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Stationary determinantal point processes are proved to be Brillinger mixing. This property is an important step towards asymptotic statistics for these processes. As an important example, a central limit theorem for a wide class of functionals of determinantal point processes is established. This result yields in particular the asymptotic normality of the estimator of the intensity of a stationary determinantal point process and of the kernel estimator of its pair correlation.

Introduction

Determinantal point processes (DPPs) are models for repulsive point patterns, where nearby points of the process tend to repel each other. They have been introduced in their general form in [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] and extensively studied in Probability theory, see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] and [START_REF] Soshnikov | Determinantal random point fields[END_REF]. From a statistical perspective, DPPs have been applied in machine learning [START_REF] Kulesza | Determinantal point processes for machine learning[END_REF], spatial statistics [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF][START_REF] Lavancier | Determinantal point process models and statistical inference : Extended version[END_REF] and telecommunication [START_REF] Deng | The Ginibre point process as a model for wireless networks with repulsion[END_REF][START_REF] Miyoshi | A cellular network model with ginibre configurated base stations[END_REF]. The growing interest for DPPs in the statistical community is due to their appealing properties: They can be quickly and perfectly simulated, parametric models can easily be constructed, their moments are known and the likelihood has a closed form expression. Their definition and some of their properties are recalled in Section 2.1 and we refer to [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] for more details. Some realizations are showed in Figure 1.

We focus in this paper on stationary DPPs on the continuous space R d and we prove that they are Brillinger mixing. To the best of our knowledge, no mixing property was established so far for DPPs. The Brillinger mixing property is an important step towards asymptotic statistics for DPPs, which are mainly unexplored in the literature. The definition, recalled in Section 2.2, is based on the moments of the process. Specifically, a stationary point process is Brillinger mixing if for any k ≥ 2 the total variation of its reduced factorial cumulant measure of order k is finite, see for instance [START_REF] Heinrich | Asymptotic methods in statistics of random point processes[END_REF] or [START_REF] Krickeberg | Processus ponctuels en statistique[END_REF]. Already known Brillinger mixing point processes include Poisson cluster processes and Matérn hardcore point processes (of type I, type II and some generalizations as in [START_REF] Stoyan | On one of Matérn's hard-core point process models[END_REF]), see [START_REF] Heinrich | Normal convergence of multidimensional shot noise and rates of this convergence[END_REF] and [START_REF] Heinrich | Absolute regularity and Brillinger-mixing of stationary point processes[END_REF]. As far as we know, the Matérn hardcore models are the only models of repulsive stationary point processes that have been proved to be Brillinger mixing. Our result shows that DPPs provide a new flexible class of repulsive Brillinger mixing point processes.

In Section 4, we give some applications of the Brillinger mixing property of DPPs. These are mainly based on general results established in [START_REF] Jolivet | Central limit theorem and convergence of empirical processes for stationary point processes[END_REF], [START_REF] Heinrich | Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes[END_REF] and [START_REF] Heinrich | Central limit theorems for empirical product densities of stationary point processes. Statistical Inference for Stochastic Processes[END_REF], that we extend and/or simplify in the setting of stationary DPPs. Namely, we prove the asymptotic normality of a wide class of functionals of order p of a DPP, in the spirit of [START_REF] Jolivet | Central limit theorem and convergence of empirical processes for stationary point processes[END_REF]. This result allows in particular to retrieve the asymptotic behavior of the estimator of the intensity of a DPP, known since [START_REF] Soshnikov | Gaussian limit for determinantal random point fields[END_REF], and to get the asymptotic normality of the kernel estimator of the pair correlation function of a DPP, which is a new result presented in Section 4.2. The Brillinger mixing property is useful for many other applications, see for instance [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF], [START_REF] Jolivet | Upper bound of the speed of convergence of moment density estimators for stationary point processes[END_REF] and [START_REF] Jolivet | Moment estimation for stationary point processes in R d[END_REF]. In an ongoing project [START_REF] Biscio | Asymptotic properties of minimum contrast estimators for determinantal point processes[END_REF], this property is used to get the asymptotic normality of minimum contrast estimators for parametric DPPs.

The reminder of this paper is organized as follows. Section 2 gathers some basic facts about stationary DPPs, moment measures of a point process and the Brillinger mixing property. Our main result stating that stationary DPPs are Brillinger mixing is presented in Section 3. Some statistical applications are given in Section 4. Section 5 and Section 6 contain some technical proofs and Section 7 is an appendix dealing with the computation of the asymptotic variance in the statistical applications of Section 4.

Preliminaries

Determinantal point processes

For d ≥ 1, we denote by B 0 (R d ) the class of bounded Borel sets on R d . For x ⊂ R d and B ∈ B 0 (R d ), x(B) stands for the number of points in x ∩ B. We let N := {x ⊂ R d , x(B) < ∞, ∀B ∈ B 0 (R d )} be the space of locally finite configurations of points in R d . This set is equipped with the σ-algebra generated by the sets {x ⊂ R d , x(B) = n} for all B ∈ B 0 (R d ) and all n ∈ N ∪ {0}, where N denotes the space of positive integers. A point process on R d is a measurable application from a probability space into the set N . We denote a point process by a bold capital letter, usually X, and identify the mapping X and the associated random set of points. All considered point processes are assumed to be simple, i.e. two points of the process never coincide, almost surely. For further details on point processes, we refer to [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF][START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF].

The factorial moment measures and especially the joint intensities of order k of a point process, defined below, are important quantities of interest. They in particular characterize the law of determinantal point processes.

Definition 2.1. The factorial moment measure of order k (k ≥ 1) of a simple point process X is the measure on R dk , denoted by α (k) , such that for any family of subsets

D 1 , . . . , D k in R d , α (k) (D 1 × . . . × D k ) = E   = (x 1 ,...,x k )∈X k 1 {x 1 ∈D 1 ,...,x k ∈D k }  
where E is the expectation over the distribution of X and the symbol = over the sum means that we consider only mutually disjoints k-tuples of points x 1 , . . . , x k .

If α (k) admits a density with respect to the Lebesgue measure on R kd , this density is called the joint intensity of order k of X and is denoted by ρ (k) .

Important particular cases are the factorial moment measure of order one, called the intensity measure, and the factorial moment measure of order two. If X is stationary, then for all S ⊂ R d , there exists ρ > 0 such that α (1) (S) = ρ|S|, where |S| stands for the volume (Lebesgue measure) of S. In this case, for any x ∈ R d , ρ (1) (x) = ρ is called the intensity of the process and represents the expected number of points per unit volume. Regarding the joint intensity of order two, for (x, y) ∈ R 2d and x = y, ρ (2) (x, y) may be viewed heuristically as the probability that there is a point of the process in a small neighbourhood around x and another point in a small neighbourhood around y. In spatial statistics, the second order properties of a point process are often studied through the pair correlation function (pcf). The pcf is defined for almost every (x, y) ∈ R 2d by g(x, y) = ρ (2) (x, y) ρ(x)ρ(y) .

In the stationary and isotropic case, g(x, y) = g 0 (r) depends only on the Euclidean distance r = |x -y|. Intuitively, g 0 (r) is the quotient of the probability that two points occur at distance r (taking into account the interaction induced by the process) and the same probability if there was no interaction. Consequently, for r > 0, a common interpretation, see for instance [START_REF] Stoyan | Stochastic Geometry and Its Applications[END_REF], is that g 0 (r) > 1 characterizes clustering at distance r while g 0 (r) < 1 characterizes repulsiveness at distance r.

Determinantal point processes (DPPs) are defined through their joint intensities. They have been introduced in their current form by Macchi in [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF] to model the position of particles that repel each other. Since our results concern only stationary DPPs, we restrict the definition to this subclass, which simplifies the notation.

Definition 2.2. Let

C : R d → R be a function. A point process X on R d is a stationary DPP with kernel C, in short X ∼ DP P (C), if for all k ≥ 1 its joint intensity of order k satisfies the relation ρ (k) (x 1 , . . . x k ) = det[C](x 1 , . . . , x k ) for almost every (x 1 , . . . , x k ) ∈ R dk , where [C](x 1 , . . . , x k ) denotes the matrix with entries C(x i -x j ), 1 ≤ i, j ≤ k.
It is actually possible to consider complex-valued kernels and/or non-stationary DPPs, but this is not the setting of this paper and we refer to [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF] for a review on DPPs in the general case. The existence of a DPP requires several conditions on the kernel C. Sufficient conditions in the stationary case are provided in the next proposition. They rely on the Fourier transform of C and are easy to verify in practice, unlike the general conditions for non stationary DPPs, see [START_REF] Hough | Zeros of Gaussian Analytic Functions and Determinantal Point Processes[END_REF].

We define the Fourier transform of a function h ∈ L 1 (R d ) as

F (h)(t) = R d h(x)e 2iπx•t dx, ∀t ∈ R d
and extend this definition to L 2 (R d ) by Plancherel's theorem, see [START_REF] Stein | Introduction to Fourier Analysis on Euclidean Spaces[END_REF]. We have the following existence result.

Proposition 2.3 ([22]). Assume C is a symmetric continuous real-valued function in L 2 (R d ). Then DP P (C) exists if and only if 0 ≤ F (C) ≤ 1.
In other words, by Proposition 2.3 any continuous real-valued covariance function C in L 2 (R d ) with F (C) ≤ 1 defines a DPP. Henceforth, we assume the following condition.

Condition K(ρ). A kernel C is said to verify condition K(ρ) if C is a symmetric continuous real-valued function in L 2 (R d ) with C(0) = ρ and 0 ≤ F (C) ≤ 1.
By definition, all moments of a DPP are explicitly known. In particular, assuming K(ρ), DP P (C) is stationary with intensity ρ and denoting g its pcf we have

g(x, y) = 1 - C(x -y) 2 ρ 2 (2.1) 
for almost every (x, y) ∈ R 2d . Consequently g ≤ 1, which shows that DPPs exhibit repulsiveness.

A first example of stationary DPP is the stationary Poisson process with intensity ρ, which corresponds to the kernel C(x) = ρ1 {x=0} . However, this example is very particular and represents in some sense the extreme case of a DPP without any interaction. In particular its kernel does not satisfy K(ρ) since it is not continuous. In contrast, K(ρ) is verified by numerous covariance functions , and this makes easy the definition of parametric families of DPPs, where the condition F (C) ≤ 1 implies some restrictions on the parameter space. Some examples are given in [START_REF] Lavancier | Determinantal point process models and statistical inference[END_REF] and [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF], where the stationary Poisson process appears as a degenerated case. For instance, the Gaussian kernels correspond to C(x) = ρe -|x/α| 2 , x ∈ R d , where the existence condition implies α ≤ 1/( √ πρ 1/d ). Another important example is the most repulsive stationary DPP with intensity ρ, as defined and determined in [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF]. Its kernel C is the Fourier transform of the indicator function of the Euclidean ball centered at the origin with volume ρ, which gives 

C(x) = ρΓ( d 2 + 1) π d/4 J d 2 2 √ πΓ( d 2 + 1) 1 d ρ 1 d |x| |x| d 2 , ∀x ∈ R d , ( 2 

Moment measures and Brillinger mixing

In this section, we review the definition of the cumulant and factorial cumulant moment measures of a point process X as well as their reduced version. These are at the basis of the Brillinger mixing property defined in the following. The relation with the Laplace and the probability generating functionals of X is also described. We assume that for any bounded set A, the random variable X(A) has moments of any order. This ensures that the quantities introduced in this section are well defined. Note that by definition this assumption holds true for a DPP. Further details on these topics may be found in [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF][START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF] and [START_REF] Krickeberg | Processus ponctuels en statistique[END_REF].

Definition 2.4. For k ∈ N, the cumulant of the k random variables X 1 , . . . , X k is, if it exists, Cum(X 1 , . . . , X k ) = ∂ k ∂t 1 . . . ∂t k log E exp k i=1 t i X i t 1 =...=t k =0
.

The k-th order cumulant of the random variable X is Cum k (X) := Cum(X, . . . , X).

The notion of cumulant of random variables extends to point processes as follows.

Definition 2.5. For k ∈ N, the k-th order cumulant moment measure γ k of a point process X is a locally finite signed measure on R dk defined for any bounded measurable sets

A 1 , . . . , A k in R d by γ k k i=1 A i = Cum x∈X 1 {x∈A 1 } , . . . , x∈X 1 {x∈A k } . Definition 2.6. For k ∈ N, the k-th order factorial cumulant moment measure γ [k]
of a point process with factorial moment measure α (r) , for r ≤ k, is a locally finite signed measure on R dk defined for any bounded measurable sets

A 1 , . . . , A k in R d by γ [k] k i=1 A i = k j=1 (-1) j-1 (j -1)! B 1 ,...,B j ∈P k j j i=1 α (|K i |)   k i ∈B i A k i   ,
where for all j ≤ k, P k j denote the set of all partitions of {1, . . . , k} into j non empty sets B 1 , . . . , B j .

For stationary point processes, we can define the so-called reduced version of the previous measure. Definition 2.7. For any k ≥ 2, the reduced k-th order factorial cumulant moment measure γ red

[k] of a stationary point process is a locally finite signed measure on R d(k-1) defined for any bounded measurable sets

A 1 , . . . , A k in R d by γ [k] k i=1 A i = A k γ red [k] k-1 i=1 (A i -x) dx where for i = 1, . . . , k -1, A i -x is the translation of the set A i by x.
The reduced cumulant moment measure is defined similarly. An important property of signed measures is given by the following theorem leading to the definition of the total variation of a signed measure.

Theorem 2.8 (Hahn-Jordan decomposition, see [START_REF] Dudley | Real Analysis and Probability[END_REF]Theorem 5.6.1]). For any signed measure ν, there exist two measures ν + and ν -uniquely determined by ν such that at least one of them is finite and

ν = ν + -ν -.
Definition 2.9. Let ν be a signed measure with Hahn-Jordan decomposition ν = ν +ν -. The total variation measure |ν| of ν is defined by

|ν| = ν + + ν -.
Following Theorem 2.8, for k ≥ 2, we denote the Hahn-Jordan decomposition of the reduced k-th order moment factorial cumulant measure γ red

[k] = γ +red [k] -γ -red [k] . Definition 2.10. A point process is Brillinger mixing if, for k ≥ 2, we have γ red [k] R d(k-1) < +∞.
The different moment measures of a point process X are related to the power series expansion of the Laplace and the probability generating functionals of X. Definition 2.11. The Laplace functional L X of a point process X is defined for any bounded measurable function f that vanishes outside a bounded set of R d by

L X (f ) = E e -x∈X f (x) .
Definition 2.12. The probability generating functional of a point process X is defined for any function

h from R d into [0, 1], such that 1 -h vanishes outside a bounded set, by G X (h) = E exp x∈X log h(x) .
Notice that for any function h defined as in Definition 2.12 and taking values within a closed subset of (0, 1], we have

G X (h) = L X (-log(h)).
Proposition 2.13 ([5, Section 9.5]). Let X be a point process with cumulant moment measures γ k and factorial cumulant moment measures γ [k] . Let f and η be bounded measurable functions on R d that vanish outside a bounded set. Assume further that η takes values in [0, 1]. Then, for all N ∈ N, we have the following power series expansions when s ≥ 0 and s → 0

log L X (sf ) = N j=1 (-s) j j! f (x 1 )f (x 2 ) . . . f (x j )γ j (dx 1 × dx 2 × . . . × dx j ) + o(s N ), log G X (1 -sη) = N j=1 (-s) j j! η(x 1 )η(x 2 ) . . . η(x j )γ [j] (dx 1 × dx 2 × . . . × dx j ) + o(s N ).
We conclude this section by giving the relation between γ k and γ [k] . To this end, we recall the definition of the Stirling numbers of the first and second kind and refer to [4, Section 5.2] for a detailed presentation. For x ∈ R and k ∈ N, we denote by x [k] = x(x -1) . . . (xk + 1)1 {0≤k≤x} the falling factorial of x. Assuming k ≤ x and 1 ≤ j ≤ k, the Stirling numbers of the first kind D j,k and of the second kind ∆ j,k are defined by the relations

x [k] = k j=1 (-1) k-j D j,k x j and x k = k j=1 ∆ j,k x [j] .
Proposition 2.14. Let A be a bounded set of R d . For any integer k, we have the relations

γ [k] (A k ) = k j=1 (-1) k-j D j,k γ j (A j ), γ k (A k ) = k j=1 ∆ j,k γ [j] (A j ).
Proof. We denote by L and G the Laplace and probability generating functionals of a point process with, for k ≥ 1, factorial cumulant moment and cumulant moment measures γ [k] and γ k , respectively. By Proposition 2.13, for all N ∈ N, we have as

s → 0, s ≥ 0 log G(1 -s1 {s∈A} ) = N k=1 (-s) k k! γ [k] (A k ) + o(s N ). (2.3)
As noticed after Definition 2.12,

log G(1 -s1 {s∈A} ) = log L(-log(1 -s1 {s∈A} )) = log L(-log(1 -s)1 {s∈A} ).
Since s ∼log(1s) as s → 0, we have by Proposition 2.13,

log G(1 -s1 {s∈A} ) = N j=1 [log(1 -s)] j j! γ j (A j ) + o(s N ).
By [1, (24.1.3 

.I.B)] we deduce that log G(1 -s1 {s∈A} ) = N j=1 γ j (A j ) j! j! N k=j (-1) k-j D j,k (-s) k k! + o(s N ) = N k=1 (-s) k k! k j=1 (-1) k-j D j,k γ j (A j ) + o(s N ). ( 2 

Main result

In this section, we prove in Theorem 3.2 below that a DPP with kernel verifying the condition K(ρ) is Brillinger mixing. We recall that this mixing property involves the factorial cumulant moments of the DPP. It is not easy to deduce these moments from the initial Definition 2.6. However, the power series expansion of the log-Laplace functional in Proposition 2.13, which is known for a DPP, allows us to derive a closed form expression for the factorial cumulant measures as stated in the following lemma. 

γ [k] (A k ) = (-1) k+1 (k -1)! A k C(x 2 -x 1 ) . . . C(x 1 -x k )dx 1 . . . dx k .
Proof. By [26, Proposition 3.9], we deduce that for any bounded set A ⊂ R d and s small enough,

log L X (s1 {s∈A} ) = ∞ p=1 (-s) p p! p n=1 (-1) n+1 p 1 +...+pn=p p 1 ,...,pn≥1 p! n • p 1 !p 2 ! • • • p n ! A n C(x 2 -x 1 ) . . . C(x 1 -x n )dx 1 . . . dx n .
Then, by Proposition 2.13, we have by the last equation that for all p ∈ N and any bounded set

A ⊂ R d , γ p (A p ) = p n=1 (-1) n+1 p 1 +...+pn=p p 1 ,...,pn≥1 p! n • p 1 !p 2 ! • • • p n ! A n C(x 2 -x 1 ) . . . C(x 1 -x n )dx 1 . . . dx n .
Thus, by Proposition 2.14, we have for k ≥ 2,

γ [k] (A k ) = k p=1 (-1) k-p D p,k p n=1 (-1) n+1 p 1 +...+pn=p p 1 ,...,pn≥1 p! n • p 1 !p 2 ! • • • p n ! A n C(x 2 -x 1 ) . . . C(x 1 -x n )dx 1 . . . dx n . (3.1)
By [1, (24.1.2.I.B)], it is easily seen that

p 1 +...+pn=p p 1 ,...,pn≥1 p! p 1 !p 2 ! • • • p n ! = p 1 +...+pn=p p! p 1 !p 2 ! • • • p n ! - p 1 +...+p n-1 =p p! p 1 !p 2 ! • • • p n-1 ! = n p -(n -1) p . (3.2)
By definition

k p=1 (-1) k-p D p,k (n p -(n -1) p ) = n [k] -(n -1) [k] (3.3)
which is null for every n < k. Therefore, by (3.2) and (3.3), only the terms n = k is non null in the sum (3.1).

We are now in position to prove our main result.

Theorem 3.2.

A DPP with kernel verifying the condition K(ρ), for a given ρ > 0, is Brillinger mixing.

Proof. For any t > 0, we have by taking f = 1 [-t,t] d in Definition 2.7,

γ [k] ([-t, t] dk ) = R d 1 {x∈[-t,t] d } γ red [k] [-t, t] d -x k-1 dx. By Lemma 3.1 R d 1 {x∈[-t,t] d } γ red [k] [-t, t] d -x k-1 dx = (-1) k+1 (k -1)! I k (t) (3.4) 
where for all k ≥ 1 and t > 0,

I k (t) := [-t,t] dk C(x 2 -x 1 ) . . . C(x 1 -x k )dx 1 . . . dx k .
Since C verifies the condition K(ρ), by Mercer's theorem, see also [21, Section 2.3],

we have for all t > 0,

C(x -y) = j∈N λ j (t)φ j (x)φ j (y), ∀(x, y) ∈ [-t, t] d ,
where for all j ∈ N, {φ j } j∈N is an orthonormal basis of L 2 [-t, t] d and λ j (t) belongs to [0, 1] by [START_REF] Macchi | The coincidence approach to stochastic point processes[END_REF]Theorem 4.5.5]. Then, by orthogonality of the basis {φ j } j∈N , we have for all t > 0 and k ≥ 1,

I k (t) = j∈N λ k j (t) ≤ j∈N λ j (t) = I 1 (t) (3.5) 
where

I 1 (t) = [-t,t] d ρdx = O(t d
). Thus, by Theorem 2.8, (3.4) and (3.5), there exists a constant κ > 0 and T > 0 such that for all t ≥ T ,

R d 1 {x∈[-t,t] d } γ +red [k] [-t, t] d -x k-1 -γ -red [k] [-t, t] d -x k-1 dx ≤ κt d . (3.6)
Henceforth, we assume t ≥ T . By Theorem 2.8, at least one of the measure γ +red

[k]

or γ -red

[k]
is finite. Let us assume without loss of generality that γ -red

[k]
is finite. Thus, by (3.6) and the monotonicity of the measure γ -red

[k] , we have

[-t,t] d γ +red [k] [-t, t] d -x k-1 dx ≤ t d κ + 2 d γ -red [k] ((R d ) k-1 ) , ( 3.7) 
so by positivity of

γ +red [k] , [ -t 2 , t 2 ] d γ +red [k] [-t, t] d -x k-1 dx ≤ [-t,t] d γ +red [k] [-t, t] d -x k-1 dx. (3.8)
Further, for all (x, y)

∈ -t 2 , t 2 2d , y + x ∈ [-t, t] d , so for all x ∈ -t 2 , t 2 d we have -t 2 , t 2 d ⊂ [-t, t] d -x.
It follows by (3.8) and the monotonicity of

γ +red [k] that [ -t 2 , t 2 ] d γ +red [k] -t 2 , t 2 d(k-1) dx ≤ [ -t 2 , t 2 ] d γ +red [k] [-t, t] d -x k-1 dx. ( 3.9) 
Hence by (3.7)-(3.9), we have

γ +red [k] -t 2 , t 2 d(k-1) ≤ κ + 2 d γ -red [k] (R d(k-1) ) .
By letting t tend to infinity in the last equation, we see that γ +red

[k]
is finite and so is

γ red [k]
by Definition 2.9, which concludes the proof.

Statistical applications

Many applications of the Brillinger mixing property for point processes may be found in [START_REF] Heinrich | Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes[END_REF], [START_REF] Heinrich | Central limit theorems for empirical product densities of stationary point processes. Statistical Inference for Stochastic Processes[END_REF], [START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF], [START_REF] Jolivet | Upper bound of the speed of convergence of moment density estimators for stationary point processes[END_REF] and [START_REF] Jolivet | Moment estimation for stationary point processes in R d[END_REF]. We present in this section some of these applications for DPPs. We prove in Section 4.1 a general central limit theorem for certain functionals of a DPP that are involved in the asymptotic properties of standard estimators. As an example, we apply this result to the estimator of the intensity of a DPP. Another important application concerns the asymptotic behavior of minimum contrast estimators for parametric DPPs, which will be the subject of a separate paper. In Section 4.2, we obtain the asymptotic properties of the kernel estimator of the pcf of a DPP. In particular, we prove a central limit theorem for the pointwise estimator of the pcf and for its integrated squared error.

Asymptotic behaviour of functionals of order p

We present an important consequence of the Brillinger mixing property, namely a central limit theorem for a wide class of functionals of the point process and the convergence of their moments. A first theorem was mentioned in [START_REF] Krickeberg | Processus ponctuels en statistique[END_REF] and proved in [START_REF] Jolivet | Central limit theorem and convergence of empirical processes for stationary point processes[END_REF]. We present here a more general version that yields in particular the asymptotic normality of standard statistics as the natural estimator of the intensity of the process. These results apply to stationary DPPs under condition K(ρ) as explained and exemplified at the end of this section.

For a given set D of R d , we denote by ∂D the boundary of D. 

α 1 n d ≤ |D n | ≤ α 2 n d , α 1 n d-1 ≤ H d-1 (∂D n ) ≤ α 2 n d-1
where H d-1 is the (d -1)-dimensional Hausdorff measure.

Note that any sequence of subsets as above grows to R d in all directions. For p ≥ 1, let f D be a function from R dp into R that depends on a given set D ⊂ R d and define for a stationary point process X,

N p (f D ) := (x 1 ,...,xp)∈X p f D (x 1 , . . . , x p ).
By letting the set D in the last equation be a sequence of regular subsets {D n } n∈N , we have under some suitable conditions on the function f Dn , the following central limit theorem on the sequence {N p (f Dn )} n∈N . The proof is postponed to Section 5.2. 

F from R d(p-1) into R + such that for all n ∈ N and (x 1 , . . . , x p ) ∈ R dp , |f Dn (x 1 , . . . , x p )| ≤ 1 | D n | 1 {x 1 ∈Dn} F (x 2 -x 1 , . . . , x p -x 1 ). (4.1)
Assume further that the point process X is ergodic, admits moment of any order and is Brillinger mixing in the sense of Definition 2.10. Then, for all k ≥ 2, we have

Cum k |D n |N p (f Dn ) = O |D n | 1-k 2 . (4.2)
Moreover, if there exists σ > 0 such that

Var |D n |N p (f Dn ) ----→ n→+∞ σ 2 , (4.3)
we have the convergence

|D n | [N p (f Dn ) -E (N p (f Dn ))]
distr.

----→ n→+∞ N (0, σ 2 ) (4.4)

and the convergence of all moments to the corresponding moments of N (0, σ 2 ).

By (4.2), the variance given in (4.3) is uniformly bounded with respect to n ∈ N. If D n and f Dn in (4.3) are sufficiently generic, the convergence (4.3) of the variance holds true. However, in the general case, it must be assumed. To check (4.3) in applications, it is convenient to express the variance in (4.3) in terms of the factorial cumulant moment measures of X. In appendix, we detail this expression for the important situations p = 1 and p = 2 with f Dn (x 1 , x 2 ) = 0 for x 1 = x 2 , see Lemmas 7.1, 7.2 and 7.3. Proposition 4.2 applies to stationary DPPs with kernel verifying K(ρ) provided (4.1) is verified. Indeed, Soshnikov in [START_REF] Soshnikov | Determinantal random point fields[END_REF] proved that a stationary DPP is ergodic. Moreover, a DPP admits moments of any order by definition and is Brillinger mixing under condition K(ρ) by Theorem 3.2. As a direct application when p = 1, we retrieve a result of [START_REF] Soshnikov | Gaussian limit for determinantal random point fields[END_REF] giving the asymptotic normality of the estimator of the intensity of a DPP. Corollary 4.3. Let X be a DPP with kernel verifying K(ρ) for a given ρ > 0 and {D n } n∈N be a family of regular sets. Define for all n ∈ N,

ρ n = 1 |D n | x∈X 1 {x∈Dn} . (4.5)
We have the convergence

|D n | ( ρ n -ρ) distr. ----→ n→+∞ N(0, σ 2 )
where

σ 2 = lim n→+∞ V ar |D n | ρ n = ρ -R d C(x) 2 dx.
The proof of this corollary follows by taking p = 1 and f Dn (x) = 1 |Dn| 1 {x∈Dn} in Proposition 4.2. In this case, the assumption (4.3) holds by Lemma 7.1 and a straightforward calculus.

Applications to the empirical pair correlation function.

We consider in this section the estimation of the pcf of a stationary and isotropic DPP in R d . In this setting g(x, y) = g 0 (r) depends only on the Euclidean distance r = |x -y|. Let {D n } n∈N be a sequence of regular subsets of R d in the sense of Definition 4.1, {b n } n∈N a sequence of positive real numbers, and k a function from R into R + . For n ∈ N and z ∈ R d , we denote for short D z n := D nz the translation of D n by z. For r > 0, we consider the kernel estimator of g 0 (r)

g n (r) = 1 σ d r d-1 ρ 2 n (x,y)∈X 2
x =y

1 {x∈Dn, y∈Dn} 1 b n |D n ∩ D x-y n | k r -|x -y| b n (4.6)
where ρ n is given by (4.5) and σ d = 2π d/2 Γ(d/2) denotes the surface-area of the ddimensional unit sphere. Some comments and details about this estimator may be found, for instance, in [START_REF] Møller | Statistical Inference and Simulation for Spatial Point Processes[END_REF]Section 4.3.5] or [START_REF] Heinrich | Asymptotic methods in statistics of random point processes[END_REF].

The following proposition gives the asymptotic normality of the pointwise estimator g n (r) for r > 0. Its proof, given in Section 6, is based on Proposition 4.2 and results from [START_REF] Heinrich | Central limit theorems for empirical product densities of stationary point processes. Statistical Inference for Stochastic Processes[END_REF] . Let k be a symmetric and bounded function with compact support included in [-T, T ], for a given T > 0, and R k(t)dt = 1. Let C be an isotropic twice differentiable kernel on R d \ {0} verifying K(ρ) for a given ρ > 0. Then, for all r > 0, we have the convergence

b n |D n | ( g n (r) -g 0 (r)) distr. ----→ n→+∞ N(0, τ 2 r )
where τ 2 r = 2ρ -2 g 0 (r)

σ d r d-1 R k 2 (t)dt.
In addition to the previous result, we state the asymptotic normality of the integrated squared error of the estimator ρ 2 n g n where g n is defined in (4.6). This quantity is the basis of an asymptotic goodness-of-fit test for stationary DPPs as presented in [START_REF] Heinrich | Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes[END_REF]. For all segment I ⊂ R + \ {0} and n ∈ N, denote 

ISE n (I) = I ρ 2 n g n (r) -ρ 2 g 0 (r) 2 dr.
σ d r d-1 dr R k(t) 2 dt + O (b n ) + O(|D n |b 5 n ).

If in addition b

5 n |D n | → 0 then b n |D n | (ISE n (I) -E (ISE n (I))) distr. ----→ n→+∞ N(0, τ 2 )
where τ 2 = 8ρ 4

I g 0 (r) σ d r d-1 2 dr R (k * k) 2 ( 
s)ds and * denotes the convolution product.

Proposition 4.5 is an application to the DPP's case of the results given in [START_REF] Heinrich | Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes[END_REF]. In addition to the Brillinger mixing, ensured by Theorem 3.2, and the properties of the sequence {D n } n∈N , the authors need two additional assumptions. Namely, these assumptions are the locally uniform Lipschitz continuity of the first derivative of g 0 and a second assumption related to the densities of the reduced factorial cumulant measures. By (2.1) and since C is twice differentiable on R d \{0}, the first derivative of g 0 is uniformly Lipschitz continuous on every compact sets in R + \ {0} so the first assumption holds. The second assumption is verified by Lemma 4.6 below. Consequently, Proposition 4.5 is proved by [START_REF] Heinrich | Central limit theorem for the integrated squared error of the empirical second-order product density and goodness-of-fit tests for stationary point processes[END_REF]Lemma 3.4] and [9, Theorem 3.5]. Lemma 4.6. Let be an isotropic DPP with kernel C verifying the condition K(ρ), whose reduced factorial cumulant moment measures of order 3 and 4 have densities c red [START_REF] Biscio | Quantifying repulsiveness of determinantal point processes[END_REF] and c red [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF] , respectively. For all compact set K ⊂ R d and ǫ > 0, we have

sup (u,v)∈R 2d (|u|,|v|)∈(K ⊕ǫ ) 2 c red [3] (u, v) < +∞ (4.7)
and

sup (u,v)∈R 2d (|u|,|v|)∈(K ⊕ǫ ) 2 R d c red [4] (u, w, v + w) dw < +∞, (4.8) 
where K ⊕ǫ = K + B(0, ǫ) and B(0, ǫ) is the Euclidean ball centred at 0 with radius ǫ.

Proof. By (7.2)-( 7.3) in Section 7, we have for all (u, v, w) ∈ R 3d ,

c red [3] (u, v) = 2C(u)C(v)C(v -u) and c red [4] (u, v, w) = -2 [C(u)C(v)C(u -w)C(v -w) +C(u)C(w)C(u -v)C(v -w) + C(v)C(w)C(u -v)C(u -w)] .
Notice that K ⊕ǫ is compact and since C verifies the condition K(ρ), it is continuous. Therefore, by (7.2), (4.7) holds immediately. Finally, (4.8) is verified by Cauchy-Schwarz inequality and (7.3).

5 Proof of Proposition 4.2

Complement on the moments and cumulants of a point process

We present here the necessary background to prove Proposition 4.2. Let p and k be two integers and X a point process that admits moments of any order. Consider, for 1 ≤ i ≤ k, the random variables

N p (φ i ) = (x 1 ,...,xp)∈X p φ i (x 1 , . . . , x p ) (5.1) 
where for i = 1, . . . , p, φ i is a function from R dp to R. For l, s ≤ kp , denote P kp l (resp. Q l s ) the set of all partitions of {1, . . . , kp} (resp. {1, . . . , l}) into l (resp. s) non empty sets p 1 , . . . , p l (resp. q 1 , . . . , q s ). For r = 1, . . . , s, denote β 1 , . . . , β |qr| the elements of the set q r and |q| the cardinal of a given set q. Then, as proved by Jolivet in [16, p121-122], we have

E (N p (φ 1 ) . . . N p (φ k )) = kp l=1 Π l ∈P kp l l s=1 χ l s ∈Q l s I l (Π l , χ l s ) (5.2) 
where for all l, s ≤ kp,

I l (Π l , χ l s ) = R dl l m=1 j∈pm 1 {xm=θ j } × . . . × k i=1 φ i (θ (i-1)p+1 , . . . , θ ip ) s r=1 γ |qr| (dx β 1 . . . dx β |qr | ). (5.
3)

The introduction of the term θ is not easy to understand at first sight. For the sake of clarity, we give an example for p = k = 2 and Π 2 := {p 1 , p 2 } a given partition of the set {1, 2, 3, 4} into 2 non empty sets, namely p 1 = {1, 4} and p 2 = {2, 3}. In this case, we have

k i=1 φ i (θ (i-1)p+1 , . . . , θ ip ) = φ 1 (θ 1 , θ 2 )φ 2 (θ 3 , θ 4 ).
Thus, by the last equation, we have

2 m=1 j∈pm 1 {xm=θ j } k i=1 φ i (θ (i-1)p+1 , . . . , θ ip ) = φ 1 (x 1 , x 2 )φ 2 (x 2 , x 1 )
and a similar calculus is done if, for l = 1, . . . , 4, we choose another partition Π l of {1, 2, 3, 4}. We can now describe completely Cum(N p (φ 1 ) , . . . , N p (φ k )).

Theorem 5.1 ([16]). The cumulant moment Cum(N p (φ 1 ) , . . . , N p (φ k )) is equal to the sum of integrals I l (Π l , χ l s ) in Formula (5.2) that are indecomposable, i.e. that can not be decomposed as a product of at least two integrals.

Proof of Proposition 4.2

Assuming (4.2) and (4.3), the proposition is proved by [15, 

(X + Y ) = Cum k (X) + Cum k (Y ) and the cumulant of order k of a constant is null for k ≥ 2. Consequently, for k ≥ 2, Cum k |D n | [N p (f Dn ) -E (N p (f Dn ))] = Cum k |D n |N p (f Dn ) = |D n | k 2 Cum k (N p (f Dn )) .
By Theorem 5.1, for every k ∈ N, Cum k (N p (f Dn )) is a finite sum of indecomposable integrals I l (Π l , χ l s ). Thus, it is sufficient to prove that for any k ≥ 2, each integral I l (Π l , χ l s ) = O |D n | 1-k . By (5.3) we have 1) . Since the function F is bounded and compactly supported, there exist compacts K 1 , . . . , K p-1 such that

I l (Π l , χ l s ) = R dl l m=1 j∈pm 1 {xm=θ j } k i=1 f Dn (θ (i-1)p+1 , θ (i-
|I l (Π l , χ l s )| ≤ 1 | D n | k R dl l m=1 j∈pm 1 {xm=θ j } k i=1 1 {θ (i-1)p+1 ∈Dn} × F θ (i-1)p+2 -θ (i-1)p+1 , . . . , θ ip -θ (i-1)p+1 s r=1 |γ qr | (dx β 1 . . . dx β |qr | ). (5.5) Let ||F || ∞ denotes the supremum of F on R d(p-
∀(x 1 , . . . , x p-1 ) ∈ (R d ) p-1 , F (x 1 , . . . , x p-1 ) ≤ ||F || ∞ 1 {x 1 ∈K 1 } . . . 1 {x p-1 ∈K p-1 } .
Then, we deduce from (5.5) that The proof is based on the following lemmas. 

|I l (Π l , χ l s )| ≤ ||F || ∞ | D n | k R dl l m=1 j∈pm 1 {xm=θ j } k i=1 1 {θ (i-
n |D n | ρ 2 n g n (r) -E( ρ 2 n g n (r))
distr.

----→ n→+∞ N(0, κ 2 )

where κ 2 = 2ρ 2 g 0 (r)

σ d r d-1 R k 2 (t)dt.
Lemma 6.2. Under the same assumptions as in Proposition 4.5, for all segment I ⊂ R + \ {0}, there exists a constant M ≥ 0 such that

sup r∈I E ρ 2 n g n (r) -ρ 2 g 0 (r) ≤ b 2 n Mρ 2 R t 2 |k(t)|dt.
The proofs of Lemmas 6.1-6.2 are postponed to the end of this section. Let us now prove Proposition 4.4. For all n ∈ N and r > 0, we have

ρ 2 n b n |D n |( g n (r) -g 0 (r)) = A n + B n + C n (6.1)
where

A n = b n |D n | ρ 2 n g n (r) -E( ρ 2 n g n (r)) B n = b n |D n | E( ρ 2 n g n (r)) -ρ 2 g 0 (r) C n = b n |D n |g 0 (r) ρ 2 -ρ 2 n .
By Lemma 6.1 we have the convergence

A n distr.
----→ Finally, by inserting (6.2)-(6.4) in (6.1), the proposition is proved by Slutsky's theorem and the almost sure convergence of ρ 2 n to ρ 2 .

Proof of Lemma 6.1

We need the following result. Define for all n ∈ N and (

x 1 , x 2 ) ∈ R 2d , f Dn (x 1 , x 2 ) = 1 {x 1 ∈Dn, x 2 ∈Dn} 1 |D n ∩ D x 1 -x 2 n | k r -|x 1 -x 2 | b n . Notice by (4.6) that b n σ d r d-1 ρ 2 n g n (r) = (x 1 ,x 2 )∈X 2 x 1 =x 2 f Dn (x 1 , x 2 ). (6.5)
The support of k is included in [-T, T ] so for any (

x 1 , x 2 ) ∈ R 2d , k r -|x 1 -x 2 | b n 1 {x 2 ∈Dn} ≤ k r -|x 1 -x 2 | b n 1 {|x 1 -x 2 |<r+T bn} ≤ k r -|x 1 -x 2 | b n 1 {|x 1 -x 2 |<r+T }
as soon as b n < 1 which we assume without loss of generality since {b n } n∈N tends to 0. Then, by Lemma 6.3 and since k is bounded, there exists M > 0 such that for all n ∈ N,

|f Dn (x 1 , x 2 )| ≤ M1 {x 1 ∈Dn} |D ⊖(r+T ) n | 1 {|x 1 -x 2 |≤r+T } .
Therefore, by (4.2) in Proposition 4.2 and (6.5), we have for all k ≥ 3,

Cum k |D n |b n σ d r d-1 ρ 2 n g n (r) = O(|D n | 1-k 2 )
whereby for all k ≥ 3,

Cum k b n |D n | ρ 2 n g n (r) = O b -k/2 n |D n | 1-k 2 which tends to 0 when n goes to infinity since b 3 n |D n | → ∞. Further, the conver- gences of Cum k b n |D n | ρ 2
n g n (r) for k = 1, 2 are proved in [START_REF] Heinrich | Central limit theorems for empirical product densities of stationary point processes. Statistical Inference for Stochastic Processes[END_REF] under conditions that we have already verified after Proposition 4.5. Finally, Lemma 6.1 is proved by the cumulant method, see [15, Theorem 1].

Proof of Lemma 6.2

By (4.6) and Defintion 2.1, we have for all n ∈ N and r ∈ I,

E ρ 2 n g n (r) = ρ 2 σ d r d-1 b n R d R d 1 {x∈Dn,y∈Dn} D n ∩ D x-y n k r -|x -y| b n ρ (2) (x, y) ρ 2 dxdy = ρ 2 σ d r d-1 b n R d R d 1 {x∈Dn,y∈Dn} D n ∩ D x-y n k r -|x -y| b n g 0 (|x -y|)dxdy.
To shorten, denote k bn (.) = 

(r) = ρ 2 σ d r d-1 R d R d 1 {y∈D z n ∩Dn} |D n ∩ D z n | k bn (r -|z|)g 0 (|z|)dzdy = ρ 2 σ d r d-1 R d k bn (r -|z|)g 0 (|z|)dz.
Converting this integral into polar coordinates and by symmetry of k, we get

E ρ 2 n g n (r) = ρ 2 +∞ 0 t r d-1 k bn (r -t)g 0 (t)dt = ρ 2 +∞ -r bn k (u) r + ub n r d-1 g 0 (r + ub n )du.
For all n large enough, we have for all r ∈ I that t bn ≥ T , hence

E ρ 2 n g n (r) = ρ 2 T -T k (u) r + ub n r d-1 g 0 (r + ub n )du.
Assume that I writes [r min , r max ] for r max > r min > 0 and define for s

∈ R + , f (s) := s r d-1 g 0 (s). Notice that I ⊕T bn := [r min -T b n , r max + T b n ] ⊂ R + \ {0}
as soon as n is large enough which we assume without loss of generality. Since g 0 (.) is of class C 2 on I ⊕T bn , so is f (.). Thus by Taylor-Lagrange expansion, we have

E ρ 2 n g n (r) = ρ 2 T -T k (u) f (r) + f ′ (r)ub n + r+ubn r f ′′ (s)(ub n + r -s)ds du. (6.6) Since k is symmetric, we have T -T uk(u)du = 0. Moreover, sup s∈I ⊕T bn |f ′′ (s)| ≤ 1 r d-1 min sup s∈I ⊕T bn s d-1 g 0 (s) ′′ ,
showing that f ′′ (.) is uniformly bounded on I ⊕T bn by a constant M. Further, for all n ∈ N and s ∈

[r, r + ub n ], |ub n + r -s| ≤ |ub n |. Finally, since T -T k(u)du = 1, by (6.6), we obtain for n large enough, E ρ 2 n g n (r) -ρ 2 g 0 (r) ≤ b 2 n Mρ 2 R u 2 |k(u)|du, ∀r ∈ I.

Appendix

We gather here some results useful to compute the asymptotic variance in Proposition 4.2 and Corollary 4.3.

Let X a stationary point process on R d and c red [START_REF] Biscio | Asymptotic properties of minimum contrast estimators for determinantal point processes[END_REF] , c red [3] and c red [START_REF] Daley | An Introduction to the Theory of Point Processes[END_REF] the densities of its factorial cumulant moment measures of order 2, 3 and 4, respectively, assuming they exist. If X is a DPP with kernel C verifying the condition K(ρ), for a given ρ > 0, then we deduce from Definitions 2.2 and 2.6 that for all (u, v, w) ∈ R 3d , c red [START_REF] Biscio | Asymptotic properties of minimum contrast estimators for determinantal point processes[END_REF] (u) = -C 2 (u), (7.1) Then, denoting ρ (2) the density of the second order factorial moment measure, we have by Definitions 2.   = f (x, y)h(u) ρ (3) (x, y, u)ρρ (2) (x, y) dxdydu + f (x, y)(h(x) + h(y))ρ (2) (x, y)dxdy.

c red [3] (u, v) = 2 C(u)C(v)C(v -u), ( 7 
Finally, the proof is concluded by [4, Corollary 5.2 VII] and Definition 2.7.

. 2 ) where J d 2 denotes

 22 the Bessel function of the first kind of order d 2 . Some examples of realisations of DPPs are given in Figure 1.

Figure 1 :

 1 Figure 1: From left to right, letting the intensity ρ = 100, realizations on [0, 1] 2 of a stationary Poisson process, a DPP with a Gaussian kernel and the maximal possible choice for the range parameter α (α = 0.056), a DPP with kernel (2.2).

Lemma 3 . 1 .

 31 Consider a DPP with kernel C verifying condition K(ρ) and, for k ∈ N, denote its k-th factorial cumulant moment measure by γ [k] . For every measurable bounded set A in R d and k ≥ 2, we have

Proposition 4 . 2 .

 42 Let {D n } n∈N and { D n } n∈N be two sequences of regular sets in the sense of Definition 4.1 such that | Dn| |Dn| n→+∞ ----→ κ for a given κ > 0. Assume that there exists a bounded and compactly supported function

Proposition 4 . 4 .

 44 Let {D n } n∈N be a regular sequence of subsets of R d . Assume that the sequence {b n } n∈N is such that b 3 n |D n | → +∞ and b 5 n |D n | → 0.

Proposition 4 . 5 .

 45 Let {D n } n∈N be a regular sequence of subsets of R d . Assume that the sequence {b n } n∈N is such that b n → 0 and b n |D n | → +∞. Let k be a symmetric and bounded function with compact support included in [-T, T ], for a given T > 0, and R k(t)dt = 1. Let C be an isotropic twice differentiable kernel on R d \ {0} verifying K(ρ) for a given ρ > 0. Then, for all segment I ⊂ R + \ {0}, we have as n tends to infinity, b n |D n |E (ISE n (I)) = 2ρ 2 I g 0 (r)

1 )p+1 ∈Dn} p- 1 η=1 1 { 1 {

 1111 (θ (i-1)p+η+1 -θ (i-1)p+1 )∈Kη} s r=1 |γ qr |(dx β 1 . . . dx β |qr | ). (5.6) Moreover, as already proved in [16, Section 4, Theorem 3], we have as n tends to infinity, (θ (i-1)p+η+1 -θ (i-1)p+1 )∈Kη} s r=1 |γ qr |(dx β 1 . . . dx β |qr | ) = O (|D n |) . (5.7) Since | Dn| |Dn| ----→ n→+∞ κ, the right hand term of (5.6) is, by (5.7), asymptotically of order |D n | 1-k , which ends the proof. 6 Proof of Proposition 4.4
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 61 Let {D n } n∈N be a regular sequence of subsets of R d . Assume that the sequence {b n } n∈N is such that b n → 0 and b 3 n |D n | → +∞. Let k be a symmetric and bounded function with compact support included in [-T, T ], for a given T > 0, and R k(t)dt = 1. Let C be an isotropic twice differentiable kernel on R d \ {0} verifying K(ρ) for a given ρ > 0. Then, for all r > 0, we have the convergence b

b 5 n

 5 |D n | tends to 0 as n tends to infinity, we have by Lemma 6.2, 4.3 and the delta method, we know that |D n |(ρ 2 nρ 2 ) converges in distribution. Since b n → 0, we deduce that

Lemma 6 . 3 .

 63 Let r > 0 and D a subset of R d such that the Euclidean ball B(0, r) is included in D. Then, for all x ∈ B(0, r), we have D ⊖r ⊂ D ∩ D x . Proof of Lemma 6.3. By definition, D ∩ D x = {u ∈ D, u + x ∈ D} and D ⊖r = {u ∈ D, ∀v ∈ B(0, r), u + v ∈ D} . Since x ∈ B(0, r), we have the inclusion D ⊖r ⊂ D ∩ D x .

.2) c red [ 4 ]. 3 ) 7 . 1 . 2 =

 43712 (u, v, w) = -2 C(u)C(v)C(uw)C(vw) + C(u)C(w)C(uv)C(vw) + C(v)C(w)C(uv)C(uw) . (7Lemma Let f be a function from R d into R that is bounded, measurable and compactly supported. Then we haveVar x∈X f (x) = R 2d f (x)f (x + y)c red [2] (y)dxdy + ρ R d f 2 (x)dx. Proof. Notice that x∈X f (x) (x,y)∈X 2 f (x)f (y) + x∈X f 2 (x).

ffLemma 7 . 2 .f 2 2 R 2d f 2 2 R 2 R 2 f 2 4 fLemma 7 . 3 .f 2 R

 7222222224732 (x)f (y) ρ(2) (x, y)ρ 2 dxdy + ρ (x)f (y)c[START_REF] Biscio | Asymptotic properties of minimum contrast estimators for determinantal point processes[END_REF] (x, y)dxdy + ρR d f 2 (x)dx.Finally, by Definition 2.7, we haveVar x∈X f (x) = R 2d f (x)f (x + y)c red [2] (y)dxdy + ρ R d f 2 (x)dx.Let f be a function from R 2d into R that is bounded, measurable and compactly supported. Then, we haveVar (x, x + y) + f (x, x + y)f (x + y, x) c red [2] (y)dxdy + ρ (x, y) + f (x, y)f (y, x) dxdy + R 3d [f (x, x + y) + f (x + y, x)] [f (x + y, x + u) + f (x + u, x + y)] c red [3] (y, u)dxdydu + 2ρ R 3d [f (x, y) + f (y, x)] [f (y, y + u) + f (y + u, y)] c red [2] (u)dxdydu + ρ R 3d [f (x, y) + f (y, x)] [f (y, x + u) + f (x + u, y)] c red [2] (u)dxdydu + ρ 3 R 3d [f (x, y) + f (y, x)] [f (y, u) + f (u, y)] dxdydu + R 4d f (x, x + y)f (x + u, x + v)c red [4] (y, u, v)dxdydudv + 4ρ R 4d f (x, y)f (y + u, y + v)c red [3] (u, v)dxdydudv + 4d f (x, y)f (x + u, y + v)c red [2] (u)c red [2] (v)dxdydudv + 4ρ 4d f (x, y)f (x + u, v)c red [2] (u)dxdydudv.Proof. This lemma is a generalization of[START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF] Lemma 5] for a function f non necessary symmetric. The variance is first computed with respect to the factorial moment measure by Definition 2.1. Then, the factorial moment measure is written in terms of the factorial cumulant moment measure by [4, Corollary 5.2 VII] and the result is obtained by using Definition 2.7. We refer to the proof of[START_REF] Heinrich | On estimating the asymptotic variance of stationary point processes[END_REF] Lemma 5] for the detailed calculus, the only change being the use of the following decomposition in place of the original one, (x, y) + f (x, y)f (y, x)+ = (x,y,u)∈X 3 [f (x, y) + f (y, x)] [f (y, u) + f (u, y)] (x, y)f (u, v).Let f be a function from R 2d into R that is bounded, measurable, symmetric and compactly supported. Let h be a function from R d into R that is bounded, measurable and compactly supported. Then, we haveCov (x, x + y)h(u + x)c red [3] (y, u)dxdydu + ρ R 3d f (x, y)h(u + x)c red [2] (u)dxdydu + ρ R 3d f (x, y)h(u + y)c red [2] (u)dxdydu + R 2d f (x, y + x) [h(x) + h(y + x)] cred [2] (y)dxdy + ρ 2d f (x, y) [h(x) + h(y)] dxdy. y,u)∈X 3 f (x, y)h(u) + = (x,y)∈X 2 f (x, y)(h(x) + h(y)). Then, by the last equation and Definition 2.1, we have Cov
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