[END_REF], this implies that Rk is the k-th subresultant of the pair (R j , R j-1 ) and we are done. The fourth equality and the last statement are proved in a similar fashion.

For any fixed index j ∈ {1, . . . , d -1}, we consider the function ψ j that takes a couple (A, B) ∈ A d [X] 2 to the quadruple (U j , U j-1 , R j , R j-1 ). It follows from Proposition 3.7 that ψ j takes its values in the subset E j of

A ≤d-j-1 [X] × A ≤d-j [X] × A ≤j [X] × A ≤j-1 [X]
consisting of the quadruples (U j , U j-1 , R j , R j-1 ) such that:

U j-1 [d-j] = (-1) j-1 R j [j]
and Res d-j,d-j-1 (U j-1 , U j ) = -R j [j] 2(d-j-1) .

Let E × j be the subset of E j defined by requiring that R j [j] is invertible in A. In the same way, we define Ω × j as the subset of A d [X] 2 consisting of couples (A, B) whose j-th principal subresultants (in degree (d, d)) is invertible in A.

Proposition 3.8. The function ψ j induces a bijection between Ω × j and E × j .

Proof. We are going to define the inverse of ψ j . We fix a quadruple (U j , U j-1 , R j , R j-1 ) in E × j and set a = R j [j]. Let W j and W j-1 denote the j-th cofactors of (U j-1 , U j ) in degree (d-j, d-j-1). Define V j = αW j and V j-1 = -αW j-1 where α = a 4j-4d+6 . The relation:

U j-1 V j -U j V j-1 = a 2 . ( 13 
)
then holds. We now define A and B using the formulae:

A = (-1) j • a -2 • (V j R j-1 -V j-1 R j ) B = (-1) j-1 • a -2 • (U j R j-1 -U j-1 R j ) ( 14 
)
and let ϕ j be the function mapping (U j , U j-1 , R j , R j-1 ) to (A, B). The composite ϕ j • ψ j is easily checked to be the identity: indeed, if ψ j (A, B) = (U j , U j-1 , R j , R j-1 ), the relation (13) implies that V j-1 and V j are the missing cofactors and, consequently, A and B have to be given by the system (14).

To conclude the proof, it remains to prove that the composite in the other direction ψ j • ϕ j is the identity as well. Since both ϕ j and ψ j are componant-wise given by polynomials, we can use functoriality and assume that A is the field Q(c 0 , c 1 , . . . , c n ) (with n = 2d) and that each variable c i corresponds to one coefficient of U j , U j-1 , R j and R j-1 with the convention that c 0 (resp. (-1) j-1 c 0 ) is used for the leading coefficients of R j (resp. U j-1 ). Set:

(A, B) = ϕ j (U j , U j-1 , R j , R j-1 ) and (U j , U j-1 , R j , R j-1 ) = ψ j (A, B)
Since A is a field and R j [j] does not vanish, the Sylvester mapping

A <d-j [X] × A <d-j [X] → A <2d-j [X]/A <j [X] (U, V ) → AU + BV
has to be bijective. Therefore there must exist λ ∈ A such that

R j = λ • R j and U j = λ • U j . Similarly (R j-1 , U j-1 ) = µ • (R j-1 , U j-1
) for some µ ∈ A. Identifying the leadings coefficients, we get λ = µ. Writing Res d-j,d-j-1 (U j-1 , U j ) = Res d-j,d-j-1 (U j-1 , U j ), we get λ 2(d-j)-1 = 1. Since the exponent is odd, this implies λ = 1 and we are done.

Corollary 3.9. We assume that A = W . Then the map ψ j : Ω × j → E × j preserves the Haar measure.

Proof. Proposition 3.8 applied with the quotient rings A = W/π n W shows that (ψ j mod π n ) is a bijection for all n. This proves the Corollary.

The distribution in the residue field. We assume in this paragraph that A is a finite field of cardinality q. We equip Ω A = A d [X] 2 with the uniform distribution. For j ∈ {0, . . . , d -1} and (A, B) ∈ Ω A , we set Vj (A, B) = 1 if r j (A, B) vanishes and Vj (A, B) = 0 otherwise. The functions Vj 's define random variables over Ω A . Proposition 3.10. With the above notations, the Vj 's are mutually independant and they all follow a Bernoulli distribution of parameter 1 q .

Proof. Given J ⊂ {0, . . . , d -1}, we denote by Ω A (J) the subset of Ω A consisting of couples (A, B) for which r j (A, B) does not vanish if and only if j ∈ J. We want to prove that Ω A (J) has cardinality q 2d-Card J (q -1) Card J . To do this, we introduce several additional notations. First, we write J = {n 1 , . . . , n ℓ } with n 1 > n 2 > • • • > n ℓ and set n ℓ+1 = 0 by convention.

Given n and m two integers with m < n, we let V (m,n) denote the set of polynomials of the form a m X m +a m+1 X m+1 • • •+a n X n with a i ∈ A and a n = 0. Clearly, V (m,n) has cardinality (q-1)q n-m . If P is any polynomial of degree n and m < n is an integer, we further define P [m:] ∈ V (m,n) as the polynomial obtained from P by removing its monomials of degree < m. Finally, given (A, B) in Ω A , we denote by (S i (A, B)) its subresultant pseudo-remainder sequence as defined in §2.2. We note that, if (A, B) ∈ Ω A (J), the sequence (S i (A, B)) stops at i = ℓ and we have deg S i = n i for all i. We now claim that the mapping

Λ J : Ω A (J) → V (n1,n2) × • • • × V (n ℓ ,n ℓ+1 ) (A, B) → S i (A, B)[n i+1 :] 1≤i≤ℓ
is injective. In order to establish the claim, we remark that the knowledge of S i-1 (A, B) and S i (A, B)[n i+1 :] (for some i) is enough to reconstruct the quotient of the Euclidean division of S i (A, B) by S i-1 (A, B). Thus, one can reconstruct S i (A, B) from the knowledge of S i-2 (A, B), S i-1 (A, B) and S i (A, B)[n i+1 :]. We deduce that Λ J (A, B) determines uniquely all S i (A, B)'s and finally A and B themselves. This proves the claim.

To conclude the proof, we note that the claim implies that the cardinality of Ω A (J) is at most q 2d-ℓ (q -1) ℓ . Summing up these inequalities over all possible J, we get Card Ω A ≤ q 2d . This latest inequality being an equality, we must have Card Ω A (J) = q 2d-Card J (q -1) Card J for all J.

Proof of Theorem 3.5. We assume first that j < d -1. Proposition 3.10 above ensures that r j+1 is invertible in W with probability (1 -q -1 ). Moreover, assuming that this event holds, Corollary 3.9 implies that R j is distributed in W ≤j [X] according to the Haar measure. An easy computation gives P[δ j ≥ m | r j+1 ∈ W × ] = q(q j -1) q j+1 -1 and therefore:

P[δ j ≥ m] ≥ (1 -q -1 )
• q(q j -1) q j+1 -1 = (q -1)(q j -1) q j+1 -1 .

The case j = d -1 is actually simpler. Indeed, the same argument works expect that we know for sure that r j+1 = r d is invertible since it is equal to 1 by convention. In that case, the probability is then equal to q(q j -1) q j+1 -1 .

Proof of Theorem 3.3. We fix j ∈ {0, . . . , d -1}. We define the random variable V (0) j as the greatest (nonnegative) integer v such that all principal subresultants r j ′ have positive valuation for j ′ varying in the open range (j -v, j + v) (with the convention that r j ′ = 0 whenever j ′ < 0). It is clear from the definition that r j-v or r j+v (with v = V (0) j ) has valuation 0. Moreover, assuming first that val(r j+v ) = 0, we get by Proposition 3.7:

val(r j ) = v + val r j-v,j-v+1 v (A (0) , B (0) ) with A (1) = 1 rj+v X j-v-1 • R j+v [j-v-1 :], and 
B (1) = A (1) + 1 πX j-v-1 • R j+v-1 [j-v-1 :]
where we recall that, given a polynomial P and an integer m, the notation P [m:] refers to the polynomial obtained from P by removing its monomials of degree strictly less than m. We notice that all the coefficients of B (1) lie in W because r j ′ has positive valuation for j ′ ∈ (j -v, j + v). Furthermore, Corollary 3.9 shows that the couple (A (1) , B (1) ) is distributed according to the Haar measure on (W 2v-1 [X]) 2 . If val(r j+v ) = 0, one can argue similarly by replacing R j+v and R j+v-1 by the cofactors U j-v and U j-v+1 respectively. Replacing (A, B) by (A (1) , B (1) ), we can now define a new random variable V

(1) j and, continuing this way, we construct an infinite sequence

V (m) j such that V j = m≥0 V (m) j .
We now introduce a double sequence (X (m) i ) 0≤i<d,m≥0 of mutually independant random variables with Bernoulli distribution of parameter 1 q and we agree to set X (m) j ′ = 0 for j ′ < 0 and

X (m) j ′ = 1 for j ≥ d. It follows from Proposition 3.10 (applied with A = k) that V (0) j has the same distribution than Y (0) j = d i=1 min(X (0) j-i , . . . , X (0) 
j+i ). In the same way, keeping in mind that A (1) and B (1) have both degree 2V (0) j -1, we find that V (1) j has the same distribution than

V (0) j -1 i=1 min(X (1) j-i , . . . , X (1) 
j+i ), which can be rewritten as

Y (1) j = d i=1 min(X (0) j-i , X (1) 
j-i , . . . , X (0) 
j+i , X

j+i ). More precisely, the equidistribution of (A (1) , B (1) ) shows that the joint distribution (V

(0) j , V (1) 
j ) is the same as those of (Y

(0) j , Y (1) 
j ). Repeating the argument, we see that (V

(m) j ) m≥0 is distributed as (Y (m) j
) m≥0 where:

Y (m) j = d i=1 min(X (0) j-i , . . . X (m) j-i , . . . , X (0) j+i , . . . , X (m) j+i ). Setting finally X i = m≥0 min(X (0) 1 , . . . , X (m) i 
), we find the X i 's (0 ≤ i < d) are mutually independant and that they all follow a geometric distribution of parameter (1 -q -1 ). We now conclude the proof by noting that Y j equals d i=1 min(X j-i , . . . , X j+i ) (recall that the X (m) i 's only take the values 0 and 1).

A stabilized algorithm for computing subresultants

We have seen in the previous sections that Euclide-like algorithm are unstable in practice. On the other hand, one can compute subresultants in a very stable way by evaluating the corresponding Figure 3: Picture of a lattice in the ultrametric world minors of the Sylvester matrix. Doing so, we do not loose any significant digit. Of course, the downside is the rather bad efficiency.

In this section, we design an algorithm which combines the two advantages: it has the same complexity than Euclide's algorithm and it is very stable in the sense that it does not loose any significant digit. This algorithm is deduced from the subresultant pseudo-remainder sequence algorithm by applying a "stabilization process", whose inspiration comes from [START_REF] Caruso | Tracking p-adic precision[END_REF].

Crash course on ultrametric precision

In this subsection, we briefly report on and complete the results of [START_REF] Caruso | Tracking p-adic precision[END_REF] where the authors draw the lines of a general framework to handle a sharp (often optimal) track of ultrametric precision. In what follows, the letter W still refers to a complete DVR while the letter K is used for its fraction field.

The notion of lattice

As underlined in Remark 2.2, the usual way of tracking precision consists in replacing elements of W -which cannot fit entirely in the memory of a computer -by balls around them. Using this framework, a software manipulating d variables in W will work with d "independant" balls. The main proposal of [START_REF] Caruso | Tracking p-adic precision[END_REF] is to get rid of this "independance" and model precision using a unique object contained in a d-dimensional vector space. In order to be more precise, we need the following definition.

Definition 4.1. A W -lattice in a finite dimensional vector space E over K is a W -submodule of E generated by a K-basis of E.

Although the defintion of a lattice is similar to that of Z-lattice in R d , the geometrical representation of it is quite different. Indeed, the elements of W themselves are not distributed as Z is in R but rather from a ball inside K (they are exactly elements of norm ≤ 1). More generally, assume that E is equipped with a ultrametric norm • E compatible with that on K (i.e. λx E = |λ| • x E for λ ∈ K, x ∈ E). (A typical example is E = K n equipped with the sup norm.) One checks that the balls

B E (r) = x ∈ E x E ≤ r
are all lattices in E. Moreover, any lattice is deduced from B E (1) by applying a bijective linear endomorphism of E. Therefore, lattices should be thought as special neighborhoods of 0 (see Figure 3). As a consequence, cosets of the form x + H, where H is a lattice, appear as interesting candidates to model precision. This feeling is consolidated by the following result which roughly speaking claims that such cosets behave quite well under differentiable maps.

Lemma 4.2 ([6], Lemma 3.4). Let E and F be two normed finite dimensional K-vector spaces. Let f : E → F be a function of class C 1 and let x be a point in K n at which the differential of f , denoted by f ′ (x), is surjective. Then, for all ρ ∈ (0, 1], there exists δ > 0 such that the following equality holds:

f (x + H) = f (x) + f ′ (x)(H) (15) 
for any lattice H satisfying B E (ρr) ⊂ H ⊂ B E (r) for some r < δ.

In what follows, we will often use Lemma 4.2 with ρ = 1. It states in this particular case that

f (x + B E (r)) = f (x) + f ′ (x)(B E (r)) (16) 
as soon as r is small enough. It is moreover possible to provide an explicit upper bound on r assuming that f has more regularity. The case of locally analytic functions is treated in [START_REF] Caruso | Tracking p-adic precision[END_REF] in full generality. Nevertheless, for the application we have in mind, it will be enough to restrict ourselves to the simpler case of integral polynomial functions. In order to proceed, we assume that E is endowed with distingushed "orthonormal" basis 4 , that is a basis (e 1 , . . . , e n ) with the property that n i=1

x i e i E = max 1≤i≤n |x i | for all families of λ i 's lying in K. In other words, the choice of this distingushed "orthonormal" basis defines a norm-preserving isomorphism between E and K n endowed with the sup norm. We assume similarly that we are given a distingushed "orthonormal" basis (f 1 , . . . , f m ) of F . Then any function f : E → F can be written in our distinguished system of coordinates as follows:

f (x) = m j=1 F j (x 1 , . . . , x n )f j with x = n i=1
x i e i . Definition 4.3. The function f is integral polynomial if all F j 's are polynomials functions with coefficients in W .

Example 4.4. Let us examine more closely the case of polynomial spaces since it will be considered repeadtly in the sequel. We take E = K <n [X] and F = K <m [X] and endow both with the Gauss norm, which is defined by:

a 0 + a 1 X + • • • + a n-1 X n-1 E = max |a 0 |, |a 1 |, . . . , |a n-1 | b 0 + b 1 X + • • • + b m-1 X m-1 F = max |b 0 |, |b 1 |, . . . , |b m-1 |
It is clear from these definitions that the canonical basis (1, X, . . . , X n-1 ) and (1, X, . . . , X m-1 ) of E and F respectively are "orthonormal". Moreover the coordinates in these basis are the a i 's and the b i 's respectively. Hence, an integral polynomial function f : E → F is nothing but a function mapping a a polynomial P to a polynomial Q whose coefficients are given by polynomial expressions which involve only the coefficients of P and some constants in W .

Obviously, all integral polynomial functions are function of class C 1 (and even locally analytic), so that Lemma 4.2 applies to them. Proposition 4.5 below exhibits an explcit value for the bound δ appearing in Lemma 4.2 when f is integral polynomial and r = 1. Proposition 4.5. Let f : E → F be an integral polynomial function and x ∈ B E (1). Then, Eq. (16) holds as soon as B F (r) ⊂ f ′ (x)(B E (1)).

Proof. It is a direct corollary of [6, Proposition 3.12].

Application to precision

Let us now briefly explain how Lemma 4.2 can be utilized for tracking precision.

Tracking precision locally Assume first that we want to perform a given rather simple operation -corresponding, say, to an elementary step (e.g. an iteration of the main loop) of the algorithm we are executing -modeled by a function g of class C 1 defined on an open subset U of a finite dimensional normed K-vector space E and taking values in another finite dimensional normed K-vector space F . Our input is an approximated element of U which is represented by a coset C with respect to some lattice H, that is a subset of U of the form C = x + H for some x ∈ U . We would like to insist on the following: the value of x is a priori not given; only is given the subset C. However, since H is stable under addtion, we have C = x + H for any element x ∈ C. 5 As explained in §2.1.2, assuming that g is given as an algebraic expression, the naive solution for evaluating g(C) consists in using formulas ( 5)- [START_REF] Cohen | A course in Computational Algebraic Number Theory[END_REF]. However, this often results in an overestimation on the precision, in the following sense: this method leads to some inclusion

g(C) = g(x + H) ⊂ y + H naive
where y ∈ F and H naive is a lattice which is generally much more larger that g ′ (x)(H), the latter being the best possible one according to Lemma 4.2 (assuming that the assumptions of this Lemma are fullfiled). In order to avoid this and be sharp on precision, another solution consists in splitting the computation of g(C) into two parts as follows:

(A) compute g ′ (x)(H), and (B) compute g(x) for some x ∈ C.

Part (A) is not easy to handle in full generality: in order to be efficient, a special close analysis taking advantage of the particular problem under consideration is often necessary. For now, let us simply assume that we have given two lattices H min and H max with the property that:

H min ⊂ g ′ (x)(H) ⊂ H max . (17) 
We shall see later (cf §4.2) how these lattices can be constructed -for a negligible cost -in the special case of subresultants. We now focus on part (B), which also requires some discussion. Indeed, computing g(x) is not straightforward because x itself lies in a K-vector space and therefore cannot be stored and manipulated on a computer. Nevertheless, one can take advantage of the fact that x may be chosen arbitrarily in C. More precisely, we pick a sublattice H ′ of H and consider the new approximated element x + H ′ ⊂ x + H. Concretely, this means that we arbitrarily increase the precision on the given input x. Now, applying the naive method with x + H ′ , we compute some y ∈ F and some lattice H ′ naive ⊂ F with the property that:

g(x + H ′ ) ⊂ y + H ′ naive .
If furthemore H ′ is chosen in such a way that H ′ naive ⊂ H min , the two cosets y + g ′ (x)(H) and g(C) have a non-empty intersection because g(x) lies in both. Therefore they must coincide. We deduce that y ∈ g(C). This exactly means that y is an acceptable value for g(x) and we are done. Moreover, estimating the dependance of H ′ naive in terms of H ′ is usually rather easy (remember that g is supposed to model a simple operation). Hence since H min is known -as we had assumed -finding H ′ satisfying the required assumption is generally not difficult.

Tracking precision globally As already said, we shall use the above method for tracking precision while executing a single step in a complete algorithm. Let us now address the problem of "glueing". We consider an algorithm F consisting in a succession of n steps G 0 , . . . , G n-1 . It is modeled by a function f : U → F of class C 1 where U is an open subset in a finite dimensional normed K-vector space E and F is a finite dimensional normed K-vector space. The input of F is an approximated element in U represented as a coset C = x + H where x ∈ U and H is a lattice. We also introduce notations for each individual step. For all i, we assume that G i is modeled by a 

g x+H x+H ′ g(x)+H max g(x)+ g ′ (x)(H) g(x)+H min y+H ′ naive
i : U i → U i+1 of class C 1 where U i is
an open subset is some normed K-vector space E i and, by convention, U 0 = U , E 0 = E and U n = E n = F . We thus have:

f = g n-1 • g n-2 • • • • • g 1 • g 0 .
For all i, we set

f i = g i-1 • • • • • g 0 .
It is the function modeling the execution of the i first steps of our algorithm. We further define x i = f i (x) and H i = f ′ i (x)(H). The chain rule for composing differentials readily implies the recurrence

H i+1 = g ′ i (x i )(H i ) (18) 
For simplicity, we make the following assumptions:

• the Z p -submodule H i is a lattice in E i such that x i + H i ⊂ U i ;
• the triple (g i , x i , H i ) satisfies the assumptions of Lemma 4.2;

• for all i, we have succeeded in finding (good enough) explicit lattices H min,i and H max,i such that H min,i ⊂ H i ⊂ H max,i ;

• for all i, we have succeeded in finding an explicit lattice H ′ i such that, while tracking naively precision, we end up with an inclusion

g i (x i + H ′ i ) = x i+1 + H naive,i+1
with H naive,i+1 ⊂ H min,i+1 .

We note that the first and the second assumptions are quite strong because they imply in particular that the sequence of dim E i is non-increasing. However, it really simplifies the forthcoming discussion and will be harmless for the application developed in this paper. As already mentionned, the construction of H min,i and H max,i will generally follow from a theoretical argument depending on the setting, while exhibiting H ′ i will often be straightforward. Anyway, we are now in position to apply the method for tracking precision locally we have discussed earlier to all g i 's. This leads to a stabilized version of the algorithm F whose skeleton is depicted in Algorithm 3.

The correctness of Algorithm 3 (under the assumptions listed above) is clear after Lemma 15.

Application to subresultants

We now apply the theory presented in §4.1 to the problem of computing subresultants, i.e. the abstract Algorithm F is now instantiated to Algorithm 2. We split this algorithm into steps in (A, B) such that lc(B) is invertible in W and deg A ≥ deg B. Indeed, it is enough for this to replace line 2 by: R d-1 ← (-1) deg A-deg B (A % B).

However, writing an extension of Algorithm 4 that accepts all inputs seems much more tricky and this is the second open question we would like to point out. Beyond this, one may wonder if one can use similar technics to compute not only subresultants but cofactors as well. For those indexes j such that r j is invertible in W , the same analysis applies almost verbatim. However for other indexes j, the differential computation seems to be much more subtle. One can get around this issue by using lifting technics only when r j is a unit in W and tracking precision naively otherwise: it is possible to get this way a stable algorithm whose average running time is acceptable but which seems to be bad in the worst case. Can we do better?

Another quite interesting question is those of designing an algorithm which combines the precision technology developed in this paper with the "half-gcd" methods. It is actually closely related to the previous question because "half-gcd" methods make an intensive use of cofactors in order to speed up the computation.

Conclusion: towards p-adic floats

When computing with real numbers, computers very often use floating point arithmetic. The rough idea of this model consists in representating all real numbers using the same number of digits (the so-called precision) and to apply rounding heuristics when final digits are unsettled. In comparison with arithmetic interval, floating point arithmetic has two main advantages. First, it allows simple and fast implementations. Second, experiments show that the obtained results have generally more much correct digits that those predicted by arithmetic interval. The counterpart is that, expect on small examples, obtaining proved results is generally intractable.

In the p-adic setting, the analogue of floating point arithmetic has not been developed yet. One reason for this is probably the well-known saying: "in the p-adic world, rounding errors do not accumulate". Consequently one might expect that interval arithmetic would provide sharp results. Nonetheless this hope is failing and examples are basic and numerous: p-adic differential equations [START_REF] Bostan | From Newton sums to coefficients: complexity issues in characteristic p[END_REF][START_REF] Lairez | Computation of power series solutions with p-adic coefficients of certain differential equations[END_REF], LU factorization [START_REF] Caruso | Random matrices over a DVR and LU factorization[END_REF], SOMOS 4 sequence [START_REF] Caruso | Tracking p-adic precision[END_REF], resultants (this paper), etc. Consequently, interval arithmetic is not as good as one might have expected at first. Therefore, it probably makes sense to seriously study the analogue of floating point arithmetic in a ultrametric context.

Let us describe quickly what might be this analogue and what are its advantages and disadvantages. We keep the notations of the previous sections: the letter W denotes a complete discrete valuation ring with uniformizer π and K is its fraction field. In the model of ultrametric floating point arithmetic, we fix a positive integer N (the precision) and represent elements of K by approximations of the form:

π e • N -1 i=0 x i π i ( 19 
)
where e is a relative integer and the x i 's are elements of a fixed set of representatives of W modulo π with the convention that the representative of 0 ∈ k is 0 ∈ W . We further assume that x 0 = 0, i.e. e is the valuation of the sum (19). We see that this framework is quite similar to usual floating point arithmetics: the integer e plays the role of exponent, the uniformizer π plays the role of the basis and the value N -1 i=0 x i π i plays the role of the significand (the mantissa). It remains to define operations ⊕ and ⊙ on approximations modeling addition and multiplication on K respectively. We do this as follows: given x and y two elements of K of the form Eq. (19), we compute x + y (resp. xy) in K, expand it as a convergent series ∞ i=v s i π i (with s v = 0) and define x ⊕ y (resp.

x ⊙ y) by truncating the series at i = v + N .

Similarly to real floating point arithmetic, the main advantages of ultrametric floating point arithmetic are the simplicity and the efficiency while the counterpart is the difficulty to get proved results. Moreover, the aforementioned examples are evidences that ultrametric floating point arithmetic may often compute much more correct digits than those predicted by an analysis based on interval arithmetic. In order to illustrate this last assertion, let us go back to the case of resultants discussed earlier in this paper. Let A and B be two monic polynomials of degree d (picked at random) whose coefficients are all known at precision O(π N ). We have proved that if we are using the model of interval arithmetic, then the subresultant pseudo-remainder sequence algorithm will output Res(A, B) at precision O(π N -Nint ) where N int grows linearly with respect to d on average. On the other hand, if we are using ultrametric floating point arithmetic, then the same algorithm will output Res(A, B) at precision O(π N -N float ) where N float grows linearly with respect to log d on average. We emphasize furthermore that this result is proved ! From this point of view, floating point arithmetics seems to behave better in the ultrametric setting: we may hope to get proved results relatively cheaply.
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 5 , S k+1 ← quotient and remainder in the Euclidean division of S k-1 by S k 6

Definition 2 . 1 .

 21 A discrete valuation ring (DVR for short) is a domain W equipped with a map val : W → Z ∪ {+∞} -the so-called valuation -satisfying the four axioms: 1. val(x) = +∞ iff x = 0 2. val(xy) = val(x) + val(y) 3. val(x + y) ≥ min(val(x), val(y)) 4. any element of valuation 0 is invertible.

Algorithm 2 :

 2 Subresultant pseudo remainder sequence algorithm Input : Two polynomials A, B ∈ K d [X] (given at finie precision) Output: The complete sequence of subresultants of A and B.

Figure 4 :

 4 Figure 4: Method for tracking precision based on Lemma 4.2

  The resultant of A and B (computed in degree d A , d B ) is the determinant of the ψ; we denote it by Res dA,dB (A, B). We observe that it vanishes if d A > deg A or d B > deg B. In what follows, we will freely drop the exponent d A , d B if d A and d B are the degrees of A and B respectively. Using Cramer formulae, we can build polynomials

  R 0 Example 2.7. Applying Algorithm 2 with the input (A, B) of Example 2.3, we obtain:

Indeed, observe that the matrix of ψ j is a submatrix of the Sylvester matrix.

in a model of precision which is slightly weaker that the usual one; we refer to §3.1 for a complete discussion about this.

One can prove that such a basis always exists.

This assertion means that any element of the "rectangle" C is a center of it... which might be surprising if we are accustomed to real numbers.

If this assumption is not fullfiled, the algorithms fails and returns an error.

I.e. dealing with abnormal sequences as well.

x i+1 ← G i (x i )

the obvious manner, each step corresponding to an iteration of the main loop. We thus consider the functions:

and

where R j-1 is defined as usual by

where r j (resp. r j+1 ) stands for the coefficient of degree j in R j (resp. of degree j + 1 in R j+1 ). We remark that g j is only defined on the subset consisting of pairs (R j+1 , R j ) for which R j+1 has degree j + 1; this reflects the fact that Algorithm 2 fails on inputs for which at least one principal subresultant vanishes. The composite function f = g 1 • • • • • g d (be careful with the order of the indices) models (a slight variant of) Algorithm 2. For all j, we put f j = g j+1 • • • • • g d ; it is the function:

(A, B) → (Res j (A, B), Res j-1 (A, B)).

For simplicity, we assume in addition that the precision on the input (A, B) is flat, meaning that all coefficients of A and B are known with the same absolute precision N . In the language of §4.1, this flat precision corresponds to the lattice

with respect to the Gauss norm (cf Example 4.4). Following §4.1, our first task consists in finding two lattices H min,j and H max,j having the property that

Lemma 4.6. For all (A, B) ∈ K d [X] 2 , we have:

where r j is the j-th principal subresultant of (A, B) and

Proof. The second inclusion is clear because f j is a polynomial function. Let us prove the first inclusion. One may of course assume that r j does not vanish, otherwise there is nothing to prove. Now, we remark that f j factors through the function ψ j introduced in §3.3. By continuity, the j-th principal subresultant function does not vanish on a neighborhood of (A, B). By Proposition 3.8, ψ j is injective on this neighborhood. Therefore so is f j . Furthermore, a close look at the proof of Proposition 3.8 indicates that a left inverse of f j is the function mapping (S j , S j-1 ) to

where U j , V j (resp. U j-1 , V j-1 ) are the j-th (resp (j -1)-th) cofactors of (A, B). Differenting this, we get the announced result.

Lemma 4.6 ensures that one can safely take H min,j = r 2 j • π N L j and H max,j = π N L j . It finally remains to construct the lattice

For this, we remark that a naive track of precision leads to a loss of at most 2 • val(r j+1 ) digits while executing the step G j (see also proof of Proposition 3.2 for similar considerations). Therefore, one can take H ′ j = r 2 j r 2 j+1 • π N L j . Instantiating Algorithm 3 in this particular case, we end up with Algorithm 4 below which then appears as a stable version of Algorithm 2. 

Proposition 4.7. Algorithm 4 computes all subresultants of (A, B) at precision O(π N ) under the following assumption 6

(H): all principal subresultants of (A, B) do not vanish modulo π N/2 .

It runs in

)) bit operations where V j denotes the valuation of r j and M(n) is the number of bit operations needed to perform an arithmetic operation (addition, product, division) in W at precision O(π n ).

Remark 4.8. In all usual examples (p-adic numbers, Laurent series), one can choose M(n) to be quasi-linear in n and the size of the residue field k.

Proof. Correctness has been already proved (the assumption (H) ensures that Proposition 4.5 applies to each g j ). As usual Euclide's algorithm, Algorithm 1 requires O(d 2 ) operations in the base ring W . Moreover, we observe that the maximal precision at which we are computing is upper bounded by N + 2max(V 0 , . . . , V d-1 ). This justifies the announced complexity.

According to Corollary 3.6, the expected value of the variable max(V 0 , . . . , V d-1 ) is in O(log p d). Thus, the average complexity of Algorithm 1 is O(d 2 • M(N + log d)) bit operations. In all usual cases (cf Remark 4.8), this complexity is also Õ(d 2 N • log |k|) bit operations.

To conclude with, let us comment on briefly the hypothesis (H). We first remark that it is satisfied with high probability if N is large compared to 2 • log d p. Thus, replacing eventually N by 3 • log d p (which does not affect the complexity), the assumption (b) is harmless on average -but maybe not on particularly bad instances. We moreover underline that, if we are just interested in computing the j-th subresultant for a particular j, then we just need to assume the non-vanishing of the principal subresultants in the range [j + 1, d -1].

Open questions

The first hypothesis we would like to relax is of course (H). Actually, it seems quite plausible that one can produce a stabilized version of the "complete" 7 subresultant pseudo-remainder sequence algorithm following the same strategy. Nevertheless, this extension is not completely straightforward because designing it requires to understand precisely how the coefficients c i 's (appearing in Eq. 9) alter the behaviour of the precision. We therefore let it as an open question.

As it was presented, Algorithm 4 only accepts inputs consisting of a pair of monic polynomials having the same degree. It is actually not difficult to make it work with all couples of polynomials