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Abstract: This paper proposes a multigrid inversion framework for 
quantitative photoacoustic tomography reconstruction. The forward model 
of optical fluence distribution and the inverse problem are solved at 
multiple resolutions. A fixed-point iteration scheme is formulated for each 
resolution and used as a cost function. The simulated and experimental 
results for quantitative photoacoustic tomography reconstruction show that 
the proposed multigrid inversion can dramatically reduce the required 
number of iterations for the optimization process without loss of reliability 
in the results. 
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1. Introduction 

Quantitative photoacoustic (PA) imaging consists in producing the spatial distribution of the 
optical properties of tissue, including absorption coefficient aμ and reduced scattering 

coefficient '
sμ , from a measured absorbed energy distribution ( )mH r that can be obtained 

using conventional PA tomography [1–3]. The process can be written as: 

 ( ) ( ) ( )( )2
' '

( , )

ˆ ˆ, , ,arg min
a s

a s m a sH r C H r
μ μ

μ μ μ μ= − ⋅   

Here, '( , , )a sH rμ μ  is the forward model of absorbed energy, C is a calibration factor related 

to the acquisition system, r refers to an arbitrary point in the medium, ˆaμ and 'ˆsμ  are the 

recovered absorption and reduced scattering coefficient, respectively. 
There are two key points for quantitative PA reconstruction: (1) the forward model of 

absorbed energy to obtain '( , , )a sH rμ μ  and (2) the optimization scheme to minimize the 

errors between the absorbed energy measured and the output of the forward model of 
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absorbed energy. Usually, '( , , )a sH rμ μ  is obtained by solving the diffusion equation. 

Analytical solutions exist for simple cases [4–6], and numerical solutions are used for more 
realistic cases, using for example the finite difference method [7–9] or the finite element 
method [10–12]. The main optimization schemes used in the bibliography embrace fixed-
point iteration and gradient-based optimization [13–15]. All these inversion works were 
implemented on a fixed fine grid. Choosing a fixed fine grid can reduce the errors of the 
forward model numerical solution and enhance the resolution. However, resolving the 
forward model and the inverse problem at a fine resolution leads to high computational 
complexity and slow convergence. 

In this paper, we propose a framework of multigrid inversion for quantitative PA 
tomography reconstruction in which both the forward model of absorbed energy and the 
optimization scheme are expressed at multiple resolutions, hereafter called the “pure multigrid 
inversion algorithm.” Multigrid methods have been applied successfully to solve partial 
differential equations (PDEs) [16–18]. The obvious advantages of solving the diffusion 
equation using multigrid methods can be found and understood in associated references [16–
18]. The essential aspect of the multigrid methods is to solve a given problem using many 
discretization scales, which provides rapid convergence rates. Relatively little work has been 
done on multigrid inverse schemes. Dreyer et al. applied multigrid methods to optimization 
[19] to solve linear-like problems. However, the inverse problem in quantitative PA 
reconstruction is a nonlinear problem and therefore this work cannot be extended to solving 
the present problem. Ye et al. have proposed a multigrid algorithm for optical diffusion 
tomography [20]. Their algorithm is effective in terms of convergence speed and reliability. 
However, they did not use multigrid ideas directly and instead made a linear approximation of 
a nonlinear function using Newton’s method and then using multigrid ideas to solve the linear 
system. 

In the present pure multigrid inversion algorithm, both the forward and inverse problems 
are solved at different grid resolutions. The computation time is substantially lowered by 
reducing the required number of iterations and evaluating the forward model and optimization 
scheme at multiple resolutions. In this paper, it is assumed that the reduced scattering 
coefficient in the cost function has been known, as proposed in other studies [11,21,22]; only 
the absorption coefficient needs to be reconstructed and then the nonuniqueness problem 
existing in a single measurement can be overcome [22,23]. The reconstruction process of this 
paper can be written as: 

 ( ) ( )( )2
ˆ ,arg min

a

a m aH r C H r
μ

μ μ= − ⋅   

2. Methods and materials 

As mentioned in the introduction, the forward model of absorbed energy, coupled with an 
optimization scheme, can be used to reconstruct optical parameters. In this section, the two 
key points will be stated. The multigrid solver of the diffusion equation is used as a forward 
model, and the multigrid idea is used for optimization. 

2.1 Forward model and optimization method 

A. Outline of multigrid methods 

Multigrid methods are usually used as solvers for linear equations, like Eq. (1), usually 
representing a discretization form of a differential equation. 

 Ax b=  (1) 

The multigrid principle can be found in associated references [16–18]. In this scheme, the 
problem is solved in multiple grids with different spacing. Let x(0) denote the solution of Eq. 
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(1) at the finest grid and let x(q) be the solution at an arbitrary coarser grid, here q is a positive 
integer and (q) represents the number of grid levels . Grid spacing corresponding to the (q)th 
grid is 2q times the spacing of the finest grid. The map of the related quantity from (q)th to (q 

+ 1)th (from (q + 1)th to (q)th) is based on the linear decimation matrix, noted ( )
( )1q

qI + (linear 

interpolation matrix, noted ( )
( )

1

q

qI + ). 

The multigrid solution of Eq. (1) can be understood as multiple recursive calls to the two-
grid algorithm. Therefore, the basic principle of the two-grid algorithm is introduced first for 
(q)th and (q + 1)th grids and then the recursive procedure to be used in this paper can be 
explained. 

Suppose an approximation of a solution for (q)th grid ( )ˆ qx  has been found for Eq. (2). 

 ( ) ( ) ( )q q qA x b=  (2) 

Then the residual corresponding to ( )ˆ qx  can be expressed as ( ) ( ) ( ) ( )ˆq q q qr b A x= − . ( )ˆ qx is 

corrected by the defect correction, ( )qe , which can be obtained by solving Eq. (3) at the (q + 

1)th grid and using the linear interpolation operation, ( )
( )( ) ( 1)

1

qq q
qe I e +

+= . 

 ( )( 1) ( 1) ( 1) ( )
( )

q q q q
qA e I r+ + +=  (3) 

Thus ( )ˆ qx is improved by Eq. (4). 

 ( ) ( ) ( )ˆ ˆq q qx x e← +  (4) 
In this paper, we use the recursion known as the V-cycle multigrid [17], as shown in Fig. 

1, in which a four-level grid is used as an example to illustrate an iteration procedure. To 
implement an iteration, the V-cycle multigrid algorithm moves from fine to coarse grids (from 
grid (0) to grid (3)) by recursive calls to Eq. (2) and Eq. (3), and then backtracks to a coarse 
grid (from grid (3) to grid (0)) by recursive calls to Eq. (4). 

 

Fig. 1. An iteration procedure of the V-cycle. The grid levels are noted (0) to (3). The red line 
represents the path that the multigrid algorithm traverses. The dotted lines represent the grid 
with different spacing. 

Figure 1 shows an iteration procedure. In fact, multiple iterations that move back and forth 
from fine to coarse grids are required to obtain a solution with a certain precision, as shown in 
Fig. 2, in which the number of updates is noted by 1, 2,…. The maximum number of updates 
is usually determined by the precision required. It is noteworthy that a normal scheme obtains 
solutions only using (0)th grid in Fig. 2. 
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Fig. 2. Multiple iterations to obtain a solution. The grid levels are noted (0) to (3). The red line 
represents the multigrid algorithm recursively moving back and forth. The dotted lines 
represent the grid with different spacing. The position of each update of x(0) is noted by black 
dots along the green line with an arrow. The number of updates is noted by 1,2,…. 

B. Forward model 

The most general PDE-based model for light transport in a turbid medium is the radiative 
transfer equation (RTE) [24,25]. However, to solve the RTE, one needs to consider the 
discretization in both spatial and angular spaces. Also, by assuming that reduced scattering 
coefficients are much larger than absorption coefficients, the RTE can be reduced to the 
diffusion equation [14,26], in which one needs to consider only the discretization in the 
spatial space. Fortunately, in most human tissues, this assumption is valid [5]. 

In PA imaging, the acoustic propagation occurs on a timescale several orders of 
magnitude longer than the heat deposition. Therefore, the time-integrated absorbed power 
density (i.e., the absorbed energy density) is the quantity of interest [14]. The time-
independent diffusion equation is written as [11,27,28]: 

 ( ) ( ) (r) ( ) ( )aD r r r S rμ∇ ⋅ ∇Φ − Φ = −  (5) 

where ( )rΦ is the optical fluence at a point in medium r, ( )'
s rμ  is the reduced scattering 

coefficient, ( )a rμ is the absorption coefficient, ( ) 1
'(r) 3 (r) (r)s aD μ μ

−
 = +   is the diffusion 

coefficient and ( )S r is the source term. 

To solve the numerical solution of Eq. (5), an appropriate boundary condition is needed. 
Here, the Dirichlet boundary condition is adopted by letting the fluence be equal to zero on an 
extrapolated boundary (at a distance 2 × D from the medium boundary, here D is the diffusion 
coefficient). Once the solution of Eq. (5) ( )rΦ , is obtained, the absorbed energy can be 

determined by ( ) ( ), ( )a aH r r rμ μ= Φ . In this paper, Eq. (5) is firstly discretized using the 

finite difference method as references [7], and then ( )rΦ  is solved by combining the 

multigrid method in section A with Gauss-Seidel method [18]. 

C. Multigrid optimization 

For the sake of convenience and considering that r refers to a point of the medium, the model 
of absorbed energy is noted ( )aH μ  and the measured absorbed energy is noted mH . Then the 

essence of reconstruction solves the following equation: ( )( )m a a aH C H Cμ μ μ= ⋅ = ⋅ Φ . 

Let (0)
aμ  denote the solution of the inverse problem at the finest grid and let ( )q

aμ  be the 

solution at an arbitrary coarser grid, here q is a positive integer. Grid spacing corresponding to 
the (q)th grid is 2q times the spacing of the finest grid. 

An approximation of the solution for the (q)th grid ( )ˆ q
aμ  can be found by use of Eq. (6) 

after several iterations. 
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 ( )
( )
( )( 1) ( )

(q) (n) ( )

q
mn q

a q
a

H

C
μ

μ
+ =

⋅Φ
 (6) 

Here, n is the number of iterations. Note that (q)Φ  is to be solved by multigrid methods as 
mentioned in section A and B. The residual corresponding to ( )ˆ q

aμ can be expressed 

as, ( )( ) ( ) ( ) ( )ˆq q q q
m ar H C H μ= − ⋅ . According to multigrid idea, ( )ˆ q

aμ  is improved or corrected 

using the solution at the (q + 1)th grid in order to achieve a faster convergence. 
Let ( 1) ( 1)q q

a eμ + ++  be the exact solution at the (q + 1)th grid; then one can define the 

residual for (q + 1)th grid as, 

 ( ) ( )( )( 1) ( 1) ( 1) ( 1) ( 1) ( 1)q q q q q q
a aC H e H rμ μ+ + + + + +⋅ + − =  (7) 

If ( 1)qr +  is chosen to be the decimation of the residual of the (q)th grid, ( )
( )1( 1) ( )qq q
qr I r++ = , 

then ( )( )( 1) ( 1) ( ) ( ) ( )
( ) ˆq q q q q
q m ar I H C H μ+ += − ⋅ , and one can obtain Eq. (8) from Eq. (7). 

 ( ) ( ) ( )( )( 1) ( 1) ( ) ( 1) ( 1) ( 1) ( ) ( 1) ( ) ( ) ( )
( ) ( ) ( ) ( )ˆ ˆ ˆq q q q q q q q q q q
q a q a q m aC H I e C H I I H C Hμ μ μ+ + + + + +⋅ + = ⋅ + − ⋅ (8) 

Letting 

 ( 1) ( 1) ( ) ( 1)
( ) ˆq q q q

a q aI eμ μ+ + += +  (9) 

one can obtain Eq. (10) from Eq. (8) and Eq. (9), 

 
( ) ( )( )

( )
( 1) ( 1) ( ) ( 1) ( ) ( ) ( )

( ) ( ) ( )( 1) ( 1)

(q 1) (n) ( 1)

ˆ ˆq q q q q q q
q a q m an q

a q
a

C H I I H C H

C

μ μ
μ

μ

+ + +

+ +
+ +

⋅ + − ⋅
=

⋅Φ
 (10) 

Here, n is the number of iterations. It is noteworthy that (q 1)+Φ , (q 1)H + and (q)H  are to be 
solved by multigrid methods as mentioned in section A and B. The solution for ( 1)q

aμ + , noted 

by ( 1)ˆ q
aμ + , can be found using Eq. (10) after several iterations. Then, according to Eq. (9) and 

multigrid idea, one can obtain ( 1) ( 1) ( 1) ( )
( )ˆ ˆq q q q

a q ae Iμ μ+ + += −  and 

 ( )( ) ( ) ( ) ( 1) ( 1) ( )
( 1) ( )ˆ ˆ ˆ ˆq q q q q q

a a q a q aI Iμ μ μ μ+ +
+← + −  (11) 

Multigrid optimization can be implemented by recursively applying Eq. (6), Eq. (10) and 
Eq. (11). The recursive process was explained in section A. 

In the following simulations and experiments, Eq. (12) is used to measure the residual of 
the recovered solution. 

 
ˆ( )m a

m

H C H
E

H

μ− ⋅
=  (12) 

2.2 Simulation and experimental tests 

The proposed algorithm described above was first validated with a 2D numerical phantom. 
The geometry is shown in Fig. 3(a) where three circular inhomogeneities (dark red discs) 
were embedded in an otherwise homogeneous medium (5 × 5 cm2) and a wide light beam (red 
arrows) was incident on the medium from the top forming an illumination pattern 5 cm in 
diameter (pink disc). This geometry was used to simulate a horizontal slice with a depth 
greater than '1 sμ  from the top of phantom in which three parallel cylindrical inhomogeneities 
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are embedded in an otherwise homogeneous medium. Figure 3(b) shows the relative positions 
of inhomogeneities that are noted by c1, c2 and c3. The parameters of the inhomogeneities are 
shown in Table 1. The reduced scattering and absorption coefficient were 10 cm−1 and 0.1cm−1 
in the background, respectively. Figure 3(c) shows the absorbed energy distribution that was 
produced by NIRFAST [29,30] for steady-state case, the distance between nodes was taken as 
0.05 cm. In practice, one can obtain the absorbed energy from a conventional PA 
reconstruction. Considering the position of absorbers, the absorbed energy distribution 
corresponding to the area [−1 cm, 1 cm ] × [−1 cm, 1 cm ] was used as testing data, as shown 
in Fig. 3(c). c3 has the same absorption coefficient as the background. Thus, c3 is not clear in 
Fig. 3(c). 

 

Fig. 3. The geometry and simulated absorbed energy. (a) The geometry. (b) Relative positions 
of inhomogeneities, c1, c2 and c3. (c) The absorbed energy distribution produced by 
NIRFAST. 

Table 1. Parameters of the numerical phantom 

Inhomogeneity Position (x,y) Radius(cm) Absorption(cm-1) Scattering(cm-1) 

C1 (−0.5, −0.1) 0.2 0.2 10 

C2 (0.25, 0.25) 0.2 0.2 20 

C3 (0.5, −0.5) 0.2 0.1 20 

The number of grid levels was taken as 2 (the number of grid levels will be discussed 
below), and the absorption coefficient was recovered with the multigrid scheme and the fixed 
grid method using a constant absorption coefficient, 0.05 cm-1. The recovered results were 
compared, as shown in Fig. 4, where Fig. 4(A) shows the recovered reconstruction map. Close 
agreement between the true and recovered absorption coefficient in Fig. 4(B) and in Fig. 4(C) 
indicates that the multigrid algorithm can be used to reconstruct the absorption coefficient as a 
normal scheme (based on the fixed grid). Figure 4(E) and Fig. 4(F) show the convergence of 
the residual, which has been defined in Eq. (12) for the multigrid inversion algorithm and the 
fixed grid algorithm, as a function of the number of iterations and the CPU time, respectively. 
The multigrid algorithm reduced the number of required iterations substantially. In this 
simulation example, the number of iterations for the multigrid approach was approximately 
half the number for the fixed grid algorithm. The multigrid algorithm was ~1.7 times faster 
than the fixed algorithm. In this simulation, Eq. (13) was used as a stop condition of the 
iteration process in the multigrid and fixed grid algorithm. Here, nE  is the residual of the nth 
iteration. 

 
1

1
0.1

n n

n

E E

E

−

−

−
<  (13) 
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Fig. 4. Simulation tests of quantitative reconstruction of the absorption coefficient using the 
fixed grid and multigrid algorithm. (A) Recovered absorption coefficient. True (black line) and 
recovered absorption coefficient profile (red and green lines) plotted along the lines x = −0.5 
cm (B), x = 0.25 cm (C) and x = 0.5 cm (D). The curves of relative errors versus the number of 
iterations (E) and CPU time (F) for the multigrid and fixed grid algorithms. 

The reconstruction algorithm described above was also tested using experimental data. 
The corresponding experimental system has been given in previous papers [13]. Briefly, a 
pulsed light beam emitted by a Nd:YAG laser (wavelength: 532 nm, pulse duration: 6 ns) was 
sent to the phantom. The light beam was incident on the phantom from the top, as shown in 
Fig. 5. The incident laser beam diameter was 5.0 cm at the phantom surface. An ultrasound 
transducer (central frequency, 1 MHz) and the phantom were immersed in a water tank. The 
transducer was rotated relative to the center of the tank. The right part of Fig. 5 shows the top-
view photograph of the phantom where three cylindrical inclusions were embedded in an 
otherwise homogeneous medium. The background phantom had 10.1a cmμ −=  and 

' 110s cmμ −= while the top left target had 10.2a cmμ −=  and ' 110s cmμ −= , the top right target 

had 10.2a cmμ −= and ' 120s cmμ −= , and the bottom right target had 10.1a cmμ −= and 
' 120s cmμ −= . 

 

Fig. 5. Schematic of experimental setup (left) and top-view photograph of the phantom (right). 
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3. Experimental results and discussion 

Figure 6 shows the absorbed energy recovered from the acquired signals using the time 
reversal algorithm [31,32]. The calibration factor (C) was determined by dividing the mean 
value of Hm by the mean value of H in the area [−1 cm, 1 cm ] × [−1 cm, 1 cm ], as shown in 
Fig. 6. H was obtained by calculating the absorbed energy with the forward models used in 
the optimization scheme for the experimental phantom. Figure 7(B) and Fig. 7(C) state that 
the multigrid scheme can be used to reconstruct the absorption coefficient as the normal 
scheme (based on a fixed grid). The number of grid levels was also taken as 2 (the number of 
grid levels will be discussed below). Figure 7(E) and Fig. 7(F) show the convergence of the 
residual for the multigrid inversion algorithm and the fixed grid algorithm, as a function of the 
number of iterations and CPU time, respectively. The multigrid algorithm also substantially 
reduced the number of iterations required, the multigrid algorithm took approximately half the 
iterations as the fixed grid algorithm under adopting two grid levels. The per-iteration times of 
the multigrid method were longer than the fixed grid algorithm: the faster convergence of the 
multigrid algorithm results from the many fewer iterations required. Finally, the multigrid 
algorithm was approximately 1.6 times faster than the fixed algorithm to meet the condition 
expressed in Eq. (13). 

Theoretically, the greater the number of grid levels is, the faster the convergence is, as 
shown in Fig. 8(A). However, the limit of grid levels is determined by the finest grid. These 
curves shown in Fig. 8 were obtained with the data used in the simulation test. For 
experimental data, one can obtain a set of similar curves. Figure 8(B) shows six grid levels 
and took three times less time than the fixed algorithm to meet the condition expressed in Eq. 
(13). Besides the number of grid levels, the recursive form is another key point for multigrid 
methods. In this paper, we used the V-cycle form, as shown in Fig. 1, one can use other 
recursive forms, such as W-cycle [18]. 

Both the simulation and experimental results show that the proposed algorithm can be 
used to recover the absorption coefficient distribution. Although the recovered results shown 
in the experiments and simulations were based on the data produced by a single optical 
wavelength, the extension of the method to multiple wavelengths may allow access to 
imaging physiological parameters such as the total hemoglobin concentration and oxygen 
saturation (SO2). The authors believe that the advantages of the multigrid algorithm would 
also be relevant for working with multiple wavelengths. 

 

Fig. 6. Recovered absorbed energy distribution corresponding to the area [−1 cm, 1 cm ] × [−1 
cm, 1 cm ]. 
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Fig. 7. Experimental validation of quantitative reconstruction of the absorption coefficient 
using the fixed grid and multigrid algorithm. (A) Recovered absorption coefficient. True (black 
line) and recovered absorption coefficient profile (red and green lines) plotted along the lines x 
= −0.5 cm (B), x = 0.25 cm (C) and x = 0.5 cm (D). The curves of relative errors versus the 
number of iterations (E) and CPU time (F) for the multigrid and fixed grid algorithm. 

 

Fig. 8. Comparison of the convergence speed of multigrid-based algorithms with different 
numbers of grid levels. 

It is also noteworthy that the proposed method can be easily extended into 3D 
applications, though the simulation and experimental results are obtained for 2D cases. This is 
due to the fact that all the equations in this paper can be easily extended into 3D cases. 

The last comment is about the absorbed energy, shown in Fig. 6, which was obtained 
using the time reversal algorithm with a constant sound velocity. For targets embedded in 
acoustically heterogeneous medium, one should select other algorithms that can take spatially 
varying sound velocity into account. 

In summary, we developed a quantitative photoacoustic tomography reconstruction 
algorithm in which both the forward model and the inverse scheme are solved by a method 
based on a multigrid idea. This scheme can improve the efficiency of the algorithm since 
fewer iterations are required compared with the algorithm based on a single fixed grid. The 

#236030 Received 11 Mar 2015; revised 8 May 2015; accepted 3 Jun 2015; published 12 Jun 2015 
(C) 2015 OSA 1 Jul 2015 | Vol. 6, No. 7 | DOI:10.1364/BOE.6.002424 | BIOMEDICAL OPTICS EXPRESS 2433 



simulation and experimental results show that the multigrid inversion scheme is more 
efficient than the normal scheme and can obtain a reliable result that has the same precision as 
with the fixed grid algorithm. 
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