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Multimodal Data Fusion: An Overview
of Methods, Challenges and Prospects

Dana Lahat, Tülay Adalı, Fellow, IEEE, and Christian Jutten, Fellow, IEEE

Abstract—In various disciplines, information about the same
phenomenon can be acquired from different types of detectors, at
different conditions, in multiple experiments or subjects, among
others. We use the term “modality” for each such acquisition
framework. Due to the rich characteristics of natural phenomena,
it is rare that a single modality provides complete knowledge
of the phenomenon of interest. The increasing availability of
several modalities reporting on the same system introduces new
degrees of freedom, which raise questions beyond those related to
exploiting each modality separately. As we argue, many of these
questions, or “challenges”, are common to multiple domains.
This paper deals with two key questions: “why we need data
fusion” and “how we perform it”. The first question is motivated
by numerous examples in science and technology, followed by a
mathematical framework that showcases some of the benefits that
data fusion provides. In order to address the second question,
“diversity” is introduced as a key concept, and a number of data-
driven solutions based on matrix and tensor decompositions are
discussed, emphasizing how they account for diversity across the
datasets. The aim of this paper is to provide the reader, regardless
of his or her community of origin, with a taste of the vastness
of the field, the prospects and opportunities that it holds.

Index Terms—Keywords: data fusion, multimodality, multiset
data analysis, latent variables, tensor, overview.

I. INTRODUCTION

Information about a phenomenon or a system of interest can
be obtained from different types of instruments, measurement
techniques, experimental setups, and other types of sources.
Due to the rich characteristics of natural processes and envi-
ronments, it is rare that a single acquisition method provides
complete understanding thereof. The increasing availability of
multiple datasets that contain information, obtained using dif-
ferent acquisition methods, about the same system, introduces
new degrees of freedom that raise questions beyond those
related to analysing each dataset separately.

The foundations of modern data fusion have been laid in the
first half of the 20th century [1], [2]. Joint analysis of multiple
datasets has since been the topic of extensive research, and
earned a significant leap forward in the late 1960’s–early
1970’s with the formulation of concepts and techniques such
as multi-set canonical correlation analysis (CCA) [3], parallel
factor analysis (PARAFAC) [4], [5], and other tensor decom-
positions [6], [7]. However, until rather recently, in most cases,
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these data fusion methodologies were confined within the
limits of psychometrics and chemometrics, the communities
in which they evolved. With recent technological advances, in
a growing number of domains, the availability of datasets that
correspond to the same phenomenon has increased, leading to
increased interest in exploiting them efficiently. Many of the
providers of multi-view, multirelational, and multimodal data
are associated with high-impact commercial, social, biomed-
ical, environmental, and military applications, and thus the
drive to develop new and efficient analytical methodologies is
high and reaches far beyond pure academic interest.

Motivations for data fusion are numerous. They include
obtaining a more unified picture and global view of the system
at hand; improving decision making; exploratory research; an-
swering specific questions about the system, such as identify-
ing common vs. distinctive elements across modalities or time;
and in general, extracting knowledge from data for various
purposes. However, despite the evident potential benefit, and
massive work that has already been done in the field (see, for
example, [8]–[16] and references therein), the knowledge of
how to actually exploit the additional diversity that multiple
datasets offer is still at its very preliminary stages.

Data fusion is a challenging task for several reasons [8]–
[11], [17]–[19]. First, the data are generated by very complex
systems: biological, environmental, sociological, and psycho-
logical, to name a few, driven by numerous underlying pro-
cesses that depend on a large number of variables to which
we have no access. Second, due to the augmented diversity,
the number, type and scope of new research questions that can
be posed is potentially very large. Third, working with hetero-
geneous datasets such that the respective advantages of each
dataset are maximally exploited, and drawbacks suppressed,
is not an evident task. We elaborate on these matters in the
following sections. Most of these questions have been devised
only in the very recent years, and, as we show in the sequel,
only a fraction of their potential has already been exploited.
Hence, we refer to them as “challenges”.

A rather wide perspective on challenges in data fusion is
presented by [8], which discusses linked-mode decomposition
models within the framework of chemometrics and psycho-
metrics, and [9], which focusses on “automated decision
making” with special attention to multisensor information
fusion. In practice, however, challenges in data fusion are most
often brought up within a framework dedicated to a specific
application, model and dataset; examples will be given in the
sections that follow.

In this paper, we bring together a comprehensive (but
definitely not exhaustive) list of challenges in data fusion.
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Following from [8], [9], [16], [19] (and others), and further
emphasized by our discussion in this paper, it is clear that
at the appropriate level of abstraction, the same challenge in
data fusion can be relevant to completely different and diverse
applications, goals and data types. Consequently, a solution to
a challenge that is based on a sufficiently data-driven, model-
free approach may turn out to be useful in very different
domains. Therefore, there is an obvious interest in opening
up the discussion of data fusion challenges to include and
involve disparate communities, so that each community could
inform the others. Our goal is to stimulate and emphasize the
relevance and importance of a perspective based on challenges
to advanced data fusion. More specifically, we would like
to promote data-driven approaches, that is, approaches with
minimal and weak priors and constraints, such as sparsity,
non-negativity, low-rank and independence, among others,
that can be useful to more than one specific application or
dataset. Hence, we present these challenges in quite a general
framework that is not specific to an application, goal or data
type. We also give examples and motivations from different
domains.

In order to contain our discussion, we focus on setups in
which a phenomenon or a system is observed using multiple
instruments, measurement devices or acquisition techniques. In
this case, each acquisition framework is denoted as a modality
and is associated with one dataset. The whole setup, in which
one has access to data obtained from multiple modalities, is
known as multimodal. A key property of multimodality is
complementarity, in the sense that each modality brings to
the whole some type of added value that cannot be deduced
or obtained from any of the other modalities in the setup.
In mathematical terms, this added value is known as diversity.
Diversity allows to reduce the number of degrees of freedom in
the system by providing constraints that enhance uniqueness,
interpretability, robustness, performance, and other desired
properties, as will be illustrated in the rest of this paper.
Diversity can be found in a broad range of scenarios and plays
a key role in a wide scope of mathematical and engineering
studies. Accordingly, we suggest the following operative def-
inition for the special type of diversity that is associated with
multimodality:

Definition I.1: Diversity (due to multimodality) is the
property that allows to enhance the uses, benefits and
insights (such as those discussed in Section II), in a way
that cannot be achieved with a single modality.

Diversity is the key to data fusion, as will be explained in
Section III. Furthermore, in Section III, we demonstrate how a
diversity approach to data fusion can provide a fresh new look
on previously well-known and well-founded data and signal
processing techniques.

As already noted, “data fusion” is quite a diffuse con-
cept that takes different interpretations with applications and
goals [8], [9], [20]. Therefore, within the context of this
paper, and in accordance with the types of problems on
which we focus, our emphasis is on the following tighter

interpretation [21]:

Definition I.2: Data fusion is the analysis of several
datasets such that different datasets can interact and
inform each other.

This concept will be given a more concrete meaning in
Sections III and V.

The goal of this paper is to provide some ideas, perspec-
tives, and guidelines as to how to approach data fusion. This
paper is not a review, not a literature survey, not a tutorial
nor a cookbook. As such, it does not propose or promote
any specific solution or method. On the contrary, our message
is that whatever specific method or approach is considered,
it should be kept in mind that it is just one among a very
large set, and should be critically judged as such. In the same
vein, any example in this paper should only be regarded as a
concretization of a much broader idea.

How to read this paper? In order to make this paper
accessible for readers with various interests and back-
grounds, it is organized in two types of cross-sections.
The first part (Sections II–III) deals with the question
“why?”, i.e., why we need data fusion. The second part
(Sections IV–V) deals with the question “how?”, i.e, how
we perform data fusion. Each question is treated on two
levels: data (Sections II and IV), and theory (Sections III
and V). More specifically, Section II presents the concepts
of multimodality and data fusion, and motivates them
using examples from various applications. In Section III
we introduce the concept of diversity as a key to data
fusion, and give it a concrete mathematical formulation.
Section IV discusses complicating factors that should be
addressed in the actual processing of heterogeneous data.
Section V gives some guidelines as to how to actually
approach a data fusion problem from a model design
perspective. Section VI concludes our work.

II. WHAT IS MULTIMODALITY? WHY DO WE NEED
MULTIMODALITY?

For living creatures, multimodality is a very natural concept.
Living creatures use external and internal sensors, sometimes
denoted as “senses”, in order to detect and discriminate among
signals, communicate, cross-validate, disambiguate, and add
robustness to numerous life-and-death choices and responses
that must be taken rapidly, in a dynamic and constantly
changing internal and external environment.

The well-accepted paradigm that certain natural processes
and phenomena can express themselves under completely
different physical guises is the raison d’être of multimodal
data fusion. Too often, however, very little is known about the
underlying relationships among these modalities. Therefore,
the most obvious and essential endeavour to be undertaken
in any multimodal data analysis task is exploratory: to learn
about relationships between modalities, their complementarity,
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shared vs. modality-specific information content, and other
mutual properties.

In this section, we try to provide, by numerous practical
examples, a more concrete sense to what we mean when we
speak of “diversity” and “multimodality”. The examples below
illustrate the complementary nature of multimodal data, and
as a result, some of the prominent uses, benefits and insights
that can be obtained from properly exploiting multimodal data,
especially as opposed to the analysis of single-set and single-
modal data. They also present various complicating factors,
due to which multimodal data fusion is not an evident task.
The purpose of this section is to show that multimodality is
already present in almost every field of science and technology,
and thus it is of potential interest to everyone.

A. Multisensory Systems

Example II-A.1: Audio-Visual Multimodality. Audio-visual
multimodality is probably the most intuitive, since it uses
two of our most informative senses. Most human verbal com-
munication involves seeing the speaker [18]. Indeed, a large
number of audio-visual applications involve human speech and
vision. In such applications, it is usually the audio channel that
conveys the information of interest. It is well-known that audio
and video convey complementary information. Audio has the
advantage over video that it does not require line of sight.
On the other hand, the visual modality is resistant to various
factors that make audio and speech processing difficult, such as
ambient noise, reverberations, and other acoustic disturbances.

Perhaps the most striking evidence to the amount of caution
that needs to be taken in the design and use of multimodal
systems is the “McGurk effect” [18]. In their seminal paper,
McGurk and McDonald [18] have shown that presenting
contradictory, or discrepant, speech [“ba”] and visual lip
movements [“ga”], can cause a human to perceive completely
different syllables [“da”]. These unexpected results have since
been the subject of ongoing exploratory research on human
perception and cognition [22, Section VI.A.5]. The McGurk
effect serves as an indication that in real-life scenarios, data
fusion can take paths much more intricate than simple sum-
mation of information. Not less important, it serves as a lesson
that fusing modalities can yield undesired results and severe
degradation of performance if the underlying relationships
between modalities are not properly understood.

Nowadays, audio-visual multimodality is used for a broad
range of applications [10], [23]. Examples include: speech
processing, including speech recognition, speech activity de-
tection, speech enhancement, speaker extraction and separa-
tion; scene analysis, for example tracking a speaker within
a group, biometrics and monitoring, for safety and security
applications [24]; human-machine interaction (HMI) [10];
calibration [25] [10, Section V.C]; and more.
Example II-A.2: Human-Machine Interaction. A domain
that is heavily inspired by natural multimodality is HMI. In
HMI, an important task is to design modalities that will make
HMI as natural, efficient and intuitive as possible [11]. The
idea is to combine multiple interaction modes based on audio-
vision, touch, smell, movement (e.g., gesture detection and

user tracking), interpretation of human language commands,
and other multisensory functions [10], [11]. The principal
point that makes HMI stand out among other multimodal
applications that we mention is that, in HMI, the modalities
are often interactive (as their name implies). Unlike other
multimodal applications that we mention, not one but two
very different types of systems (human and machine) are “ob-
served” by each other’s sensors, and the goal of data fusion is
not only to interpret each system’s output, but also to actively
convey information between these two systems. An added
challenge is that this task should usually be accomplished
in real-time. An additional complicating factor that makes
multimodal HMI stand out is due to the fact that the human
user often plays an active part in the choice of modalities
(from the available set) and in the way that they are used
in practice. This implies that the design of the multimodal
setup and data fusion procedure must rely not only on the
theoretically and technologically optimal combination of data
streams but also on the ability to predict and adapt to the
subjective cognitive preferences of the individual user. We
refer to [11] (and references therein) for further discussion
of these aspects.

B. Biomedical, Health

Example II-B.1: Understanding Brain Functionality. Func-
tional brain study deals with understanding how the different
elements of the brain take part in various perceptual and
cognitive activities. Functional brain study largely relies on
non-invasive imaging techniques, whose purpose is to recon-
struct a high-resolution spatio-temporal image of the neuronal
activity within the brain. The neuronal activity within the brain
generates ionic currents that are often modelled as dipoles.
These dipoles induce electric and magnetic fields that can
be directly recorded by electroencephalography (EEG) and
magnetoencephalography (MEG), respectively. In addition,
neuronal activity induces changes in magnetization between
oxygen-rich and oxygen-poor blood, known as the haemody-
namic response. This effect, also called blood-oxygen-level
dependent (BOLD) changes, can be detected by functional
magnetic resonance imaging (fMRI). Therefore, fMRI is an
indirect measure of neuronal activity. These three modalities
register data at regular time intervals and thus reflect temporal
dynamics. However, these techniques vary greatly in their
spatio-temporal resolutions: EEG and MEG data provide high
temporal [millisecond] resolution, whereas fMRI images have
low temporal [second] resolution. fMRI data are a set of
high-resolution 3D images, taken at regular time intervals,
representing the whole volume of the brain of a patient lying
in an fMRI scanner. EEG and MEG data are a set of time-
series signals reflecting voltage or neuromagnetic field changes
recorded at each of the (usually a few dozen of) electrodes
attached to the scalp (EEG) or fixed within an MEG scanner
helmet. The sensitivity of EEG and MEG to deep-brain signals
is limited. In addition, they have different selectivity to signals
as a function of brain morphology. Therefore, they provide
data at much poorer spatial resolution and do not have access
to the full brain volume. Consequently, the spatio-temporal in-
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formation provided by EEG, MEG and fMRI is highly comple-
mentary. Functional imaging techniques can be complemented
by other modalities that convey structural information. For
example, structural magnetic resonance imaging (sMRI) and
diffusion tensor imaging (DTI) report on the structure of the
brain in terms of gray matter, white matter and cerebrospinal
fluid. sMRI is based on nuclear magnetic resonance of water
protons. DTI measures the diffusion process of molecules,
mainly water, and thus reports also on brain connectivity. Each
of these methods is based on different physical principles and
is thus sensitive to different types of properties within the
brain. In addition, each method has different pros and cons in
terms of safety, cost, accuracy, and other parameters. Recent
technological advances allow recording data from several
functional brain imaging techniques simultaneously [26], [27],
thus further motivating advanced data fusion.

It is a well-accepted paradigm in neuroscience that EEG
and fMRI carry complementary information about brain func-
tion [26], [28]. However, their very heterogeneous nature and
the fact that brain processes are very complicated systems that
depend on numerous latent phenomena imply that simultane-
ously extracting useful information from them is not an evident
task. The fact that there is no ground truth is reflected in the
very broad range of methods and approaches that are being
proposed [12], [15], [17], [21], [28]–[31]. Works on biomed-
ical brain imaging often emphasize the exploratory nature of
this task. Despite decades of study, the underlying relationship
between EEG and fMRI is far from being understood [17],
[29], [30], [32].

A well-known challenge in brain imaging is the EEG inverse
problem. A prevalent assumption is that the measured EEG
signal is generated by numerous current dipoles within the
brain, and the goal is to localise the origins of this neuronal
activity. Often formulated as a linear inverse problem, it is
ill-posed: many different spatial current patterns within the
skull can give rise to identical measurements [33]. In order
to make the problem well-conditioned, additional hypotheses
are required. A large number of solutions are based on
adding various priors to the EEG data [34]. Alternatively, an
identifiable and unique solution can be obtained using spatial
constraints from fMRI [12], [22], [30].
Example II-B.2: Medical Diagnosis. Various medical condi-
tions such as potentially malignant tumours cannot be diag-
nosed by a single type of measurement due to many factors
such as low sensitivity, low positive predictive values, low
specificity (high false-positive), a limited number of spatial
samples (as in biopsy), and other limitations of the various
assessment techniques. In order to improve the performance
of the diagnosis, risk assessment and therapy options, it is
necessary to perform numerous medical assessments based on
a broad range of medical diagnostic techniques [35], [36]. For
example, one can augment physical examination, blood-tests,
biopsies, static and functional magnetic resonance imaging,
with other parameters such as genetic, environmental and
personal risk factors. The question of how to analyse all these
simultaneously available resources is largely open. Currently,
this task relies mostly on human medical experts. One of the
main challenges is the automation of such decision procedures,

in order to improve correct interpretation, as well as save costs
and time [35].
Example II-B.3: Developing Non-Invasive Medical Diag-
nosis Techniques. In some cases, the use of multimodal
data fusion is only a first step in the design of a single-
modal system. In [37], the challenge is understanding the
link between surface and intra-cardiac electrodes measuring
the same atrial fibrillation event and the goal is eventually
extracting relevant atrial fibrillation activity using only the
non-invasive modality. For this aim, the intra-cardiac modality
is exploited as a reference to guide the extraction of an atrial
electrical signal of interest from non-invasive electrocardiog-
raphy (ECG) recordings. The difficulty lies in the fact that the
intra-cardiac modality provides a rather pure signal whereas
the ECG signal is a mixture of the desired signal with other
sources, and the mixing model is unknown.
Example II-B.4: Smart Patient Monitoring. Health moni-
toring using multiple types of sensors is drawing increasing
attention from modern health services. The goal is to provide
a set of non-invasive, non-intrusive, reasonable-cost sensors
that allow the patient to run a normal life while providing
reliable warnings in real-time. Here, we focus on monitoring,
predicting and warning epileptic patients from potentially
dangerous seizures [38]. The gold standard in monitoring
epileptic seizures is combining EEG and video, where EEG
is manually analysed by experts and the whole diagnostic
procedure requires a stay of up to several days in a hospital
setting. This procedure is expensive, time consuming, and
physically inconvenient for the patient. Obviously, it is not
practical for daily life. While much effort has already been
dedicated to the prediction of epileptic seizures from EEG,
with no clear-cut results so far, a considerable proportion of
potentially lethal seizures are hardly detectable by EEG at
all. Therefore, a primary challenge is to understand the link
between epileptic seizures and additional body parameters:
movement, breathing, heart-rate, and others. Due to the fact
that epileptic seizures vary within and across patients, and due
to the complex relations between different body systems, it is
likely that any such system should rely on more than one
modality [38].

C. Environmental Studies

Example II-C.1: Remote Sensing and Earth Observations.
Various sensor technologies can report on different aspects
of objects on Earth. Passive optical hyperspectral (resp. mul-
tispectral) imaging technologies report on material content
of the surface by reconstructing its spectral characteristics
from hundreds of (resp. a few) narrow (resp. broad) adjacent
spectral bands within the visible range and beyond. A third
type of an optical sensor is panchromatic imaging, which
generates a monochromatic image with a much broader band.
Typical spatial resolutions of hyperspectral, multispectral and
panchromatic images are tens of meters, a few meters and
less than one meter, respectively. Hence, there exists a trade-
off between spectral and spatial resolution [39], [40] [13,
Chapter 9]. Topographic information can be acquired from
active sensors such as light detection and ranging (LiDAR)
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and synthetic aperture radar (SAR). LiDAR is based on a
narrow pulsed laser beam and thus provides highly accurate
information about distance to objects, i.e., altitude. SAR is
based on radio waves that illuminate a rather wide area,
and the backscattered components reaching the sensor are
registered; interpreting the reflections from the surface requires
some additional processing with respect to (w.r.t.) LiDAR.
Both technologies can provide information about elevation,
three-dimensional structure of the observed objects, and their
surface properties. LiDAR, being based on a laser beam,
generally reports on the structure of the surface, although it
can partially penetrate through certain areas such as forest
canopy, providing information on the internal structure of the
trees, for example. This ability is a mixed blessing, however,
since it generates reflections that have to be accounted for.
SAR and LiDAR use different electromagnetic frequencies
and thus interact differently with materials and surfaces. As
an example, depending on the wavelength, SAR may see the
canopy as a transparent object (waves reach the soil under
the canopy), semi-transparent (they penetrate in the canopy
and interact with it) or opaque (they are reflected by the top
of the canopy). Optical techniques are passive, which implies
that they rely on natural illumination. Active sensors such as
LiDAR and SAR can operate at night and in shaded areas [41].

Beyond the strengths and weaknesses of each technology
w.r.t. the others, the use of each is limited by a certain in-
herent ambiguity. For example, hyperspectral imaging cannot
distinguish between objects made of the same material that
are positioned at different elevations, such as concrete roofs
and roads. LiDAR cannot distinguish between objects with
the same elevation and surface roughness that are made of
different materials such as natural and artificial grass [42].
SAR images may sometimes be difficult to interpret due to
their complex dependence on the geometry of the surface [41].

In real-life conditions, interpretability of the observations of
one modality may be difficult without additional information.
For example, in hyperspectral imaging, on a flat surface,
reflected light depends on the abundance (proportion of a ma-
terial in a pixel) and on the endmember (pure material present
in a pixel) reflectance. In a non-flat surface, the reflected light
depends also on the topography, which may induce variations
in scene illumination and scattering. Therefore, in non-flat
conditions, one cannot accurately extract material content
information from optical data alone. Adding a modality that
reports on the topography, such as LiDAR, is necessary to
resolve spectra accurately [43].

As an active initiative, we point out the yearly data fusion
contest of the IEEE Geoscience and Remote Sensing Society
(GRSS) (see dedicated paper in this issue [44]). Problems
addressed include multi-modal change detection, in which the
purpose is to detect changes in an area before and after an
event (a flood, in this case), given SAR and multispectral
imaging [45], using either all or part of the modalities; multi-
modal multi-temporal data fusion of optical, SAR and LiDAR
images taken at different years over the same urban area [41],
where suggested applications include assessing urban density,
change detection and overcoming adverse illumination con-
ditions for optical sensors; and proposing new methods for

fusing hyperspectral and LiDAR data of the same area, e.g., for
improved classification of objects [42].

Example II-C.2: Meteorological Monitoring. Accurate mea-
surements of atmospheric phenomena such as rain, water
vapour, dew, fog and snow are required for meteorological
analysis and forecasting, as well as for numerous applications
in hydrology, agriculture and aeronautical services. Data can
be acquired from various devices such as rain gauges, radars,
satellite-borne remote sensing devices (see Example II-C.1),
and recently also by exploiting existing commercial microwave
links [46]. Rain gauges, as an example, are simply cups that
collect the precipitation. Albeit the most direct and reliable
technique, their small sampling area implies very localized
representativeness and thus poor spatial resolution (e.g., [46],
[47]). Rain gauges may be read automatically at intervals as
short as seconds. Satellites observe Earth at different frequen-
cies, including visible, microwave, infrared, and shortwave
infrared to report on various atmospheric phenomena such
as water vapour content and temperature. The accuracy of
radar rainfall estimation may be affected by topography, beam
effects, distance from the radar, and other complicating factors.
Radars and satellite systems provide large spatial coverage;
however, they are less accurate in measuring precipitation
at ground level (e.g., [48]). Microwave links are deployed
by cellular providers for backhaul communication between
base stations. The signals transmitted by the base stations
are influenced by various atmospheric phenomena (e.g., [49]),
primarily attenuation due to rainfall [46], [47]. These changes
in signal strength are recorded at predefined time intervals and
kept in the cellular provider’s logs. Hence, the precipitation
data is in fact a “reverse engineering” of this information. The
microwave links’ measurements provide average precipitation
on the entire link and close to ground level [46]. Altogether,
these technologies are largely complementary in their ability to
detect and distinguish between different meteorological phe-
nomena, spatial coverage, temporal resolution, measurement
error, and other properties. Therefore, meteorological data are
often combined for better accuracy, coverage and resolution;
see, e.g., [19], [47], [48] and references therein.

Example II-C.3: Cosmology. A major endeavour in astron-
omy and astrophysics is understanding the formation of our
Universe. Recent results include robust support for the six-
parameter standard model of cosmology, of a Universe domi-
nated by Cold Dark Matter and a cosmological constant Λ,
known as ΛCDM [50], [51]. The purpose of ongoing and
planned sky surveys is to decrease the allowable uncertainty
volume of the six-dimensional ΛCDM parameter space and to
improve the constraints on the other cosmological parameters
that depend on it [51]. The goal is to validate (or disprove)
the standard model.

A major difficulty in astrophysics and cosmology is the
absence of ground truth. This is because cosmological pro-
cesses involve very high energies, masses, large space and time
scales that make experimental study prohibitive. The lack of
ground truth and experimental support implied that, from its
very beginning, cosmological research had to rely on cross-
validation of outcomes of different observations, numerical
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simulations and theoretical analysis; in other words, data fu-
sion. A complicating factor associated with this task is the fact
that in many types of inferences, for all practical purposes, we
have only one realization of the Universe. This means that even
if we make statistical hypotheses about underlying processes,
there is still only one sample. This fact induces an uncertainty
called “cosmic variance” that cannot be accommodated by
improving the measurement precision.

Despite its simplicity, the ΛCDM model has proved to
be successful in describing a wide range of cosmological
data [52]. In particular, it is predicted that its six parameters
can fully explain the angular power spectra of the temper-
ature and polarization fluctuations of the cosmic microwave
background radiation (CMB). Therefore, since the first ex-
perimental discovery of the CMB in 1965 [53], there has
been an ongoing effort to obtain better and more accurate
measurements of these fluctuations.

A severe problem in validating the ΛCDM model from
CMB observations is known as “parameter degeneracy”. Al-
though the CMB power spectrum can be fully explained by
the standard model, this relationship is not unique in the
sense that the same measured CMB power spectrum can be
explained by other models, not only ΛCDM. These degen-
eracies can be broken by combining CMB observations with
other cosmological data. While CMB corresponds to photons
released about 300,000 years after the Big Bang, the same
parameters that controlled the evolution of the early Universe
continue to influence its matter distribution and expansion rate
to our very days. Therefore, other measures, such as redshift
from certain types of supernovae, angular and radial baryon
acoustic oscillation scales that can be derived from galaxy
surveys, galaxy clustering [54], [55], and stacked gravitational
lensing, also serve as important cosmological probes [51],
[52]. Since the cosmological parameters that determine the
evolution of the early Universe are the same as those that
control high-energy physics, cosmological observations are
fused and cross-validated with experimental outcomes such
as the Large Hadron Collider Higgs data [56].

III. MULTIMODALITY AS A FORM OF DIVERSITY

In this section, we discuss data fusion from a theoretical
perspective. In order to contain our discussion, we focus on
data-driven methods. Within these, we restrict our examples
to a class of problems known as blind separation, and within
these, to data and observations that can be represented by
(multi-) linear relationships. Reasons are as follows. First,
by definition, data-driven models may be useful to numerous
applications, as will be explained in Section III-B. Second,
there exist much established theory and numerous models that
fit into this framework. Third, it is impossible to cover all
types of models. Still, the ideas that these examples illustrate
go far beyond these specific models.

A key property in any analytical model is uniqueness.
Uniqueness is necessary in order to achieve interpretability,
i.e., attach physical meaning to the output [2], [5]. In order
to establish uniqueness, all blind separation problems invari-
ably rely on one or more types of diversity [57]: concrete

mathematical examples will be given in Section III-C1. In the
sequel, we show how the concept of “diversity” plays part,
under different guises, in data fusion. In particular, we show
that multimodality can provide a new form of diversity that
can achieve uniqueness even in cases that are otherwise non-
unique.

The rest of this section is as follows. Section III-A presents
some basic mathematical preliminaries that will serve us to
provide a more concrete meaning to the ideas that we lay out
in the rest of this work. Section III-B explains the model-
driven vs. the data-driven approach, and motivates the latter.
Section III-C discusses diversity and data fusion in datasets
that are stacked in a single matrix or a higher-order array,
also known as a tensor. In Section III-D, we go beyond single-
array data analysis, and establish the idea of “a link between
datasets as a new form of diversity” as the key to advanced data
fusion. We conclude our claims and summarize these ideas in
Section III-E.

A. Mathematical Preliminaries
In a large number of applications, one is interested in

extracting knowledge from the data. In real-life scenarios, each
observation or measurement often consists of contributions
from multiple sources. These can be divided into sources of
interest, which carry valuable information, and other sources,
which do not carry any information of interest. The latter
type of contribution is sometimes referred to as noise, or
interference, depending on the scenario and context.

Consider one point x in the measurement space. We can
approximate it as (we write equality but we mean that we
attribute a certain model to it)

x = f(z) , (1)

where z = {z1, . . . , zV } is the ensemble of points in the
latent variable space. These could be signals, parameters or
any other elements that contribute to the observation x, and
f represents the corresponding transformation (e.g., channel
effects). We are interested in scenarios where z is unknown,
and in addition, cannot be observed directly without the
intermediate transformation f . In certain scenarios, also f is
unknown. We denote all the unknown elements of the model
as “latent variables”.

Perhaps the first and most obvious interpretation of (1) is
an inverse problem, where the goal is to obtain an estimate
as precise as possible of z and f given x. Recovering f
and z can also be regarded as finding the simplest set of
variables that explains the observations [5, Section I]. This
interpretation particularly corresponds to exploratory research.
In addition, and especially when the number of observations
is large w.r.t. the size of z, recovering the smallest-size z that
best explains the observations can be regarded as a form of
compression, which can be particularly useful in large-scale
data scenarios. It is clear that in order to solve (1), one needs
a sufficient number of constraints in order to (over-) determine
the problem, i.e., constrain the number of degrees of freedom
such that the problem is well-posed.

In the rest of this paper, we use standard mathematical
notations. Scalars, vectors, matrices, and higher-order arrays
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(tensors) are denoted as a, a, A, and A, respectively. The
dimensions of an N th-order array (tensor) are I1×I2×· · ·×IN ,
where N = 1, 2, 3, . . . implies a vector, matrix or higher-
order array (tensor), respectively. (·)> denotes transpose or
conjugate transpose, where the exact interpretation should be
understood from the context.

B. Data-Driven vs. Model-Driven Methods

Roughly, and for the sake of the discussion that follows,
approaches to the problem in Section III-A can be divided
into two groups: model driven, and data driven. Model-driven
approaches rely on an explicit realistic model of the underlying
processes [27, Section 3.3] [12], [58], and are generally
successful if the assumptions are plausible and the model
holds. However, model-driven methods may not always be
the best choice, for example, when the underlying model of
the signals or the medium in which they propagate is too
complicated, varying rapidly, or simply unknown.

In the context of multimodal datasets that are generated by
complex systems as those mentioned in Sections I–II, very
little is known about the underlying relationships between
modalities. The interactions between datasets and data types
are not always known or sufficiently understood. Therefore, we
focus on and advocate a data-driven approach. In practice, this
means making the fewest assumptions and using the simplest
models, both within and across modalities [5]. “Simple”
means, for example, linear relationships between variables,
avoiding model-dependent parameters, and/or use of model-
independent priors such as sparsity, non-negativity, statistical
independence, low-rank, and smoothness, to name a few. As
its name implies, a data-driven approach is self-contained in
the sense that it relies only on the observations and their
assumed model: it avoids external input [5]. For this reason,
and especially in the signal-processing community, data-driven
methods are sometimes termed “blind”. In the rest of this
section, we give a more concrete meaning to these ideas.

Data-driven methods, both single-modal and multimodal,
have already proven successful in a broad range of prob-
lems and applications. A non-comprehensive list includes
astrophysics [59], biomedics [60], telecommunications [61],
audio-vision [23], chemometrics [62], and more. For further
examples see e.g., [63]–[65] and references therein, as well as
the numerous models mentioned in the rest of this paper.

In the rest of this section, we discuss and explain the role
of diversity in achieving uniqueness in data-driven models. In
particular, we demonstrate how the presence of multiple data
sets can be exploited as a new form of diversity.

C. Diversity in Single Matrix or Tensor Decomposition Mod-
els

Earlier in this section, we argued that diversity has a key
role in achieving uniqueness of analytical models. We now
give a concrete mathematical meaning to this statement, by
way of examples from signal processing, linear and multilinear
algebra. We begin by discussing diversity in datasets that can
be stacked in a single array, be it a matrix or a higher-order
array.

1) Diversity in Matrix Decomposition Models: Perhaps the
most simple yet useful implementation of (1) is

x =

R∑
r=1

arbr . (2)

In many applications, model (2) is generalized as

xij =

R∑
r=1

airbjr (3)

where i = 1, . . . , I , j = 1, . . . , J . An often-used interpretation
is that xij is a linear combination of R signals bj1, . . . , bjR
impinging on sensor i at sample index j, with weights
ai1, . . . , aiR. Eq. (3) can be rewritten in matrix form as

X =

R∑
r=1

arb
>
r = AB> (4)

such that xij is the (i, j)th entry of X ∈ KI×J , K ∈ {R,C},
and similarly for A ∈ KI×R and B ∈ KJ×R. The rth
column vectors of A and B are ar = [a1r, . . . , aIr]> and
br = [b1r, . . . , bJr]>, respectively.

The model in (4) provides I linear combinations of the
columns of B and J linear combinations of the columns of
A [57]. In the terminology of [57], X provides I-fold diversity
for B and J-fold diversity for A. Unfortunately, these types
of diversity are generally insufficient to retrieve the underlying
factor matrices A and B. For any R×R invertible matrix T,
it always holds that

X = AB> = (AT−1)(TB>) . (5)

Hence, the pairs (AT−1,TB>) and (A,B>) have the same
contribution to the observations X and thus cannot be distin-
guished. Consequently, one cannot uniquely identify the rank-
1 terms arb

>
r unless R ≤ 1 [66, Lemma 4i]. We refer to this

matter as the indeterminacy problem. A prevalent approach is
to reduce T to a unitary matrix using a simplifying assumption
that the columns of B are decorrelated. In such cases, the
indeterminacy (5) is referred to as the rotation problem [67,
Section 4] [2], [5]. Conversely, even if the rank-1 terms are
known, it is clear from (4) that they can be uniquely charac-
terized, at most, up to (αrar)(βrbr)> = arb

>
r , αrβr = 1,

if R ≤ min(I, J). The latter amounts to T = PΛ, where
P is a permutation matrix and Λ is diagonal and invertible.
The presence of P implies that the indexing 1, . . . , R is
arbitrary. This indeterminacy is inherent to the problem and
thus inevitable. If all decompositions yield the same rank-1
terms then we say that the model is unique. The fact that the
factorization of a matrix into a product of several matrices is
generally not unique for R > 1 unless additional constraints
are imposed is well-known [66, Section 3].

We now discuss approaches to fix the indeterminacy in (5).
In a general algebraic context, matrix factorizations such as
singular value decomposition (SVD) and eigenvalue decom-
position (EVD) are made unique by imposing orthogonality
on the underlying matrices and inequality on the singular
or eigenvalues [66, Section 3] [68]. Such constraints are
convenient mathematically but usually physically implausible
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since they yield non-interpretable results [69]. It is thus
desirable to find other types of constraints that allow for better
representation of the natural properties of the data.

Depending on the application, the matrix factorization
model in (4) may be interpreted in different ways that give
rise to different types of constraints. When the model in (4) is
used to analyse data, it is sometimes termed factor analysis
(FA) [70]. In the signal processing community, when the
columns of B represent signal samples and the goal is to
recover these signals given only the observations X, model (4)
is commonly associated with the blind source separation (BSS)
problem [63], [71]. The goal of FA and BSS is to represent
X as a sum of low-rank terms with interpretable factors [65],
where the difference lies in the type of assumptions being
used.

In FA, one approach to fixing the indeterminacy (5) is by
imposing external constraints [5, Section I]. This is not a data-
driven approach and is thus excluded from our discussion. A
data-driven approach to FA is to use physically-meaningful
constraints on the factor matrices that reduce the number of
degrees of freedom. For example, a specific arrangement of a
receive antenna array or other properties of a communication
system may be imposed via a Vandermonde [72]–[75] or
Toeplitz [76] structure. Alternatively, a factor may reflect
a specific signal type such as constant modulus or finite
alphabet [57], [61]. Another approach is to use sparsity [77]–
[79].

Probably the most well-known BSS approach to fix the
indeterminacy in (5) is independent component analysis (ICA).
ICA is more commonly formulated as

x(t) = As(t) , t = 1, . . . , T (6)

where s(t) = [s1(t), . . . , sR(t)]> ∈ KR×1 is a vector of R sta-
tistically independent random processes known as “sources”,
and x(t) ∈ KI×1 their observations. A is full column rank.
The link with (4) is established via X = [x(1), . . . ,x(T )],
J = T , and B> = [s(1), . . . , s(T )] such that the R columns
of B represent samples from the R statistically independent
random processes. ICA uses the “spatial diversity” provided by
an array of sensors, which amounts to the I-fold diversity for
B mentioned before, together with an assumption of statistical
independence on the sources, in order to obtain estimates of
s(t) whose entries are as statistically independent as possible.
This amounts to fixing the indeterminacy (5). Under these
assumptions, separation can be achieved if the statistically
independent sources are non-stationary, non-white, or non-
Gaussian [71], [80]–[82]. The first two can be interpreted
as diversity across time or diversity in the spectral domain:
the sources must have different nonstationarity profiles or
power spectra [81, Section 6]. Non-Gaussianity is associated
with diversity in higher-order statistics (HOS). A plethora of
methods has been devised to exploit this diversity [63], [80],
[83]–[86], and the matter is far from being exhausted.

Both FA and ICA have been used for decades and with much
success to analyse a very broad range of data, their success
being much due to the simplicity of their basic idea and the fact
that very robust algorithms exist that yield satisfying results.
Therefore, they are at the focus of our discussion. It should

be kept in mind, however, that in practice, many observations
can be better explained by other types of underlying models
that are not limited to decomposition into a sum of rank-1
terms, statistical independence, linear relationships, or even
matrix factorizations. Other properties that are often used to
achieve uniqueness, improve numerical robustness and en-
hance interpretability are, for example, non-negativity, sparsity,
and smoothness [63]. Proving uniqueness for these types of
factorizations is a matter of ongoing research.

Any type of constraint or assumption on the underlying
variables that helps achieve essential uniqueness can be
regarded as a “diversity”.

2) Going up to Higher-Order Arrays:: In Section III-C1,
we have seen that the two linear types of diversity that are
present in the rows and columns of X are not sufficient
in order to obtain a unique matrix factorization. We saw
that uniqueness can be established by imposing sufficiently
strong constraints on the factor matrices A and B in (4).
An alternative approach is to enrich the observational domain,
without constraining the factor matrices. For example, if the
two linear diversities given by the two-dimensional array
X are interpreted as spatial and temporal, it is possible to
obtain uniqueness by adding a third diversity in the frequency
domain, without imposing constraints on the factor matrices.
We now explain how this can be done.

The two-way model (4) can be generalized by extending (3)
to

xijk =

R∑
r=1

airbjrckr (7)

with i = 1, . . . , I , j = 1, . . . , J , k = 1, . . . ,K. These
observations can be collected into a three-way array (third-
order tensor) with dimensions I × J ×K,

X =

R∑
r=1

ar ◦ br ◦ cr (8)

whose (i, j, k)th entry is xijk. A = [a1, . . . ,aR] ∈ KI×R,
B = [b1, . . . ,bR] ∈ KJ×R and C = [c1, . . . , cR] ∈ KK×R

are matrices whose column vectors are ar, br and cr =
[c1r, . . . , cKr]>, respectively. Here, ar ◦br ◦cr ∈ KI×J×K is
an outer product of three vectors and thus is a rank-1 term. Its
(i, j, k)th entry is airbjrckr. When (8) holds and is irreducible
in the sense that R is minimal, it is sometimes referred to as
the canonical polyadic decomposition (CPD) [4], [87]. Note
that (4) can be rewritten as X =

∑R
r=1 ar ◦ br.

In striking difference to (5), the pair {(A,B,C),(A,B,C)}
has the same triple product (8) if and only if there exists
an R × R permutation matrix P and three diagonal matrices
ΛA,ΛB ,ΛC such that

A = APΛA , B = BPΛB , C = CPΛC

and ΛAΛBΛC = IR (9)

even for R > 1, under very mild constraints on A, B, C [66],
[67], [88]. Eq. (9) can be reformulated as X =

∑R
r=1(αrar)◦
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(βrbr) ◦ (γrcr) ∀αrβrγr = 1. If a three-way array is subject
only to these trivial indeterminacies (alternatively: if all CPDs
yield the same rank-1 terms) then we say that it is (essentially)
unique.

The key difference between matrix and tensor factoriza-
tions is that CPD is inherently “essentially unique” up to
a scaled permutation matrix, whereas in the bilinear case
the indeterminacy is an arbitrary non-singular matrix.

The uniqueness of the CPD becomes even more pronounced
when it is joined with the fact that it holds also for R >
max(I, J,K) [67], [89]. This is in contrast to FA, where it
holds only for R ≤ min(I, J). The immediate outcome is
that underdetermined cases of “more sources than sensors”
can be handled straightforwardly. In addition, the factor ma-
trices A,B,C need not be full column rank [67], [89] [90,
Theorem 2.2], see Example III-D.2. Upper bounds on R have
first been derived by [88], [89]. These results have later been
extended to higher-order arrays, where “order” indicates the
number N of indices xijk··· and N ≥ 3 [57], [72], [91].
Recently, more relaxed bounds that guarantee uniqueness for
larger R have been derived; see e.g., [92]–[97] and references
therein.

In analogy to (4), the three-way array X provides three
modes of linear diversity. It contains JK linear combinations
of the columns of A, IK of B and IJ of C [57]. The
fact that there exist multiple linear relationships within the
model gives it the name “multilinear”. As argued by [57], in
many real-life scenarios, often there exist N ≥ 3 linear types
of diversity that admit the multilinear decomposition (8) and
thus guarantee uniqueness without any further assumptions.
For example, in direct-sequence code-division multiple access
(DS-CDMA) communication systems, one may exploit (spatial
× temporal × spreading code) [57] or (sensor × polarization
× source signal) types of diversity; in psychometrics, (occa-
sions × persons × tests) [70] or (observations × scores ×
variables) [98]; in chemometrics and metabolomics, (sample
× frequency × emission profile × excitation profile) [8], [62],
[99]; in polarized Raman spectroscopy, (polarization × spatial
diversity × wavenumber) [100]; in EEG, (time × frequency
× electrode) [101]–[103]; and in fMRI, (voxels × scans ×
subjects) [104].

Each type of constraint, structural (i.e., on the factor
matrices) or observational (i.e., any of the non-degenerate
modes of a matrix or a higher-order array), that con-
tributes to the unique decomposition and thus to the
identifiability of the model, and cannot be deduced from
the other constraints, i.e., is “disjoint” [16], can be
regarded as a “diversity”. In particular, each observational
mode in the N th order tensor (8) is a “diversity”. Hence,
a tensor order corresponds to the number of types of
(observational) diversity [57], [61].

The explicit link between tensor order as a diversity and data

fusion has been made in [16]. The fact that we can now
associate “diversity” with well-defined mathematical proper-
ties of an analytical model implies that we can now link
results on uniqueness, identifiability, and performance with the
number of types of diversity that this model involves. Hence,
the contribution of each “diversity” to the model can now be
characterized and quantified [57], [82].

An application of this idea is the question raised in [57] as to
how the number of types of observational diversity, i.e., tensor
order N ≥ 3, contributes to the identifiability. To answer this
question, it is shown that as N increases, indeed the bound
on the number of rank-1 terms that can be uniquely identified
becomes more relaxed. In other words, more observational
modes allow to identify more sources in the same setup.
Hence, this is a proof that increasing observational diversity
improves identifiability. This is an example how questions
regarding multimodality and diversity are a stimulus for new
mathematical and theoretical insights.

Until now, we have looked at N -way arrays as a way to
represent simultaneously N (multi-) linear types of diversity.
An interesting link with the matrix factorization problem in
Section III-C1 is achieved if we look at an N -way array as
a structure that stores (N − 1)-way arrays by stacking them
along the N th dimension. As noted, e.g., by [4], [5], [70],
[89], [105], the CPD can be thought of as a generalization of
FA, as follows. Let

Xk = AΛkB> , k = 1, . . . ,K (10)

denote K instances of the FA problem (4) where the diagonal
R × R matrix Λk = diag{ck1, . . . , ckR} can be regarded
as a scaling of the rows of B. It can be readily verified
that stacking the K matrices Xk in parallel along the third
dimension results in (8). As we already know from (9), the
rotation problem is eliminated [89]. It is thus no surprise
that the tensor decomposition (8) is also known as parallel
factor analysis (PARAFAC) [5]. Combining this observation
with the perspective of data fusion, it has been noted that
a tensor decomposition can be regarded as a way to fuse
and jointly analyse data of multiple observations when all
the datasets have the same size and share the same type of
decomposition [16]. Note that this notion applies also to two-
way arrays. For example, if we associate a BSS interpretation
to the model in (4), the ith row can be regarded as the
contribution of the ith sensor, and stacking all I observations
yields the I × J observation matrix X [16].

Model (10) can be linked not only to FA but also to BSS,
as follows. In Section III-C1, we mentioned that uniqueness
of BSS can be achieved if the sources are non-Gaussian,
non-stationary, or non-spectrally-flat (i.e., coloured). These
properties can be reformulated algebraically as a symmetric
joint diagonalization (JD) of several matrices [81], [83], i.e., a
special case of (10) when A = B. As we have just explained,
JD can be interpreted as a simple data fusion problem in which
several datasets share the same mixing matrix. A key point is
that diagonalization of a single matrix has an infinite number
of solutions, and each of these “non-properties” [81] provides
a set of at least two matrices that can be jointly diagonalized,
thus fixing the indeterminacies.
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The discussion in this section implies that if we can rep-
resent our observations in terms of N ≥ 3 linear types of
diversity or stack multiple datasets in an N th-order tensor then
we may benefit from the following powerful properties:

Why are tensor decompositions useful for data fusion?
(1) The model for R ≥ 1 rank-1 terms is identifiable:
The exact maximal number of identifiable rank-1 terms is
generally unknown, though bounds that depend on various
properties of the factor matrices exist.
(2) Under-determined mixtures are identifiable: identifica-
tion of R ≥ 1 rank-1 terms even for “more sources than
sensors” cases.
(3) Factor matrices need not be full rank: identifiability
of R ≥ 1 rank-1 terms even if no factor matrix A, B,
C, . . ., is of full rank.
(4) Rank-1 terms are identifiable up to permutation: when
a tensor decomposition is interpreted as joint analysis of
lower-order tensors, the arbitrary individual permutation
that arises if each decomposition is done separately be-
comes common to all decompositions.
(5) Increasing N allows uniqueness for higher R: more
types of observational diversity allow to resolve more
latent sources.
(6) There is no need for structural constraints or assump-
tions such as statistical independence, non-negativity,
sparsity, or smoothness in order to achieve a unique
decomposition. And yet, multilinear structures readily
admit such additional types of diversity that can further
contribute to interpretability, robustness, uniqueness, and
other desired properties; see end of Section III-D for
examples.

More properties of tensor decompositions and their uses in
various engineering applications can be found for example
in [64], [65], [106] and references therein.

Concluding Section III-C, Sections III-C1 and III-C2 pre-
sented two ways to look at matrices or tensors as data fusion
structures. We have shown that matrix or tensor decompo-
sitions provide a natural framework to incorporate multiple
types of observational diversity [16] on top of structural ones.
We have shown that matrices and higher-order tensors can
be regarded as ways to jointly analyse multiple observations
of the same data, when datasets share the same underlying
structure [16]. It is thus no surprise that many multimodal
data fusion models use matrix or tensor decompositions as
their underlying analytical engine.

Until now, we focused on decompositions in sum of rank-1
factors and statistical independence. In fact, these constraints
can be regarded as too strong. Indeed, there exist other
factorizations that may represent more flexible underlying
relationships; see end of Section III-D for examples. It is only
for the sake of simplicity and limited space that we restrict
our discussion to one type of decomposition.

D. A Link Between Datasets as a New Form of Diversity

As explained in Section III-C, if all datasets share the
same underlying factorization model, and in addition, admit
a (multi-) linear relationship, then it may be possible to use
a single matrix or tensor decomposition in order to perform
data fusion. This assumption may be challenged in various
scenarios. An obvious conflict arises when datasets are given
in different types of physical units. A technical difficulty
is when datasets are stacked in arrays of different orders,
such as matrices vs. higher-order arrays. Further examples
are datasets with different latent models, different types of
uncertainty, or when not all factors or latent variables are
shared by all datasets. In such cases, we say that datasets are
heterogeneous [8]. While each of these complicating factors
may be accommodated by preprocessing the datasets such that
they all comply, e.g., by normalizing, realigning, interpolating,
up- or down-sampling, using features, or reducing dimensions,
these procedures have the risk of being lossy in various
respects (for further discussion on complicating factors in data
fusion, see Section IV). For these reasons, more elaborate
models that allow heterogeneous datasets to remain in their
most explanatory form and still perform true data fusion, i.e.,
in the sense of Definition I.2 and Section V-A, have been
devised.

In the following, we discuss data fusion approaches that go
beyond single matrix or tensor factorization. Our emphasis is
on demonstrating how the concepts of true data fusion allow
pushing even further the limits of extracting knowledge from
data that were summarized in Section III-C2. We show how
these properties are carried over to more elaborate data fusion
models and how they can be reinforced into stronger properties
that cannot be achieved using single-set single-modal data.
In particular, (i) allowing more relaxed uniqueness conditions
that admit more challenging scenarios: for example, more
relaxed assumptions on the underlying factors, and the ability
to resolve more latent variables (low-rank terms) in each
dataset, and (ii) terms that are shared across datasets enjoy the
same permutation at all datasets. This obviates the need for
an additional step of identifying the arbitrarily-ordered outputs
of each individual decomposition and matching them, a task
that generally cannot be accomplished without additional
information, in a blind or data-driven context. Fixing the
permutation reduces the number of degrees of freedom and
thus enhances performance and interpretability. The following
examples illustrate these points.
Example III-D.1: Coupled Independent Component Anal-
ysis. Consider the ICA problem (6). It is well-known that
statistically independent real-valued Gaussian processes with
independent and identically distributed (i.i.d.) samples, mixed
by an invertible A, cannot be blindly separated based on their
observations x(t) alone [71], [107]. If several such datasets
are considered simultaneously, however, without changing the
model within each mixture, but allowing statistical dependence
across datasets, then a unique and identifiable solution to
all these mixtures, up to unavoidable scale and permutation
ambiguities, exists [82]. This model, when not restricted
to Gaussian i.i.d. samples, is known as independent vector
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analysis (IVA) [82], [108], [109] and can be solved using
second-order statistics (SOS) alone [110], [111].

IVA was originally proposed to separate convolutive mix-
tures of audio signals [108], [109]. In the frequency do-
main, this amounts (approximately) to resolving M ICA
mixtures (6),

x(m)(t) = A(m)s(m)(t) , t = 1, . . . , T , (11)

where the M matrices A(m), m = 1, . . . ,M , are generally
different (in this context, t denotes samples in the frequency
domain and m are the frequency bins). For simplicity, we
assume that both x(m)(t) and s(m)(t) are I × 1. When each
mixture (11) is solved separately, it is associated with an
individual permutation matrix P(m). It is clear that proper
separation and reconstruction of the I audio signals cannot
be achieved if the elements of the same source at different
frequency bins are not properly matched. The key point in
IVA w.r.t. a collection of ICA is that it exploits statistical
dependence among latent sources that belong to different
mixtures, as illustrated in Figure 1. Under certain conditions,
the IVA framework provides a single R×R permutation matrix
P(m) = P that applies to all the involved mixtures [82], [109].

The ability of IVA to obviate the need to match the
outputs of M separate ICA soon turned out useful far beyond
convolutive mixtures: it has since been applied to fMRI
group data analysis [112], [113], multimodal fusion of several
brain-imaging modalities [114], and the analysis of temporal
dynamic changes [115]. IVA extends CCA [1] and its multi-
set extension (MCCA) [3], which have both been widely used
for fusion [31], [36], [58], [116]–[118], to the case where
not only second-order statistics but all-order statistics are
taken into account [82]. Recently, a generalization of IVA
that allows decomposition into terms of rank larger than one
has been proposed [119]–[121]. In addition, since IVA is
a generalization of ICA, it readily accommodates additional
types of diversity such as coloured (i.e., non-spectrally-flat)
or non-stationary sources [111], [122] (recall Section III-C1).
Identifiability analysis of the multiple types of diversity in IVA
is given in [82], [123]. It should be noted that the uniqueness
results for coupled CPD [90] (Example III-D.2) require at least
one tensor of order larger than two in the coupled set and thus
they cannot be applied to IVA.
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Fig. 1: Diagram of the IVA model. Figure reproduced
from [116, Figure 1].

Example III-D.2: Coupled Tensor Decompositions. In mul-
tilinear algebra, an ongoing endeavour is to obtain uniqueness
conditions on a tensor decomposition [67], [88], [92]–[97].
The goal is to derive bounds that are as relaxed as possible on
the largest R that still satisfies essential uniqueness (9). As an
example, two necessary conditions for the essential uniqueness
of the CPD of a third-order tensor (8) are that

(A�B) , (C�A) and (B�C) have full column rank,
and min(kA, kB, kC) ≥ 2 (12)

(e.g., [72], [92]) where � denotes the column-wise Khatri-Rao
product and kA is the Kruskal-rank of matrix A, equal to the
largest integer kA such that every subset of kA columns of A
is linearly independent [67].

Consider now M third-order tensors X (m) ∈ CIm×Jm×K ,
m = 1, . . . ,M , with the same factorization as (8), that are
coupled by sharing one factor,

X (m) =

R∑
r=1

a(m)
r ◦ b(m)

r ◦ cr (13)

where the factor matrices of the mth tensor are A(m) =
[a

(m)
1 , . . . ,a

(m)
R ] ∈ CIm×R, B(m) = [b

(m)
1 , . . . ,b

(m)
R ] ∈

CJm×R, C = [c, . . . , cR] ∈ CK×R. The coupled rank of the
set {X (m)} is defined as the minimal number of rank-1 terms
a
(m)
r ◦b(m)

r ◦cr that yield {X (m)} in a linear combination [90].
If the coupled rank of {X (m)} is R, then (13) is called the
coupled CPD of {X (m)}. It has recently been shown that
the coupled CPD may be unique even if conditions (12) are
violated such that none of the individual CPDs in (13) is
unique [90].

This fundamental result extends to more elaborate scenarios.
Uniqueness can be further improved if the order of (at least
one of) the involved tensors increases [90]. This is analogous
to the previously-mentioned result (Section III-C2) for a single
tensor, that increasing its order N relaxes the bound on R [57],
[91]. Adding assumptions such as individual uniqueness of one
of the involved CPDs, full column rank of the shared factor
C, or a specific structure such as a Vandermonde matrix, also
reinforces the uniqueness of the whole decomposition [90],
[124]. Finally, all these results can be extended to more
elaborate tensor decompositions that are not limited to rank-1
terms [90] .

Another benefit from coupling is that it helps relax the
permutation ambiguity. Coupled tensor decompositions have a
unique arbitrary permutation matrix in a manner that extends
single-tensor results (9) [125, Section III.A] [90]. Conse-
quently, the low-rank terms that are shared by all the coupled
tensors automatically have the same ordering at the output of
the algorithm.

Linked-mode PARAFAC in which two or more third-order
tensors share a mode has first been suggested in [126, p. 281].
The idea was extended to the case of arrays of different
orders (one of them must be three-way or higher) in [69,
Section 5.1.1]. Coupled tensor decompositions have already
proven useful in telecommunications [125], multidimensional
harmonic retrieval [124], chemometrics and psychometrics [8],
[99], and more. See Figure 2a for an example in metabolomics.
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Fig. 2: Illustration of different types of coupling between
matrices and third-order tensors. (a) Linked-mode matrices
and tensors in metabolomics. Datasets represent four different
acquisition methods. All datasets share the same “samples”
mode. Figure reproduced from [127]. (b) Arrays (in this case,
third-order tensors) may be coupled in different modes and
also via only part of a mode. In addition, linked arrays may
be regarded as elements in a larger volume (the red cube),
in which certain data points are missing. Figure reproduced
from [69, Figure 3].

Linked-mode analysis has also been proposed as a means to
represent missing values: each tensor is a dataset that by itself
is complete, but as a whole, each dataset has only partial
information w.r.t. a larger array in which all these datasets are
enclosed. This idea is accompanied by a more flexible coupling
design where more than one mode may be shared between
two tensors and the coupling may even involve only parts of
modes, i.e., shared (sub) factors [69, Section 5.1.2]. Figure 2b
illustrates this idea. Missing values are further discussed in
Challenge IV-B.4.

We now summarize Examples III-D.1 and III-D.2. In Sec-
tion III-C, we have shown that both ICA and PARAFAC
can provide sufficient diversity to overcome the indeterminacy
problem inherent to FA. We then extended our discussion to
jointly analysing M such problems: M×ICA

joint pdf−−−−→ IVA (Ex-
ample III-D.1) and M×PARAFAC shared factor−−−−−−−→ coupled CPD
(Example III-D.2). We have shown that by properly defining
a link between datasets, we can extend and reinforce unique-
ness and identifiability beyond those obtained by individual
analysis, up to the point of establishing uniqueness of oth-
erwise non-unique scenarios. In PARAFAC, mixtures share
certain factors, whereas in IVA, each mixture has its own
individual parameters and the link is via statistical dependence
between certain variables. Next, we have shown that all these
models are flexible in the sense that they can easily be fine-
tuned and modified in multiple ways, in order to better fit
various real-life data. More specifically, they readily admit

various types of diversity. A first generalization of these
basic models is by relaxing the assumptions within each
decomposition: allowing statistical dependence between latent
sources of the same mixture in ICA (resp. IVA) leads to
independent subspace analysis (ISA) [128]–[132] (resp. joint
independent subspace analysis (JISA) [119]–[121]) as well
as other BSS models [133], [134]. Relaxing the sum-of-
rank-1-terms constraint in PARAFAC leads to more flexible
tensor decompositions such as Tucker [6], [7], block term
decomposition (BTD) [135], three-way decomposition into
directional components (DEDICOM) [136], and others [137].
A second generalization is by combining several types of
constraints and assumptions: for example, PARAFAC may
be combined with statistical independence [104], [138], non-
negativity, sparsity, as well as structure of the latent factors:
Vandermonde [72]–[75], Toeplitz [76], among others [16],
[65], [106], [139]. A third generalization is increasing the
number of types of observational diversity by increasing the
tensor order [57], [91]. A fourth is by linking datasets, leading
to various coupled models, as explained in this section. When
all these types of generalizations are taken into account, one
obtains very general data fusion frameworks such as structured
data fusion (SDF) [16], coupled matrix and tensor factor-
ization (CMTF) [99], linked multiway component analysis
(LMWCA) [65], and others [140]–[142]. These generaliza-
tions, and many more, are further discussed in Section V.
In all cases, the link between underlying factors at different
modalities helps not only to enhance uniqueness but also to
enable the same ordering for all decompositions, thus further
enhancing performance, identifiability, and interpretability.

E. Conclusion: A Link Between Datasets is Indeed a New
Form of Diversity

The strength of IVA and coupled CPD over a set of unlinked
factorizations lies in their ability to exploit commonalities
among datasets. In IVA, it is the statistical dependence of
sources across mixtures; in coupled CPD, it is the shared
factors. In both scenarios, the links themselves are new types
of information: the fact that datasets are linked, that elements
in different datasets are related (or not), and the nature of these
interactions, bring new types of constraints into the system
that allow to reduce the number of degrees of freedom and
thus enhance uniqueness, performance, interpretability, and
robustness, among others. On top of that, the links among
the datasets allow desired properties within one dataset to
propagate to the ensemble and enhance the properties of the
whole decomposition [16]. This is a concrete mathematical
manifestation of the raison d’être of data fusion that we have
mentioned in Section II, implying that [11, Section 9] [82],
[143]

An ensemble of datasets is “more than the sum of its
parts” in the sense that it contains precious information
that is lost if these relations are ignored.

The models that we have just presented allow multiple datasets
to inform each other and interact, as formulated in Defini-
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tion I.2 and further elaborated in Section V-A. Therefore, in
the same vein of the preceding discussion and Definition I.1,
we conclude that [16], [82], [143]

Properly linking datasets can be regarded as introducing
a new form of diversity, and this diversity is the basis and
driving force of data fusion.

IV. CHALLENGES AT THE DATA LEVEL

Thanks to recent advances, the availability of multimodal
data is now a fact of life. The acquisition of multimodal data,
however, is only a first step. In this section, and Section V that
follows, we discuss some of the issues that should be addressed
in the actual processing of multimodal data. In this section,
we focus on challenges imposed by the data. These can be
partitioned into challenges at the acquisition and observation
level and challenges due to various types of uncertainty in the
data. A number of approaches, to both types of challenges,
are briefly mentioned in this section. Section V complements
this section with a more comprehensive discussion of how to
approach, in practice, some of these challenges, from a model
design perspective.

A. Challenges at the Acquisition and Observation Level

Challenge IV-A.1: Non-commensurability. As explained in
Sections I–II, a key motivation for multimodality is that
different instruments are sensitive to different physical phe-
nomena, and consequently, report on different aspects of
the underlying processes. A natural outcome is that the
raw measurements may be represented by different types
of physical units that do not commute. This situation is
known as non-commensurability. Numerous examples of non-
commensurable data fusion scenarios were given in Section II.
Allowing non-commensurable datasets to inform each other
and interact is probably the first and foremost task that one
encounters in a large number of multimodal data fusion
scenarios [8].
Challenge IV-A.2: Different resolutions. It is most natural
that different types of acquisition methods and observation
setups provide data at different sampling points, and often
at very disparate resolutions. The specific type of challenge
that is associated with this property varies according to the
task. Consequently, solutions are diverse. In some cases,
different resolutions may be associated with various types of
uncertainty, as explained in Section IV-B. Below, we list some
scenarios in which challenges related to different resolutions
occur. Data with different resolutions is a prevalent challenge
in multimodal image fusion [13], as well as many other imag-
ing techniques. For example, EEG has an excellent temporal
but low spatial resolution, whereas fMRI has a fine spatial
resolution but a very large integration time (Example II-B.1).
In remote sensing (Example II-C.1), a common task is “pan-
sharpening” [13, Chapter 9] [40]: merging a high-spatial, low-
spectral (single band) resolution panchromatic image with a
lower-spatial, higher-spectral (several bands) resolution mul-
tispectral image, in order to generate a new synthetic image

that has both the higher spectral and spatial resolution of the
two. In audio-visual applications, the temporal resolution of
the signals differs by orders of magnitude. An audio signal
is usually sampled at several kHz whereas the video signal
is typically sampled at 15–60 Hz [144] (Example II-A.1). In
meteorological monitoring (Example II-C.2), each modality
has very distinct spatial and temporal resolutions; this is prob-
ably the reason why solutions based on data integration [47]
(see Section V-A) are preferred. Different sampling schemes
in coupled matrix and tensor decompositions are discussed,
e.g., in [145], [146].

Challenge IV-A.3: Incompatible size. In practical situations,
it is quite rare that different datasets contain exactly the
same number of data samples. As explained in Section IV-B,
this incompatibility may be associated with various types of
uncertainty. Data size incompatibility may be due to a different
number of samples at each observational mode, as explained in
Challenge IV-A.2. Among possible causes are different acqui-
sition techniques and experimental setups. The difference in
size becomes even more acute if datasets are arrays of different
orders [8], [147], as is often encountered in chemometrics,
metabolomics (e.g., Figure 2a), and psychometrics, among
others.

Challenge IV-A.4: Alignment and registration. Registration
is the task of aligning several datasets, images, on the same
coordinate system. Registration is particularly challenging
when 3D biomedical imaging techniques are involved (Exam-
ple II-B.1). In a first scenario, images of the same subject are
taken at different times using the same imaging technique. The
difficulty arises from the fact that each image has some bias
and spatial distortion w.r.t. the others since the patient is never
precisely in the same position. In this case, image registration
usually relies on the basic assumption that image intensities are
linearly correlated [148]. This assumption, however, is much
less likely in the second scenario, for multimodal images.
Consider, for example, registration of modalities that convey
anatomical information with others that report on functional
and metabolic activity. Naturally, the information conveyed
by each modality is inherently of different physical nature.
Other complicating factors include different types of noise,
spatial distortions, varying contrasts, and different positions
of the imaging instruments. One approach uses information
theory and maximizes mutual information [148], [149]. In
remote sensing (Example II-C.1), images of the same area
are taken by different types of instruments, e.g., airborne
SAR and satellite-borne LiDAR, and possibly at different
times and conditions, e.g., before and after landscape-changing
events such as natural disasters. In principle, one can use
global positioning system (GPS) for aligning the images.
However, even the GPS signal has a finite spatial precision.
In biomedical imaging, the BOLD signal, to which fMRI
is sensitive, has a large integration time and thus a delay
w.r.t. EEG. This leads to non-instantaneous coupling, even if
the measurements themselves are perfectly synchronized.
Calibration can be interpreted as a special case of alignment
and registration using two sets of measurements, and thus it
can be considered as a form of data fusion. Calibration is
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a major task in chemometrics, where it is often achieved via
regression methods. Frequently-used models such as multiway
partial least squares (PLS) [150] and PARAFAC [62] are less
adequate when the underlying profiles change shape from
sample to sample. A regression method that can accommodate
such variability in multiway arrays is proposed in [151], and a
multimodal audio-visual calibration technique is given in [25].
The advantage of the proposed solution is that it is based on
direction of arrival estimation, an easier task than microphone-
based time-difference of arrival estimation, which requires
strict synchronization between microphones. The challenge
of automatic calibration of audio-visual sensors (and others)
in the context of HMI (Example II-A.2) is discussed in [10,
Section V.C].

B. Challenges due to Various Types of Uncertainty
We now turn to discussing uncertainty in the data. Any

real-world set of observations is prone to various types of
uncertainty. The presence of heterogeneous multiple datasets
creates new types of uncertainty that may also be heteroge-
neous. We argue that in such cases, it is the complementarity
and diversity (Definition I.1) of the datasets that should be
exploited to resolve these challenges [9].
Challenge IV-B.1: Noise. Thermal noise, calibration errors,
finite precision, quantization or any other quality degradation
in the measurements is unavoidable. For simplicity, we denote
all these unavoidable phenomena as “noise”. Naturally, each
acquisition method produces not only heterogeneous types
of desired data, but also heterogeneous types of errors [8].
The question of how to jointly weigh or balance different
sources of error is brought up in a number of data fusion
scenarios, although most data fusion work currently ignores
noise. Naturally, in the presence of noise, an appropriate model
yields a more precise inference.
Several authors [152]–[154] use an additive noise model
with a distribution whose parameters may vary within and
across datasets. A Bayesian or maximum likelihood (ML)
framework is then applied to estimate the noise parameters.
In some cases, the noise estimates are interpreted as weights
that balance the contribution of each element [153] (note
the link with Challenge IV-B.2). Beal et al. [24] propose a
graphical model for audio-visual object tracking in which they
attribute different parameters to audio and video noise, and
estimate both in a Bayesian inference framework. All these
methods assume independence among sources of noise across
modalities. However, ignoring possible links (correlations)
between noise across datasets may lead to bias [9].
Challenge IV-B.2: Balancing information from different
origins. In practice, for various reasons, not all observations
or data entries have the same level of confidence, reliability or
information quality [11], [21], [155]. Below, we list scenarios
in which this occurs, as well as some approaches to resolve
these problems.
In real-life scenarios, certain sensors may be provide informa-
tion that has more value than others, or certain measurements
might be taken at better-controlled scenarios. For example,
in a medical questionnaire about patients × symptoms, cer-
tain symptoms may be more obvious and some harder to

define [155]. In the same vein, heterogeneity of acquisition
methods implies heterogeneity in their level of importance
or usefulness. For example, we may use questionnaires filled
by specialists (experts) and others by patients (non-experts).
Alternatively, if we consider two medical questionnaires, pa-
tients × symptoms and patients × diagnosis, the first one
may be more reliable since symptoms are observed directly
whereas diagnosis relies on interpretation [155]. In order to
address this issue, Wilderjans et al. [153], [155] propose to
associate the level of reliability with noise, and use appro-
priate weights, obtained via an ML variant of simultaneous
component analysis (SCA). Şimsekli et al. [156] propose indi-
vidual weights for datasets with different divergence measures
based on their relative ‘importance’. Similar to [153], these
weights are interpreted as noise variances. Finally, in [47],
Liberman et al. process several meteorological monitoring
modalities separately and then make a soft decision, using an
optimal weighted average based on location, number of links,
rainfall intensity and other parameters.
Another source of potential unbalance is datasets of different
size (recall Challenge IV-A.3). In the absence of additional
assumptions, a simulation study favours equal weight to each
data entry regardless of its dataset of origin, over the al-
ternative approach of weighting datasets by the number of
their respective entries [147] . This approach is generalized
to the case of missing values, where the weights should be
proportional to the number of non-missing entries in each
dataset [16].

Challenge IV-B.3: Conflicting, contradicting or inconsis-
tent data. Whenever more than one origin of information is
available, be it a single sensor or an ensemble of observations,
conflicts, contradictions, and inconsistencies may occur. If data
is fused at the decision level, then a decision or voting [8] rule
may be applied, for example, in the fusion of different classi-
fication maps in remote sensing (see Example II-C.1). Other
approaches, related to multisensor data fusion, are discussed
in [9], [157]. When only two datasets are confronted, more
elaborate solutions may be required. An obvious challenge
is to devise a suitable compromise. A more fundamental
challenge, however, is identifying these inconsistencies.
In [158], Tmazirte et al. consider the problem of detecting
faults in multimodal sensors in a distributed data fusion
framework, and dynamically reconfigure the system using
information theoretical concepts. Their approach is based on
detecting inconsistency in the mutual information contribution
of each sensor w.r.t. its history. Kumar et al. [159] deal with
the problem of multimodal sensors that occasionally produce
spurious data, possibly due to sensor failure or environmental
issues, and thus may bias estimation. The challenge arises
from the fact that spurious events are difficult to predict and
to model. Kumar et al. [159] propose a Bayesian approach
that can identify and eliminate spurious data from a sensor.
The procedure attributes less weight to the measurement
from a suspected sensor when fused with measurements from
other sensors. In the inference of cosmological parameters
(Example II-C.3), detecting and explaining (in)consistencies
of observations from different experiments is of utmost im-
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portance. A methodology for validation is comparing various
error measures on several types of analytical products (Ex-
ample V-A.1): cosmological parameters, CMB power spectra,
and full sky maps, with and without the inclusion of datasets
from both space-borne satellite missions and Earth-bound
telescopes [50]. These experiments vary in the spectral bands
at which they observe the sky, angular (spatial) resolution,
sensitivity to different types of polarization, sky coverage, sky-
scanning strategies [50, Section 4.1], types of noise, and other
parameters. Therefore, they carry complementary information.

Challenge IV-B.4: Missing values. The challenge of missing
values is not new and not unique to data fusion. The problem
of matrix and tensor completion is long-standing in linear and
multilinear algebra. However, its prevalence in data fusion
draws special attention to it. In Section III, we have seen
that low-rank tensors decompositions provide redundancy that
results in strong uniqueness that is further improved in the
presence of coupling or additional constraints. It turns out
that the same applies also in the case of missing values,
see [16], [99], [160]–[162] and references therein. Approaches
to missing values that are motivated by various aspects of data
fusion can be found, e.g., in [16], [160], [161].
Missing values may occur in various scenarios. While the
first case that we mention below is not unique to data
fusion, the remaining ones are. More specifically, the first
case deals with samples that are locally missing within an
individual dataset, whereas the other cases arise due to in-
teraction among datasets. First, certain data entries may be
unreliable, discarded, or unavailable due to faulty detectors,
occlusions, partial coverage, or any other unavoidable effects.
Second, sometimes a modality can report only on part of
the system w.r.t. the other modalities, as is the case with
EEG vs. MEG [12], nuclear magnetic resonance (NMR) vs.
liquid chromatography—mass spectrometry (LC-MS) [99],
occlusions or partial spatial coverage in remote sensing (Ex-
ample II-C.1), audio-video (Example II-A.1), meteorological
monitoring (Example II-C.2), and HMI (Example II-A.2).
A third scenario is illustrated in Figure 2b. In this case,
there exist several datasets, depicted as complete third-order
tensors. However, when linked together, they can be regarded
as elements in a larger third-order tensor in which they are all
contained, and whose volume is only partially filled. Fourth,
data may be regarded as structurally missing if samples at
different modalities are not taken at comparable sampling
points [8] (recall Challenge IV-A.2), and we would like to
construct a more complete picture from the entire sample
set. In this case, each modality is properly sampled on its
own, but there exist points on the common sampling grid
that do not contain data from all modalities; these points
can be regarded as missing values. A fifth scenario is link
prediction. This is a common issue in recommender systems
and social network analysis. In social network analysis, the
challenge is predicting social links or activities based on an
existing database of connections or activities, where only a
few entries are known. As an example for a recommender
system we mention the “Netflix Prize”, where the challenge
is defined as improving the accuracy of predictions about how

much a person is going to enjoy a future movie based on past
preferences. The data can be regarded as an incomplete user ×
movie matrix, whose entries are user ratings in an ordinal 1–5
scale, and the challenge is to fill in the missing entries (initially
set to zero). Among the many and diverse methods that have
been proposed we mention that some are based on (coupled)
matrix or tensor factorizations, possibly by augmenting these
data with further types of diversity; see, e.g., [16], [161], [163]
and references therein.

V. CHALLENGES AT THE MODEL DESIGN LEVEL

In this section, we confront the unavoidable “how” ques-
tion, presenting some guidelines that might be helpful in
the actual design of data fusion solutions, from a model
design perspective. This question has already been raised by
numerous authors, e.g., by [8]–[14], [16], [152], [163], [164],
among others, and the following discussion builds upon these
foundations. In a sense, this section concludes our paper.
It complements Section III by proposing theoretical model
design principles that allow diversity to manifest itself. It
complements Section II and Section IV by presenting model
design principles that can accommodate the practical data-level
challenges presented in Section IV and the numerous tasks
given in Section II. It provides examples of approaches that
allow datasets to interact and inform each other, in the sense
of Definition I.2. As in previous sections, due to the vastness
of the field, the discussion in this section is far from being
exhaustive: we only touch at certain topics, and leave others,
such as computation, algorithms and fusion of large-scale data,
outside the scope of this overview. The rest of this section
is organised as follows. In Section V-A, we discuss different
strategies to data fusion, and address, in particular, at which
level of abstraction, reduction and simplification the data
should be fused. Section V-B discusses mathematical models
for links between datasets that maximally exploit diversity, en-
hance interpretability and performance. Section V-C discusses
some theoretical approaches to the analysis of the ensemble
of linked datasets. Section V-D brings together the numerous
model design steps and considerations in a unified framework
of “structured data fusion”. We conclude our discussion with
validation issues in Section V-E.

A. Level of Data Fusion

At first thought, it may seem that fusing multiple datasets
at the raw-data level should always yield the best inference,
since there would be no loss of information. In practice,
however, due to the complex and largely unknown nature of
the underlying phenomena (Section II), various complicating
factors (Section IV), as well as the specific research question
(Sections I–II), it may turn out to be more useful to fuse the
datasets at a higher level of abstraction [9], and after certain
simplification and reduction steps. The procedures listed below
precede the actual fusion of the data. Therefore, they are
related to the preprocessing stage. Naturally, the choice of
analytical model is influenced by decisions taken at this point.

The first strategy that we mention is data integration.
It implies parallel processing pipelines for each modality,
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followed by a decision-making step. Integration is a common
approach to deal with heterogeneous data. When modalities
are completely non-commensurable (Challenge IV-A.1), as
with remote sensing techniques that report on material content
vs. others that report on three-dimensional structures (Exam-
ple II-C.1), integration becomes a natural choice, and is often
related to classification tasks. Integration can be done via soft
decision, using optimal weights, as in the fusion of data from
wireless microwave sensor networks and radar for rainfall
measurement and mapping [47] (Example II-C.2). Bullmore
and Sporns [165] study brain networks by first constructing
separate models of structural and functional networks based on
several brain imaging modalities and fuse them using a graph-
theoretical framework. Data integration may be preferred when
modality-specific information carries more weight compared
with the shared information, as argued for the joint analysis of
EEG–fMRI in [32] (Example II-B.1). A framework to choose
between alternative soft decision strategies in the presence
of multiple sensor outputs, given various assumptions on
uncertainty or partial knowledge, confidence levels, reliability,
and conflicts, in a data fusion context, is given in [157]. Due to
its simplicity, and relative stability since it allows to rely on
well-established methods from single-modal data analysis, a
large number of existing data fusion approaches are still based
on decision-level fusion. Pros and cons to data integration are
further discussed in [21].

A second type of data fusion strategy is processing modal-
ities sequentially, where one (or more) modality(ies) is used
to constrain another. Mathematically, this amounts to using
one modality to restrict the number of degrees of freedom,
and thus the set of possible solutions, in another. A sequential
approach makes sense when one modality has better quality
in terms of the information that it conveys than the others
in a certain respect, as in certain audio-visual scenarios [10],
[23] (Example II-A.1), as well as in the fMRI-constrained
solution for the otherwise-underdetermined, ill-posed EEG
inverse problem [12], [26] (Example II-B.1).

In this paper, we focus on a third strategy, true fusion, that
lets modalities fully interact and inform each other as claimed
in Section I. True fusion is also characterized by assigning a
symmetric role to all modalities, i.e., not sequential. The data
fusion models mentioned in Section III fall into this category,
as well as most of the models that we mention in the rest of
this section. Within “true fusion”, there are varying degrees:
True fusion using high-level features. In this approach, the
dimensionality is significantly reduced by associating each
modality with a small number of variables. High-level features
are often univariate. Examples include standard variation,
skewness, ratio of active voxels, other variables which con-
cisely summarize statistics, or geometrical and other prop-
erties. In this case, inference is typically of classification
type. Examples include multi-sensor [9], HMI [10] and remote
sensing [42] applications.
True fusion using multivariate features. Unlike high-level
features, this approach leaves the data sufficiently multivariate
within each modality (which now is in feature form) such
that data in each modality can fully interact [21], [58]. In
neuroimaging, common features are task-related spatial maps

from fMRI, gray matter images from sMRI, and event-related
potential (ERP) from EEG, extracted for each subject [21],
[58], [60]. In audio-visual applications, features often corre-
spond to speech spectral coefficients and visual cues such as
lip contours or speaker’s presence in the scene [23].
True fusion using the data as is, or with minimal reduction.
In fact, working with features implies a two-step approach: in
the first step, features are computed using a certain criterion;
in the second step, features are fused using a different, second
criterion. An approach that merges the two, and thus expected
to better exploit the whole raw data, is proposed in [166] for
the fusion of fMRI and EEG. A remote sensing application in
which it is natural to work with raw data is pan-sharpening
(explained in Challenge. IV-A.2). Here, acquisition conditions
are favourable since the two sensors (multispectral and pan)
acquire data over the same area, with same angle of view and
simultaneously, and the modalities are commensurable.

Features, at different levels, may accommodate hetero-
geneities across modalities, such as different types of uncer-
tainty and non-commensurability (Section IV). Features may
significantly reduce the number of samples involved, i.e., allow
compression. Example V-A.1 illustrates this point. It also
serves as a conclusion to the discussion on the strategy for
data fusion by showing how different levels of features can be
used for varying data fusion purposes. For further discussion
on features and choosing the right level of data fusion, see,
e.g., [21], [27], [58] (biomedical imaging) and [10], [11]
(HMI).
Example V-A.1: Use of Features in Cosmological Inference
from CMB Observations. In the inference of cosmological
parameters from CMB observations (Example II-C.3), the raw
data consist of detector readouts as well as other auxiliary
information that amounts to several Tera-bytes, or O(1012),
of observations [167]. The scientific products are usually pro-
vided in several levels of multivariate “features”, as follows: (i)
full-sky maps, of CMB and non-CMB emissions, amounting
to roughly O(108) pixels, (ii) CMB power spectrum computed
from the CMB spatial map, at O(103) spectral multipoles, and
(iii) six cosmological parameters that represent the best-fit of
the CMB power spectrum to the ΛCDM model. It is clear
that each level represents a strong compression of the data
w.r.t. the preceding one. Each level of features is useful for a
different type of inference. High-resolution component maps
are the first useful outcome from the component separation
procedure [59]. Apart from providing valuable information
about the sky, they are useful for instance for consistency
checks between instruments, experiments and methods [50],
[59]. Power spectra are useful to compare outcomes of dif-
ferent experiments that measure the CMB, e.g., Planck and
BICEP2/Keck [168], whereas cosmological parameters form
the link, via the ΛCDM model, with datasets that do not
involve astrophysical observations, e.g., high-energy physics
at CERN [56].

Order selection and dimension reduction. Related to the
open issue of choosing the most appropriate strategy of data
fusion is order selection. As in non-multimodal analysis, a
dimension reduction step may be required in order to avoid
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over-fitting the data, as well as a form of compression [9]. In a
data fusion framework, this step must take into consideration
the possibly different representations of the latent variables
across datasets. As an example, a solution that maximally
retains the joint information while also ensuring that the
decomposed sources are independent from each other, in the
context of a “joint ICA”-based approach, is proposed in [117].
Dimension reduction may be performed locally, at each sensor
or modality, or at a central processing unit [9].

B. Link Between Datasets

Data fusion is all about enabling modalities to fully interact
and inform each other. Hence, a key point is choosing an
analytical model that faithfully represents the relationship be-
tween modalities and yields a meaningful combination thereof,
without imposing phantom connections or suppressing existing
ones. The underlying idea of data fusion is that an ensemble of
datasets is “more than the sum of its parts” in the sense that it
contains precious information that is lost if these relations are
ignored. The purpose of properly-defined links is to support
this goal, as motivated by the discussion in Section III. In
order to maximize diversity, we would like links to be able
to exploit the heterogeneity among datasets. Properly-defined
links provide a clear picture of the underlying structure of the
ensemble of the related datasets [147]. Consider, for example,
two datasets, patients × symptoms and patients × diagnosis;
we would like the data fusion model to allow us to uncover
the medical conditions that underlie both symptoms and di-
agnoses [155]. Properly-defined links explain similarities and
differences among datasets and allow better interpretability.
As explained in Section III, one of the first motivations for
linking datasets in joint matrix decomposition scenarios is
resolving the arbitrary ordering of the latent components in
each individual dataset. It is interesting to note that all types
of links eventually alleviate this problem since they provide a
single frame of reference.

Since data fusion generally deals with heterogeneous
datasets, we would like links to be flexible enough to allow
each dataset to remain in its most explanatory form, as
further discussed in Section V-B1. In various scenarios, certain
elements may be present only in a specific dataset whereas
others are shared by two or more. We would like the model
not only to properly express these elaborate interactions but
also to have the capacity to inform us about (non-) existence
of links when this information is not available in advance, a
topic further elaborated in Section V-B2.

As stated in Section II, the raison d’être of multimodal
data fusion is the paradigm that certain natural processes
and phenomena express themselves under completely different
physical guises. Due to the often complex nature of the driving
phenomena, it is likely that datasets will be related via more
than one type of diversity; e.g., time, space, and frequency.
Therefore, links should be designed such that they support
a relationship via several types of diversity simultaneously,
whenever applicable. Models based on multilinear relation-
ships, as well as those that admit multiple types of links
simultaneously, seem to better support this aim.

1) “Soft” and “Hard” Links Between Datasets: One type
of decision that has to be made is whether each dataset
will have its own set of individual parameters, disjoint of
the others, or not. In the first case, none of the parameters
that define each dataset’s model are shared by any other
dataset. As a result, additional information is required to define
the link. In such cases, the link is often defined as some
correspondence between datasets that can be interpreted as
similarity, smoothness or continuity [169]. Therefore, we call
such links “soft”. In the second case, datasets explicitly share
certain factor matrices or latent variables. For the sake of our
discussion, we call such links “hard” [145].
“Hard” links between datasets. We have already seen shared
factor matrices in numerous examples in Section III. Naturally,
data fusion methods that are based on stacking data in a
single tensor fall within this category. Such are PARAFAC
(Section III-C2), generalized singular value decomposition
(GSVD) [170] and its higher-order generalization [171],
the higher-order SVD (HOSVD) [172], and more. In joint
ICA [173] and group ICA [174], [175], several ICA problems
share a mixing matrix or source subspace, respectively, by
concatenating the observation matrices in rows or columns.
Simultaneous factor analysis (FA) [152] and simultaneous
component analysis (SCA)-based methods [98], [176]–[179]
deal with multiway data that have at least one shared mode,
but do not stack it in a single tensor (Section III-C2) due
to various complicating factors, such as those mentioned in
Section IV. Linked tensor ICA [154] has one factor matrix
shared by all decompositions. In Bayesian group FA [180] and
its tensor generalization [142], [181], as well as in collective
matrix factorization (CMF) [164], several matrices or tensors
share all but one factor matrix. In fusion of hyperspectral and
multispectral images (Example II-C.1), the joint factor is a ma-
trix that reflects the (desired, unknown) high-resolution image
before spatial and spectral degradation [182]–[185]. In group
non-negative matrix factorization (NMF), shared columns of
the feature matrix reflect task-related variations [186]. The
generalized linked-mode framework for multiway data [8]
allows flexible links across datasets by shared (sub-) factors,
as do other flexible tensor-based data fusion models such
as coupled matrix and tensor factorization (CMTF) [99] and
its probabilistic extension generalized coupled tensor factor-
ization (GCTF) [161], linked multiway component analysis
(LMWCA) [65] and structured data fusion (SDF) [16]. In the
fusion of astrophysical observations of the CMB from different
experiments (Example II-C.3), the link may be established
by a joint distribution of the ensemble of samples from all
datasets. In this case, the fusion is based on the assumption that
the random processes from which all samples are generated
are controlled by the same underlying cosmological parame-
ters [50]. A shared random variable is used also in [187] to
extract a common source of variability from measurements in
multiple sensors using diffusion operators [187].
“Soft” links between datasets. Prevalent types of “soft” links
are statistical dependence, as in IVA (Example III-D.1); co-
variations, as in CCA [1] and its extension to more than
two matrices, multiset CCA (MCCA) [3], [58], [110], [118],
and parallel ICA [188]; and “similarity”, in the sense of
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minimizing some distance measure between corresponding
elements, as in soft non-negative matrix co-factorization [189]
and joint matrix and tensor decompositions with flexible
coupling [145]. For audio-visual data fusion, a dictionary
learning model where each atom consists of an audio and video
component has been proposed in [144]. A graphical model in
which audio and video shifts are linearly related in far-field
conditions is proposed in [24]. Generalized linked-mode for
multiway data [8] and LMWCA [65] mention explicitly that
they can be defined both with “soft” or “hard” links.

Although the partition into “soft” and “hard” links is
conceptually appealing and simplifies our presentation, the
following reservation is in order. In practice, when it comes
to writing the optimization problem, models with “soft” links
are often reformulated using shared variables. In the models
that we have just mentioned, shared variables are, for ex-
ample, cross-correlation or cross-cumulants when statistical
(in)dependence and co-variation are concerned, or a shared
latent variable in regression models. The reformulated models
often take the form of (approximate) (coupled) matrix or
tensor factorizations. We mention [111], [190], [191] as just
a few examples; further discussion is beyond the scope of
this paper. The bottom line is that the distinction between
“soft” and “hard” links is often immaterial. The implication is
that models with “soft” links can sometimes neatly fit within
optimization frameworks that assume shared variables, for
example SDF [16].

2) Shared vs. Unshared Elements: The idea that datasets
have both shared (common) and unshared (individual,
modality-specific) elements w.r.t. the others can be found in
numerous models. It can be formulated mathematically by
defining certain columns of a factor matrix or sub-elements
of a latent variable as shared while others are unshared.
Models that admit this formulation include incomplete mode
PARAFAC [69, Section 5.1.2] (Figure 2b), group NMF [186],
LMWCA [192] and SDF [16]. In the extraction of a common
source of variability from heterogeneous sensors [187], it is
hidden random variables that are either shared or unshared.
Another example is Bayesian group FA [180] and its tensor
extensions [142], [181], where a dedicated factor matrix de-
termines which of the factors in a common pool are active
within each dataset.

The more fundamental challenge, however, is to identify the
shared and unshared elements from the data itself, without a
priori assignment of individual and shared variables. Bayesian
linked tensor ICA [154] holds a modality-specific factor matrix
of optimally-determined weights that can eliminate a source
from some modalities while keeping it in others. In [170],
Alter et al. propose GSVD to infer, from two genome-scale
expression datasets, shared and individual processes. Ponna-
palli et al. [171] extend this GSVD-based approach to more
than two datasets. Shared and unshared processes in genomic
and metabolomic data may also be revealed by a proper
rotation of the components resulting from SCA. The proposed
approach, called distinctive and common components with
simultaneous-component analysis (DISCO-SCA) [177], [193],
[194], may outperform GSVD in certain scenarios and can be
straightforwardly generalized to more than two datasets. A

comparative study of GSVD, DISCO-SCA and other methods
that can identify shared and unshared processes underlying
multiset data can be found in [179]. HOSVD [195] can
differentiate between shared and unshared phenomena in DNA
analysis from multiple experiments [172]. As a last example,
in CMTF [196], model constraints may be defined in the form
of sparse weights such that unshared components have norms
equal or close to zero in one of the datasets.

C. Analytical Framework

Certain data fusion approaches rely on existing theoretical
analytical frameworks that have originally been devised for
non-fusion applications, at least not explicitly. Such are ICA
and algebraic-based methods such as PARAFAC, generalized
eigenvalue decomposition (GEVD), GSVD and HOSVD, as
will be elaborated below. These methods have been around
for a while and there is a large body of works that has
been dedicated to their computation. Data fusion approaches
that rely on these well-established, widely-known methods are
often more easily accepted and integrated within the research
communities. However, these approaches may not be able to
exploit the full range of diversity in the data, and thus, more
advanced data fusion methods may be preferred. Below, we
briefly review some of the analytical approaches that have been
proposed for data fusion.
Well-known matrix and tensor factorizations can be used
for data fusion. In [170], Alter et al. use GSVD for the
comparison of genetic data from two different organisms.
In [172], HOSVD is proposed for the analysis of data from
different studies. In the presence of two datasets, or in a noise-
free scenario, many matrix- and tensor-based methods can
be reformulated as GEVD [197]. This holds for various BSS
closed-form solutions [198], CCA [199, Chapter 12] and its
multi-set extension [3], [110], joint BSS [111], and coupled
tensor decompositions [200]. As explained in Section V-B1,
algebraic (possibly approximate) solutions to models with
“soft” links often exist.
Certain data fusion methods concatenate or re-organize data
such that it can be analysed by a classical ICA algorithm.
Such is the case in joint ICA [173] and group ICA [174],
[175]. These models can thus be solved using any existing
ICA approach [63].
Guo et al. [201] propose a tensor extension to group
ICA [174], [175] and to tensor ICA [104] that can accom-
modate different group structures. Parallel ICA [188] and
IVA [108]–[111] (Example III-D.1) jointly solve several sep-
arate ICA problems by exploiting co-variations or statistical
dependence, respectively. CCA [1], its extension to multiple
datasets [3], as well as one of the approaches to LMWCA [65],
search for maximal correlation, or other second-order-based
relationships, between variables.
Certain methods minimize the Euclidean distance (Frobenius
norm) between model and data. In the presence of additive
white Gaussian noise, this amounts to maximum likelihood
(ML). Further considerations associated with this choice of
norm are given in [16, Section II]. This type of optimization
is used in group NMF [186], coupled NMF [182], certain
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SCA-based methods [98], [176]–[178], and numerous cou-
pled tensor decompositions, see e.g., [16], [99], [124] and
references therein. In some cases, it may be better to tailor
loss functions individually to each dataset, and use norms
other than Frobenius [8], [153]. Such is the case in the GCTF
framework [156], [161], for example. An ML framework can
accommodate datasets with different noise patterns. Such are
flexible simultaneous FA [152] and ML-based SCA [153],
[155]. ML underlies certain noiseless stochastic models, e.g.,
SOS-IVA [202] and JISA [119]–[121].
Regression provides another solution to data fusion. Regres-
sion searches for latent factors that best explain the covariance
between two sets of observations. We mention PLS [62], [203]
and its multilinear extensions N -way PLS [62], [150] and
higher-order PLS (HOPLS) [141].
Bayesian group FA [180], its tensor extension [142], [181],
coupled matrix and tensor decompositions with flexible cou-
pling [145], and certain methods for the fusion of hyperspectral
and multispectral images [183], [184], rely on a Bayesian
framework for the decomposition. Certain tensor extensions
of ICA rely on a probabilistic Bayesian framework [154].
In [185], fusion of hyperspectral and multispectral images is
achieved via dictionary learning and sparse coding. This is
also the underlying technique of [144] for learning bimodal
structure in audio-visual data. Beal et al. [24], [204] use
probabilistic generative models, also termed graphical mod-
els, in order to fuse audio and video models into a single
probabilistic graphical model. Lederman and Talmon [187] use
an alternating-diffusion method for manifold learning that
extracts a common source of variability from measurements in
multiple sensors, where all sensors observe the same physical
phenomenon but have different sensor-specific effects. Com-
bining labelled and unlabelled data via co-training is described
in [205]. A survey of techniques for multi-view machine
learning can be found in [206]. A multimodal deep-learning
method for information retrieval from bi-modal data consisting
of images and text is described in [207].

D. Structured Data Fusion: A General Mathematical Frame-
work

In the preceding sections, we mentioned a large number
of data fusion models. However, it is clear that no list of
existing solutions, comprehensive as it might be, can cover
the practically endless number of current, future and potential
datasets, problems and tasks. Indeed, the purpose of this paper
is not in promoting specific models or methods. Instead, and
building upon [8]–[14], [16], [152], [163], [164] and others,
we wish to provide a deeper and broader understanding of
the concepts and ideas that underlie data fusion. As such,
in the model design front, our goal is providing guidelines
and insights that may apply also to datasets, problems and
tasks that do not necessarily conform to any of the specific
examples, solutions, and mathematical frameworks that we
mention. The concept of diversity, presented in Section III,
is one such example. In the same vein, we now present a
general mathematical framework that will allow us to give a
more concrete meaning to some of the model design concepts

that have been discussed. Although this formulation is given in
terms of matrices and higher-order arrays, also known as ten-
sors, the underlying ideas behind “structured data fusion” [16],
such as flexibility and modularity, are not limited to these. The
mathematical formulation that we use is only a concretization
of a more general idea, applied to datasets that admit certain
types of decompositions.
We now present a formulation proposed by Sorber et al. [16],
followed by a few examples for motivation and clarification.
Model of an individual dataset: Consider an ensemble of M
datasets, collected in M arrays (tensors) T (m) ∈ CI1×···×INm ,
m = 1, . . . ,M , where Nm = 1, 2, 3, . . . implies a vector, a
matrix or a higher-order tensor, respectively. In order to allow
maximal flexibility in the model associated with each of these
datasets, [16] define several layers of underlying structures. A
first layer is an ordered set of V variables z = {z1, . . . , zV },
where each variable may be anything from a scalar to a higher-
order tensor, real or complex (recall (1)). A second layer is
an ordered set of F factors X (z) = {x1(zi1), . . . , xF (ziF )}
that are driven by the V variables z. Each factor xf (zif ) is a
mapping of the if th variable to a tensor. In a third layer, each
dataset T (m) is associated with a decomposition modelM(m)

that approximates it. FunctionM(m)(X (z)) maps a subgroup
of the factors X (z) to a tensor. Figure 3 illustrates these layers.
For simplicity, each dataset T (m) is associated with a tensor
model M(m) of the same order and size. This is not evident:
the order Nm and dimensions I1 × · · · × INm

of the model
tensor, as used in the analysis, may differ from those that
most naturally represent the acquired data, as well as from the
natural way to visualize the samples. As a first example, raw
EEG data is a time series in several electrodes, i.e., electrode ×
time. However, it has been proposed to augment this data using
a third type of diversity, electrode × time × frequency [101]–
[103]. In this case, the EEG data will be stacked in a third-
order tensor. On the other hand, data that is naturally visualized
in 2D or 3D arrays such as images does not necessarily admit
any useful (multi-) linear relationships among its pixels or
voxels. Hence, in the analysis, image data are often vectorized
into 1D arrays. Further discussion of how to choose the right
array structure for data analysis can be found, e.g., in [8], [64],
[65], [106] and references therein.
Link between datasets: In the structured data fusion (SDF)
formulation, a link between datasets can be established if their
models share at least one factor or variable. This corresponds
to the “hard” links, mentioned in Section V-B1. However, this
does not exclude other types of interaction between datasets:
“soft” links may be established by reformulating “soft” links
using shared parameters, as explained in Section V-B1, and
possibly via regularization terms.
The following examples provide a more concrete meaning
to the mathematical formulation that we have just laid out.
Consider two matrix datasets, patients× diagnosis and patients
× symptoms. A latent variable may be the syndrome that
underlies both diagnoses and symptoms factors. The link is
established via the shared “patients” mode [155]. As a second
example, certain properties of a communication system in a
coupled CPD framework may be expressed using a factor
with a Vandermonde structure [124]. This can be implemented
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in SDF with zf a vector of p scalars and xf (zf ) a p × q
Vandermonde matrix constructed thereof. Further examples
for factor structures that can be reformulated in SDF include
orthogonality, Toeplitz structure, non-negativity, as well as
fixed and known entries. Constraints such as sparsity and
smoothness within factors may be implemented using regu-
larization terms. Tensor decompositions that can be reformu-
lated as M(m)(X (z)) include rank-1 decompositions (CPD,
PARAFAC), decompositions into rank≥1 terms, Tucker, BTD,
PARAFAC2 [70], and many others. These options, as well
as other alternatives for latent variables, factors and models
for each dataset, are mentioned in Section III. For further
explanations about implementation, see [16], [208].
Loss/objective function, regularization and penalty terms:
The next step is to fit the model to the data. Depending
on the analytical framework that we choose (Section V-C),
each dataset or the whole ensemble is attributed with a
loss/objective function D(m)(·, ·), between observed and mod-
elled data [153], [156], [161]. An individual loss/objective
function allows flexibility both in the analytical framework
applied to each dataset, and in the individual types of uncer-
tainty (Challenge IV-B.1). The loss/objective function may be
complemented by various penalty or regularization terms, in
order to impose constraints that are not expressed by the other
optimization functionals. Regularization terms may impose
certain types of sparsity, non-negativity [196], similarity [145],
[189], or coherence [209], to name a few.
Missing values: In order not to take account of unknown data
entries in the optimization procedure, these values are masked.
This is done via an entry-wise (Hadamard) product (denoted
as ~) of the data tensor T (m) with a binary tensor B(m) of the
same size; see e.g., [16], [160] and references therein. Missing
values are discussed in Challenge IV-B.4.
The whole optimization problem: Given these elements, SDF
may be written as the optimization problem

min
z

M∑
m=1

ωm

2
D(m)

(
M(m)(X (z)) , T (m)

)
B(m)

+ regularization terms , (14)

where D(m)(·, ·)B(m) implies D(m)(B(m)~·,B(m)~·). Scalars
ωm denote weights, reflecting the relative importance of
the loss/objective functions in the ensemble. Scenarios in
which weights are useful are discussed in Section IV-B. The
optimization problem (14) implements the overall analytical
framework associated with the model. Eq. (14) is a slight
generalization of the original SDF formulation [16, Eq. (1)],
in which the loss/objective function is a weighted Frobenius
norm, D(m)(M(m), T (m))B(m) = ‖B(m)~(M(m)−T (m))‖2F .
Numerical and computational advantages associated with the
Frobenius norm in the context of SDF are discussed in [16,
Section II]. An illustration of SDF is given in Figure 3.

As noted by [16], a large number of the existing data fusion
models can be reformulated in terms of SDF, or some variation
thereof. However, an even more interesting insight is that each
step in the design of (14) is independent of the others: to a
large extent, the choice of constraints, assumptions, types of
links, loss/objective functions, and other parameters, can be
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Fig. 3: Schematic illustration of structured data fusion. For
example, vector z1, upper triangular matrix z2, and full matrix
z3 are transformed, using mappings x1, x2 and x3, into a
Toeplitz, orthogonal, and nonnegative matrix, respectively. The
resulting factors are then used to jointly factorize two coupled
datasets. Figure and caption reproduced from [16, Figure 1].

done disjointly. In other words, SDF is a modular approach
to data fusion. These insights have led to the key observation
that in fact, a large number of existing data fusion models can
be regarded as composed of a rather small number of building
blocks [16]. In other words, if all admissible combinations are
considered, then the number of potential analytical data fusion
models is significantly larger than what is currently available
in the literature [8].

The modular perspective on data fusion offers several ben-
efits. First, a major challenge in data fusion is its augmented
complexity due to the increased number of degrees of freedom.
The modular approach to data fusion answers this challenge by
reformulating the problem in a small set of disjoint simpler
components that can be separately analysed, optimized and
coded. Second, the modular approach, in which the prob-
lem is factorized into smaller stand-alone elements, allows
a broader view that makes it is easier to come up with new
combinations of the basic building blocks, thus leading to new
mathematical models, algorithms and concepts [8], [16], [163],
[164]. Third, modularity of the formulation makes it easier
to adapt it to computational challenges such as large-scale
data [16], [65], [162], [210], [211]. Fourth, in Section I–II,
we have emphasized the importance of exploratory research
in data fusion. The modularity of the design is particularly
helpful in that, making it straightforward to come up with
new exploratory variations, to test and compare alternatives
with minimal effort [16]. Modularity allows to easily diagnose
which elements in the model are particularly useful, need to be
modified, replaced or fine-tuned, without having to undo the
whole derivation, coding or analysis. The latter also facilitates
the validation stage, see Section V-E for further discussion.

E. Validation

Despite accumulating empirical evidence of the benefits
of data fusion, there is still very little theoretical validation
and quantitative measure of its gain [11], [99]. Choosing an
appropriate model is a widely open question, and approximate
and highly simplified models are often preferred. Therefore,
a validation step is indispensable. The following points are
of particular interest: (i) Lower bounds on the best achievable
error: how far are we from the best possible result (for a given
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dataset, task, goal, and model)? (ii) Theoretical results on
the reliability and practical usefulness of the method: can we
prove that the model is identifiable? Is the solution unique? Is
the output physically meaningful? Are the results sufficiently
interpretable? IVA (Example III-D.1) and coupled tensor
decompositions (Example III-D.2) are two of the models for
which there now exists a comprehensive theoretical analysis
that answers this type of questions.

Although these questions are not specific to multimodal
data fusion, they take special interpretation in the presence
of multiple datasets. Some of the new questions that arise
are, for instance: (i) What is the mathematical formulation
of “success”, “optimality” and “error”, when heterogeneous
modalities and types of uncertainty are involved? What is the
most appropriate target function and criterion of success? (ii)
How to evaluate performance of exploratory tasks? (iii) How
to design a figure of merit that can inform us how to exploit
the advantages of each modality without suffering from its
drawbacks w.r.t. the other modalities? (iv) How to identify and
process information that is shared by several modalities, and
how to identify and exploit modality-specific information? (v)
How to compare alternative design choices such as of level
of data fusion, order selection, and analytical model within
and across modalities? As an example, theoretical figures of
merit such as the Cramér-Rao lower bound may help answer
some of these questions. However, calculating theoretical error
bounds for all possible alternatives (especially in view of the
modular approach of Section V-D) is a prohibitive task, both
due to the very large number of options, and also since many
models are not mathematically tractable. Rescue may come
from the computational front. As an example, Tensorlab [208],
a MATLAB toolbox that follows the modular principles of
SDF [16] (Section V-D), enables the user to switch between
the numerous combinations arising from multiple choices in
the model design. As such, it allows the user to rapidly
iterate towards a plausible solution for the problem at hand.
Therefore, Tensorlab [208] (or any other computational tool
following the modularity principles) may serve as a verifica-
tion and validation tool, at least in the preliminary stages of
the design.

A class on their own are questions regarding the choice of
modalities and the added value from using multiple modal-
ities in general. (i) Should all available modalities be used,
and/or given equal importance? (ii) How much (information,
diversity, redundancy) does each modality bring in to the total
equations? How to quantify this “extra contribution”? Some
of these questions (and examples of possible answers) have
been brought up within the challenges in Section IV; others
are related to the design of a data fusion model (Section V).
Information theory seems like a natural framework to evaluate
the contribution of various types of diversity, as discussed, e.g.,
in [12]. Uniqueness analysis of (coupled) tensor decomposi-
tions, as well as other forms of error analysis, such as those
mentioned in Section III, quantify the added value of diversity
in terms of the admissible number of uniquely identifiable
components or factors. Attention should be paid, for example,
when modalities are too close to each other: in this case, they
may not really convey new information; in addition, they may

be exposed to similar noise, and thus bias results [9]. Due to
the heterogeneous characteristics of the data, and particularly
in exploratory tasks, the interpretability of the output should
be given special care. Questions related to the representation
of the output of multimodal data analysis are discussed, e.g.,
in [11, Section 8].

VI. CONCLUSION

We enter an era where the abundance of diverse sources
of information makes it practically impossible to ignore the
presence of multiple datasets that are possibly related. It is
very likely that an ensemble of related datasets is “more than
the sum of its parts”, in the sense that it contains precious
information that is lost if these relations are ignored. The
information of interest that is hidden in these datasets is
usually not easily accessible, however. We argue that the road
to this added value must go through first understanding and
identifying the particularities of multimodal and multiset data,
as opposed to other types of aggregated datasets. At the same
time, the joint analysis of multiple datasets “stands on the
shoulders of” single-set analysis. Hence, the development of
methods and techniques for single-set analysis is a cornerstone
for advanced data fusion. In this paper, we have shown that
methods that properly account for the links among datasets
indeed have the potential to achieve gains and benefits that
go far beyond those possible when each dataset is processed
individually. As argued in this paper, the potential impact of
these gains is high, and spans the whole spectrum from solving
theoretical problems that cannot be solved in single-set scenar-
ios, to opening up new opportunities in numerous medical, en-
vironmental, psychological, social and technological domains,
among others. By adopting a data-driven approach, we have
shown that the encountered challenges are ubiquitous, whence
the incentive that both challenges and solutions be discussed
at a level that brings together all involved communities.
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[78] P. Rai and H. Daumé III, “The infinite hierarchical factor regression
model,” in Proc. NIPS, Dec. 2008, pp. 1321–1328.

[79] D. Knowles and Z. Ghahramani, “Nonparametric Bayesian sparse
factor models with application to gene expression modeling,” Ann.
Appl. Stat., vol. 5, no. 2B, pp. 1534–1552, Jun. 2011.

[80] P. Comon, “Independent component analysis, a new concept?” Signal
Process., vol. 36, no. 3, pp. 287–314, Apr. 1994.

[81] J.-F. Cardoso, “The three easy routes to independent component
analysis; contrasts and geometry,” in Proc. ICA, San Diego, CA, USA,
Dec. 2001, pp. 1–6.

[82] T. Adalı, M. Anderson, and G.-S. Fu, “Diversity in independent compo-
nent and vector analyses: Identifiability, algorithms, and applications in
medical imaging,” IEEE Signal Process. Mag., pp. 18–33, May 2014.

[83] J.-F. Cardoso and A. Souloumiac, “Blind beamforming for non-
Gaussian signals,” Radar and Signal Process., IEE Proceedings F, vol.
140, no. 6, pp. 362–370, Dec. 1993.

[84] L. De Lathauwer, “Signal processing based on multilinear algebra,”
Ph.D. dissertation, KU Leuven, Leuven, Belgium, Sep. 1997.

[85] A. L. F. de Almeida, X. Luciani, A. Stegeman, and P. Comon,
“CONFAC decomposition approach to blind identification of under-
determined mixtures based on generating function derivatives,” IEEE
Trans. Signal Process., vol. 60, no. 11, pp. 5698–5713, Nov 2012.

[86] E. Moreau and T. Adalı, Blind Identification and Separation of
Complex-Valued Signals. Hoboken, NJ USA: John Wiley & Sons,
Inc., 2013.

[87] F. L. Hitchcock, “The expression of a tensor or a polyadic as a sum
of products,” J. Math. Phys., vol. , 6, pp. 164–189, 1927.

[88] R. A. Harshman, “Determination and proof of minimum unique-
ness conditions for PARAFAC1,” UCLA Working Papers in Phonet-
ics, vol. 22, pp. 111–117, 1972, university Microfilms, Ann Arbor,
No. 10,085.

[89] J. B. Kruskal, “More factors than subjects, tests and treatments: An
indeterminacy theorem for canonical decomposition and individual
differences scaling,” Psychometrika, vol. 41, no. 3, pp. 281–293, Sep.
1976.

[90] M. Sørensen and L. De Lathauwer, “Coupled canonical polyadic
decompositions and (coupled) decompositions in multilinear rank-
(Lr,n, Lr,n, 1) terms—part I: Uniqueness,” SIAM J. Matrix Anal.
Appl., vol. 36, no. 2, pp. 496–522, May 2015.

[91] N. D. Sidiropoulos and R. Bro, “On the uniqueness of multilinear
decomposition of N -way arrays,” J. Chemometrics, vol. 14, no. 3, pp.
229–239, May–Jun. 2000.

[92] A. Stegeman and N. D. Sidiropoulos, “On Kruskal’s uniqueness
condition for the Candecomp/Parafac decomposition,” Linear Algebra
and its Applications, vol. 420, no. 2, pp. 540–552, 2007.

[93] I. Domanov and L. De Lathauwer, “On the uniqueness of the canonical
polyadic decomposition of third-order tensors—part I: Basic results and
uniqueness of one factor matrix,” SIAM J. Matrix Anal. Appl., vol. 34,
no. 3, pp. 855–875, 2013.

[94] ——, “On the uniqueness of the canonical polyadic decomposition of
third-order tensors—part II: Uniqueness of the overall decomposition,”
SIAM J. Matrix Anal. Appl., vol. 34, no. 3, pp. 876–903, 2013.

[95] ——, “Generic uniqueness conditions for the canonical polyadic de-
composition and INDSCAL,” arXiv:1405.6238 [math.AG], 2014.

[96] L. Chiantini, G. Ottaviani, and N. Vannieuwenhoven, “An algorithm
for generic and low-rank specific identifiability of complex tensors,”
SIAM J. Matrix Anal. Appl., vol. 35, no. 4, pp. 1265–1287, 2014.

[97] I. Domanov and L. De Lathauwer, “Canonical polyadic decomposition
of third-order tensors: relaxed uniqueness conditions and algebraic
algorithm,” ESAT-STADIUS, KU Leuven, Leuven, Belgium, Tech.
Rep. 14-152, 2015.

[98] K. De Roover, E. Ceulemans, M. E. Timmerman, J. B. Nezlek, and
P. Onghena, “Modeling differences in the dimensionality of multiblock
data by means of clusterwise simultaneous component analysis,” Psy-
chometrika, vol. 78, no. 4, pp. 648–668, Oct. 2013.

[99] E. Acar, M. A. Rasmussen, F. Savorani, T. Næs, and R. Bro, “Un-
derstanding data fusion within the framework of coupled matrix and
tensor factorizations,” Chemom. Intell. Lab. Syst., vol. 129, pp. 53–63,
2013.

[100] S. Miron, M. Dossot, C. Carteret, S. Margueron, and D. Brie, “Joint
processing of the parallel and crossed polarized Raman spectra and
uniqueness in blind nonnegative source separation,” Chemom. Intell.
Lab. Syst., vol. 105, no. 1, pp. 7–18, Jan. 2011.

[101] E. Acar, C. Aykut-Bingol, H. Bingol, R. Bro, and B. Yener, “Multiway
analysis of epilepsy tensors,” Bioinformatics, vol. 23, no. 13, pp. i10–
i18, 2007.



PROCEEDINGS OF THE IEEE, VOL. XX, NO. YY, MONTH 2015 24

[102] M. De Vos, L. De Lathauwer, B. Vanrumste, S. Van Huffel, and W. Van
Paesschen, “Canonical decomposition of ictal scalp EEG and accurate
source localisation: Principles and simulation study,” Computational
Intelligence and Neuroscience, vol. 2007, pp. 1–10, 2007.

[103] F. Miwakeichi, E. Martı́nez-Montes, P. A. Valdés-Sosa, N. Nishiyama,
H. Mizuhara, and Y. Yamaguchi, “Decomposing EEG data into space–
time–frequency components using parallel factor analysis,” NeuroIm-
age, vol. 22, no. 3, pp. 1035–1045, Jul. 2004.

[104] C. F. Beckmann and S. M. Smith, “Tensorial extensions of independent
component analysis for multisubject fMRI analysis,” Neuroimage,
vol. 25, no. 1, pp. 294–311, Mar. 2005.

[105] J. Levin, “Simultaneous factor analysis of several Gramian matrices,”
Psychometrika, vol. 31, no. 3, pp. 413–419, 1966.

[106] P. Comon, “Tensors : A brief introduction,” IEEE Signal Process. Mag.,
vol. 31, no. 3, pp. 44–53, May 2014.

[107] J. J. Lacoume and P. Ruiz, “Sources indentification: a solution based on
the cumulants,” in 4th Annual ASSP Workshop on Spectrum Estimation
and Modeling, Minneapolis, MN, USA, Aug 1988, pp. 199–203.

[108] T. Kim, I. Lee, and T.-W. Lee, “Independent vector analysis: Definition
and algorithms,” in Proc. ACSSC, Pacific Grove, CA, Nov. 2006, pp.
1393–1396.

[109] T. Kim, T. Eltoft, and T.-W. Lee, “Independent vector analysis: An
extension of ICA to multivariate components,” in Independent Com-
ponent Analysis and Blind Signal Separation, ser. LNCS, vol. 3889.
Springer Berlin Heidelberg, 2006, pp. 165–172.

[110] Y.-O. Li, T. Adalı, W. Wang, and V. D. Calhoun, “Joint blind source
separation by multiset canonical correlation analysis,” IEEE Trans.
Signal Process., vol. 57, no. 10, pp. 3918–3929, Oct. 2009.

[111] X.-L. Li, T. Adalı, and M. Anderson, “Joint blind source separation
by generalized joint diagonalization of cumulant matrices,” Signal
Process., vol. 91, no. 10, pp. 2314–2322, Oct. 2011.

[112] J.-H. Lee, T.-W. Lee, F. A. Jolesz, and S.-S. Yoo, “Independent
vector analysis (IVA): multivariate approach for fMRI group study.”
Neuroimage, vol. 40, no. 1, pp. 86–109, Mar. 2008.

[113] A. M. Michael, M. Anderson, R. L. Miller, T. Adalı, and V. D. Calhoun,
“Preserving subject variability in group fMRI analysis: performance
evaluation of GICA vs. IVA,” Frontiers in Systems Neuroscience, vol. 8,
no. 106, Jun. 2014.

[114] Y. Levin-Schwartz, V. D. Calhoun, and T. Adalı, “Data-driven fusion
of EEG, functional and structural MRI: A comparison of two models,”
in Proc. CISS, Princeton, NJ, USA, Mar. 2014, pp. 1–6.

[115] S. Ma, V. D. Calhoun, R. Phlypo, and T. Adalı, “Dynamic changes
of spatial functional network connectivity in healthy individuals and
schizophrenia patients using independent vector analysis,” NeuroImage,
vol. 90, pp. 196–206, Apr. 2014.

[116] Y.-O. Li, T. Eichele, V. D. Calhoun, and T. Adalı, “Group study
of simulated driving fMRI data by multiset canonical correlation
analysis,” J. Sign. Process. Syst., vol. 68, no. 1, pp. 31–48, Jul. 2012.

[117] J. Sui, H. He, G. D. Pearlson, T. Adalı, K. A. Kiehl, Q. Yu, V. P.
Clark, E. Castro et al., “Three-way (N-way) fusion of brain imaging
data based on mCCA+jICA and its application to discriminating
schizophrenia,” NeuroImage, vol. 66, pp. 119–132, Feb. 2013.

[118] A. Nielsen, “Multiset canonical correlations analysis and multispectral,
truly multitemporal remote sensing data,” IEEE Trans. Image Process.,
vol. 11, no. 3, pp. 293–305, Mar. 2002.

[119] D. Lahat and C. Jutten, “Joint blind source separation of multidimen-
sional components: Model and algorithm,” in Proc. EUSIPCO, Lisbon,
Portugal, Sep. 2014, pp. 1417–1421.

[120] R. F. Silva, S. Plis, T. Adalı, and V. D. Calhoun, “Multidataset
independent subspace analysis extends independent vector analysis,”
in Proc. ICIP, Paris, France, Oct. 2014, pp. 2864–2868.

[121] D. Lahat and C. Jutten, “Joint independent subspace analysis using
second-order statistics,” GIPSA-Lab, Grenoble, France, Technical re-
port hal-01132297, Mar. 2015.

[122] J. Chatel-Goldman, M. Congedo, and R. Phlypo, “Joint BSS as a
natural analysis framework for EEG-hyperscanning.” in Proc. ICASSP,
Vancouver, Canada, May 2013, pp. 1212–1216.

[123] M. Anderson, G.-S. Fu, R. Phlypo, and T. Adalı, “Independent vector
analysis: Identification conditions and performance bounds,” IEEE
Trans. Signal Process., vol. 62, no. 17, pp. 4399–4410, Sep. 2014.

[124] M. Sørensen and L. De Lathauwer, “Multidimensional harmonic re-
trieval via coupled canonical polyadic decomposition’,” ESAT-SISTA,
KU Leuven, Leuven, Belgium, Internal Report 13-240, 2013.

[125] ——, “Coupled tensor decompositions for applications in array signal
processing,” in Proc. CAMSAP. IEEE, 2013, pp. 228–231.

[126] R. A. Harshman and M. E. Lundy, Research methods for multimode
data analysis. New York: Praeger, 1984, ch. Data preprocessing and
the extended PARAFAC model, pp. 216–284.

[127] Joint data analysis for enhanced knowledge discovery in metabolomics.
[Online]. Available: http://www.models.life.ku.dk/joda

[128] P. Comon, “Supervised classification, a probabilistic approach,” in
Proc. ESANN, Brussels, Belgium, Apr. 1995, pp. 111–128.

[129] L. De Lathauwer, B. De Moor, and J. Vandewalle, “Fetal electro-
cardiogram extraction by source subspace separation,” in Proc. IEEE
SP/ATHOS Workshop on HOS, Girona, Spain, Jun. 1995, pp. 134–138.

[130] J.-F. Cardoso, “Multidimensional independent component analysis,” in
Proc. ICASSP, vol. 4, Seattle, WA, May 1998, pp. 1941–1944.

[131] A. Hyvärinen and P. O. Hoyer, “Emergence of phase and shift invariant
features by decomposition of natural images into independent feature
subspaces,” Neural Comput., vol. 12, no. 7, pp. 1705–1720, Jul. 2000.

[132] D. Lahat, J.-F. Cardoso, and H. Messer, “Second-order multidimen-
sional ICA: Performance analysis,” IEEE Trans. Signal Process.,
vol. 60, no. 9, pp. 4598–4610, Sep. 2012.

[133] M. Castella and P. Comon, “Blind separation of instantaneous mixtures
of dependent sources,” in Independent Component Analysis and Signal
Separation, ser. LNCS, M. E. Davies, C. J. James, S. A. Abdallah, and
M. D. Plumbley, Eds., vol. 4666. Springer Berlin Heidelberg, 2007,
pp. 9–16.

[134] A. Boudjellal, K. Abed-Meraim, A. Belouchrani, and P. Ravier, “In-
formed separation of dependent sources using joint matrix decomposi-
tion,” in Proc. EUSIPCO, Lisbon, Portugal, Sep. 2014, pp. 1945–1949.

[135] L. De Lathauwer, “Decompositions of a higher-order tensor in block
terms. Part II: Definitions and uniqueness,” SIAM J. Matrix Anal. Appl.,
vol. 30, no. 3, pp. 1033–1066, 2008.

[136] R. A. Harshman, “Models for analysis of asymmetrical relationships
among N objects or stimuli,” in Proc. First Joint Meeting of the
Psychometric Society and the Society for Mathematical Psychology,
McMaster University, Hamilton, Ontario, Canada, Aug. 1978.

[137] G. Favier and A. L. F. de Almeida, “Overview of constrained
PARAFAC models,” EURASIP JASP, vol. 2014, no. 1, 2014.

[138] M. De Vos, D. Nion, S. Van Huffel, and L. De Lathauwer, “A
combination of parallel factor and independent component analysis,”
Signal Process., vol. 92, no. 12, pp. 2990–2999, 2012.

[139] T. Yokota, A. Cichocki, and Y. Yamashita, “Linked PARAFAC/CP
tensor decomposition and its fast implementation for multi-block tensor
analysis,” in Neural Information Processing, ser. LNCS, T. Huang,
Z. Zeng, C. Li, and C. Leung, Eds. Springer Berlin Heidelberg,
2012, vol. 7665, pp. 84–91, 19th International Conference, ICONIP
2012, Doha, Qatar, Nov. 12–15, 2012, Proceedings, Part III.

[140] A. H. Phan and A. Cichocki, “Tensor decompositions for feature
extraction and classification of high dimensional datasets,” Nonlinear
Theory and Its Applications, IEICE, vol. 1, no. 1, pp. 37–68, 2010.

[141] Q. Zhao, C. F. Caiafa, D. P. Mandic, Z. C. Chao, Y. Nagasaka,
N. Fujii, L. Zhang, and A. Cichocki, “Higher order partial least squares
(HOPLS): A generalized multilinear regression method,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 7, pp. 1660–1673, Jul. 2013.
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[146] A. Liutkus, U. Şimşekli, and T. Cemgil, “Extraction of temporal
patterns in multi-rate and multi-modal datasets,” in Proc. LVA/ICA,
ser. LNCS. Liberec, Czech Republic: Springer-Verlag, Aug. 2015.

[147] T. Wilderjans, E. Ceulemans, and I. Van Mechelen, “Simultaneous
analysis of coupled data blocks differing in size: A comparison of
two weighting schemes,” Comput. Statist. Data Anal., vol. 53, no. 4,
pp. 1086–1098, Feb. 2009.

[148] F. Maes, A. Collignon, D. Vandermeulen, G. Marchal, and P. Suetens,
“Multimodality image registration by maximization of mutual infor-
mation,” IEEE Trans. Med. Imag., vol. 16, no. 2, pp. 187–198, Apr.
1997.

[149] D. Loeckx, P. Slagmolen, F. Maes, D. Vandermeulen, and P. Suetens,
“Nonrigid image registration using conditional mutual information,”
IEEE Trans. Med. Imag., vol. 29, no. 1, pp. 19–29, Jan. 2010.

[150] R. Bro, “Multiway calibration. Multilinear PLS,” J. Chemometrics,
vol. 10, no. 1, pp. 47–61, Jan.–Feb. 1996.

http://www.models.life.ku.dk/joda


PROCEEDINGS OF THE IEEE, VOL. XX, NO. YY, MONTH 2015 25

[151] F. Marini and R. Bro, “SCREAM: A novel method for multi-way
regression problems with shifts and shape changes in one mode,”
Chemom. Intell. Lab. Syst., vol. 129, pp. 64–75, 2013, special Issue:
Multiway and Multiset Methods.

[152] K. G. Jöreskog, “Simultaneous factor analysis in several populations,”
Psychometrika, vol. 36, no. 4, pp. 409–426, Dec. 1971.

[153] T. F. Wilderjans, E. Ceulemans, I. Van Mechelen, and R. A. van
den Berg, “Simultaneous analysis of coupled data matrices subject to
different amounts of noise,” Br. J. Math. Stat. Psychol., vol. 64, no. 2,
pp. 277–290, May 2011.

[154] A. R. Groves, C. F. Beckmann, S. M. Smith, and M. W. Woolrich,
“Linked independent component analysis for multimodal data fusion,”
NeuroImage, vol. 54, no. 3, pp. 2198–2217, Feb. 2011.

[155] T. F. Wilderjans, E. Ceulemans, and I. Van Mechelen, “The SIMCLAS
model: Simultaneous analysis of coupled binary data matrices with
noise heterogeneity between and within data blocks,” Psychometrika,
vol. 77, no. 4, pp. 724–740, Oct. 2012.
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