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Image–based control relying on conic curves foliation
for passing through a gate

Paolo Salaris, Christian Vassallo, Philippe Souères and Jean-Paul Laumond

Abstract— This paper presents a geometric approach to the
problem of designing visual feedback control laws to steer a
nonholonomic vehicle, equipped with a fixed monocular camera,
through a gate. The originality of our approach is to introduce
and exploit the natural geometry induced by the presence of a
gate in the environment, e.g. bundle of hyperbolae, ellipses and
circles, providing stabilizing feedback control laws that steer the
vehicle through the middle of the gate. Moreover, using visual
servoing we prove that this geometry can be measured directly
in the camera image plane. As a consequence, we provide
an image-based control scheme, avoiding the use of a state
observer. Simulations in a realistic scenario and experiments
are provided to show the effectiveness of our feedback control
laws.

I. INTRODUCTION

This paper provides a solution to the problem of steering
a nonholonomic vehicle through a gate or a door by using
visual information coming from a fixed on–board camera. In
mobile robotics, steering a vehicle towards a door, is a basic
problem widely addressed in the literature. For example,
in [1] door crossing is solved combining vision and ultrasonic
sensor information. A similar problem has been solved in [2]
for a large indoor surveillance robot equipped with a Kinect
while crossing narrow doors. After detecting and locating the
door, the robot is steered through it by a nonlinear adaptive
controller. In [3] a solution to the crossing a door problem
in unknown environment is proposed. The problem is solved
by a dynamic path planning algorithm implementation based
on successive frontier points determination and an adaptive
tracking control law. A sensor based algorithm for guiding
a wheelchair through a doorway has been proposed also
in [4]. The controller uses a camera and a laser range
finder to perform the navigation. The problem of limited
Field–Of–View (FOV) constraints is also taken into account.
In [5] the same problem is solved by dynamically generating
Bézier-curve based trajectories, while in [6] the door crossing
problem in unknown environment for a wheelchair has been
solved by a dynamic path planning algorithm based on
successive points determination.

The approach used in this paper is quite different from
previous ones. Indeed, the main objective is to take benefits
from the geometry that naturally emerges from the problem
statement. In the plane of the robot motion, the door can be
represented by two points: the feet of its vertical supports.
The originality of our approach is to introduce coordinate
systems relative to these two points. The plane around the
door is hence foliated by using confocal (the points being
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the foci) hyperbolae and ellipses (a.k.a. elliptic coordinates
system) and confocal circles that intersect at right angles
(a.k.a. bipolar coordinates system). First, by using visual
servoing, we show that there exists a direct link between
these curves and the positions in the image plane of two
visual landmarks located on the door supports and at the
same height w.r.t. the plane of the robot motion. Second, we
provide feedback control laws based on this geometry as well
as proofs of asymptotic stability of the controlled system by
using the Lasalle-Krasowskii principle. As both coordinates
systems are immediately available in the image plane, we
basically provide a so called Image–Based control scheme
(see [7], [8]). As a consequence, neither a state observer nor
other sensors, apart from the camera, are necessary to execute
our visual servo control. As a consequence, by using elliptic
and bipolar coordinates, the vehicle is able to localize itself
w.r.t. the door.

Visual servoing techniques are often used both to drive
a robot towards a target or with respect to it, with and
without obstacles. For instance, in [9] two control strategies
based on measurements coming from a pan camera and a
2D laser range sensor for steering the vehicle towards a
target amidst obstacles has been provided. To avoid target
occlusions, the obstacles are assumed to be smaller w.r.t. the
target height. In [10] a landmark-based navigation approach
among obstacles has been developed for humanoid robots.
It integrates high-level motion planning capabilities and a
stack of feasible visual servoing tasks based on footprints
following. The motion planning is based on the shortest path
synthesis provided in [11] where the limited FOV problem
is taken into account. The FOV is also considered in [12] to
reach a surface in the state space from which the robot can
easily move towards the desired position by a straight line.
In [13], to steer a vehicle toward a target, a robust control
strategy w.r.t. uncertainty on the depth of the target points
and that takes into account the limits of actuator dynamics
and the visibility constraint has been provided.

II. PROBLEM STATEMENT

Let us consider a vehicle moving on a plane where a
right-handed reference frame 〈W 〉 is defined with origin in
Ow and axes Xw,Zw. The configuration of the vehicle is
described by q(t) = (x(t),z(t),θ(t)), where (x(t),z(t)) is the
position in 〈W 〉 of a reference point of the vehicle, and θ(t)
is the vehicle heading with respect to the Xw axis. Using that
notation and denoting ν(t) and ω(t) the forward and angular
velocities, respectively, the kinematics is ẋ

ż
θ̇

=

cosθ 0
sinθ 0

0 1

[ν

ω

]
. (1)



The vehicle is equipped with a rigidly fixed pinhole camera
with reference frame 〈C〉= {Oc,Xc,Yc,Zc} such that the op-
tical center Oc corresponds to the robot’s center [x(t),z(t)]T
and the optical axis Zc is aligned with the robot’s forward
direction (see Fig. 1).

The main objective of this paper is to steer this non-
holonomic vehicle through a door by using measurements
coming from the on–board camera. The door is represented
by two visual landmarks that are located on its right and left
supports and denoted by FL and FR (superscripts R and L
indicate the “Right” and “Left” supports of the door). We
also assume that they are at equal height hw w.r.t. the plane
of the robot motion. Without loss of generality, we assume
that the cartesian coordinates of these two points in 〈W 〉 are
FR = (0,hw,a) and FL = (0,hw,−a), respectively.

Based on the pinhole camera model [14], the position of
the landmark in the image plane is given by

Ixi = αx

cxi
czi

, Iyi = αy
h

czi
, (2)

with i = {R,L} and where cx and cz are the coordinates
of the landmark in the camera frame 〈C〉, h is the height
of the landmark from the plane Xc × Zc, while αx and
αy are the camera intrinsic parameters, achievable by a
calibration procedure and representing the focal length of the
camera in terms of pixel dimensions in the x and y direction
respectively.

Fig. 1. Objective: to steer a vehicle through a door using only visual
measurements. The door is represented by two landmarks, FL and FR and
the vehicle, represented as a directed point, has an on-board camera and is
subject to nonholonomic constraints.

Remark 1: We assume a camera with a large FOV (as
human beings) so that the problem of keeping the landmarks
in view is alleviated. This assumption does not impact the
use of the control laws provided in next sections on a real
system where the camera has a limited FOV.

III. SOME BASIC GEOMETRY AROUND THE DOOR

In this section we describe the intrinsic geometry that
naturally emerges around the door and we show how this
geometry is useful to design a feedback control law that
steers the vehicle through it.

Referring to Fig. 1, let us assume that the forward velocity
of the vehicle is constant, e.g. ν = 1, and the angular velocity
is such that IxR(t) ≡ −IxL(t) for all t ∈ [0, T ]. In this case

the vehicle is aligned with the bisector of angle ̂FLOcFR. In
other words, the bearing angles1 αR(t) and αL(t) w.r.t. each
landmark have equal values but opposite signs. It is a well
known fact that, by moving in this way, the vehicle follows
a hyperbola, i.e. the locus of points where the absolute value
of the difference between distances to the two foci (i.e. the
projections on the motion plane of the two landmarks), is
constant.

The parametric equations of a generic hyperbola with foci
FR and FL are given by x= acosη sinhξ , z= asinη coshξ

with ξ ∈ [0,∞] and η is constant with values in [−π,π). In
the canonical form we have z2

a2 sin2 η
− x2

a2 cos2 η
= cosh2

ξ −
sinh2

ξ = 1. Hence, curves with constant η form hyperbolae.
In the special case of η ∈ {0,±π}, the hyperbola degenerates
into a straight line passing perpendicularly through the
middle of the segment between FR and FL (see Fig. 2).
Let us now consider the case in which ξ is constant and
η varies. Such curves, which are known as ellipses, can
be expressed in the canonical form as x2

a2 sinh2 ξ
+ z2

a2 cosh2 ξ
=

cos2 η + sin2
η = 1.

The bundle of hyperbolae, obtained for different values of
η and the bundle of ellipses, obtained for different values
of ξ , form an orthogonal coordinate system, a.k.a. elliptic
coordinates, in which the coordinate lines are confocal
ellipses and hyperbolae.

A. Elliptic Coordinates
Denoting by ρR =

√
(z−a)2 + x2 and ρL =

√
(z+a)2 + x2

the distance from the foci, i.e. the projections on the motion
plane of the landmarks FR and FL, respectively, the elliptic
coordinates (ξ ,η) can be expressed as

ξ = arccosh
(

ρR +ρL

2a

)
(3)

η =
π

2
− arccos

(
ρL−ρR

2a

)
(4)

Notice that, at the limit a → 0, elliptic coordinates re-
duce to polar coordinates (ρ, ψ). In particular, η → ψ

and acoshξ → ρ . This also happens when the vehicle is
sufficiently far from the door.

To complete this set of coordinates and to univocally
describe the vehicle configurations, let us introduce the angle
between the heading of the vehicle and the tangent to the
hyperbola passing through the vehicle position:

βe = arctan(tanhξ tanη)−θ +π . (5)

Notice that, βe becomes the bearing angle if a → 0.
Moreover, assuming a calibrated camera, it is possible to
determine the elliptic coordinates directly by measurements
of features in the image plane even if the height h is
unknown. The explicit expressions of the elliptic coordinates
as functions of image measurements only are not reported for
the sake of space. However, they can be simply obtained by
computing the distances ρR and ρL of the landmarks from the
vehicle and the distance a between the landmarks w.r.t. the
reference frame 〈C〉 by using (2) and then by substituting

1The bearing angle w.r.t. a target is the angle between the heading of the
robot and the direction to the target.



Fig. 2. Elliptic coordinate system. Ellipses and hyperbolae intersect
perpendicularly.

them in (3), (4) and (5). The resulting expressions do not
depend on h and hence the control laws developed in the
next section does not require a state observer, meaning that
the robot is able to localize itself w.r.t. the door by using
elliptic coordinates. In case of landmarks at different height,
the elliptic coordinates also depend on these values that,
being constants, can be considered known or estimated by
an observer.

B. Kinematic Model of the vehicle in Elliptic Coordinates

The vehicle kinematic model in elliptic coordinates ζ =
(ξ ,η ,βe), with ξ ∈ [0, ∞] and η ∈ (−π/2,π/2) is

ξ̇ =− ν cosβ secη sechξ

a
√

1+ tan2 η tanh2
ξ

η̇ =
2ν cosη coshξ (sinγ + cosγ tanη tanhξ )

a(cos(2η)+ cosh(2ξ ))

β̇e =−ω− 2ν(cosβ sechξ sinη− sinβ secη sinhξ )

a(cos(2η)+ cosh(2ξ ))
√

1+ tan2 η tanh2
ξ

(6)
and γ = βe− arctan(tanη tanhξ ).

Next section is dedicated to the design of a feedback
control law that steers the vehicle through the middle of
the door by exploiting the planar geometry that has been
previously described.

IV. FEEDBACK CONTROL LAW IN ELLIPTIC
COORDINATES

Let us consider the problem of designing a feedback
control law that steers the vehicle through the door as close
as possible to the middle. To design a such control law, let
us first consider the following change of inputs

ν = w
a
√

1+ tan2 η tanh2
ξ

secη sechξ
(7)

ω =−ωo +
2ν(cosβ sechξ sinη− sinβ secη sinhξ )

a(cos(2η)+ cosh(2ξ ))
√

1+ tan2 η tanh2
ξ

(8)

where w and ωo are new control variables. By substituting
(7) and (8) in (6) the kinematic model reduces to

ξ̇ =−wcosβe

η̇ = wsinβe

β̇e = ωo .

(9)

The objective is now to design w and ωo such that η and βe
converge to zero. Let us hence assume w = w̄ and consider
the following candidate of Lyapunov

V (η ,βe) =
1
2
(
λη

2 +β
2
e
)
,

where λ is a positive constant parameter. Its time deriva-
tive, after substituting (9), becomes V̇ (η ,βe) = w̄λη sinβe+
βeωo , and by choosing

ωo =−Kβe− w̄λη
sinβe

βe
(10)

with K > 0 a constant parameter, we obtain V̇ (η ,βe) =
−Kβ 2

e , that is negative semi-definite. However, the control
ωo is well definite and smooth everywhere. Let us define R=
{(η ,βe)|V̇ = 0}: in this case, we have that R = {(η ,βe)|βe =
0}. It is straightforward to observe that the only trajectory
of (9) with (10) in R is such that β̇e = ωo = −w̄λη = 0.
Hence, if w̄ and λ are not zero, R does not contain any
trajectory of the system, except the trivial trajectory (η ,βe)=
0. As a consequence all conditions of the local Krasowskii-
Lasalle principle are satisfied. We hence conclude that every
trajectory starting from inside a given level curve of V
that contains the origin, converges to the origin as t → ∞.
Moreover, as V is radially unbounded, we can conclude on
the global asymptotic stability of the origin.

However, the control law (10), basically solves a path fol-
lowing problem in elliptic coordinates. A similar solution can
be obtained in Cartesian coordinates to stabilize the vehicle
along the Zw axis (models (1) and (9) are very similar).
However, elliptic coordinates have some advantages: they can
be obtained directly from measurements in the image plane
(hence basically a state observer is not required) meaning
that the vehicle can localize itself w.r.t. the door. Moreover,
all hyperbolae pass through the door, hence guaranteeing that
the vehicle, starting from an appropriate configuration, passes
through it.

V. THE BUNDLE OF CIRCLES

The feedback control law provided in the previous section
is not able to steer the vehicle through the middle of the
door but only near to it. The distance between the middle of
the door and the point where the vehicle crosses the door
depends on both initial conditions and the values of the
constant parameters K and λ in (10).

In this section, we will provide a feedback control law
able to drive the vehicle exactly to the middle of the door.
In order to do that, we will start analyzing the angle between
the directions towards the two landmarks (angle α in Fig. 3)
and its first time derivative. Then, we will show how this
study brings to a particular geometry, i.e. two mutually
orthogonal bundles of circles, that can be exploited to solve



the problem at hand, overcoming all drawbacks of the control
law furnished in the previous section.

Let us start recalling that for any point Oc = (x, z) there
always exists a circle Cα passing through Oc and the
projections of landmarks FL and FR on the motion plane.
Angle α = ̂FLOcFR is constant along Cα (a.k.a. angle at
the circumference). Of course, on the contrary, for each
value α ∈ [0, π] there are two circles passing through FR

and FL and symmetric w.r.t. the Zw axis whose angle at
the circumference is α: by varying α ∈ [0,π] we obtain a
bundle of circles Cα that, with the previous defined bundle
of hyperbolae, generates a skew coordinates system. Indeed,
circles and hyperbolae do not intersect orthogonally.

The expression of α in terms of ξ and η is

α = arccos
(

1− 4cos2 η

cos(2η)+ cosh(2ξ )

)
. (11)

while its time derivative α̇ , which is not reported here for
the sake of space, assumes the maximum value when

βe = βmax =−sgn(η)arccos

( √
2cosη coshξ√

cos(2η)+ cosh(2ξ )

)
,

(12)
hence necessarily βe 6= 0. Indeed, if βe ≡ βmax the vehicle is
aligned to the perpendicular to the circle Cα passing through
the current vehicle position. Of course, this happens for all
values of α and for all points in Cα . It is well known that the
set of all possible curves orthogonal to all members of Cα

constitutes a second bundle of circles C⊥α , as shown in Fig. 3.
In other words, for any point Q ∈Cα there always exists a
circle C⊥α of C⊥α , perpendicular to Cα in Q. Moreover, C⊥α
crosses perpendicularly all circles of Cα .

Fig. 3. Bipolar coordinate system. Circles intersect perpendicularly.
Moreover, any circle of the bundle Cα is characterized by a constant angle
(named α), which is the angle at the circumference.

A. Bipolar Coordinates

The orthogonal bundles of circles previously introduced
can be regarded as an orthogonal coordinates system also
known as bipolar coordinates. The relationships between

bipolar coordinates τ and α and the Cartesian coordinates x
and z are given as

x =
asinα

coshτ− cosα
, z =

asinhτ

coshτ− cosα
,

assuming poles FR and FL on the Zw axis (2a represents the
distance between poles). Moreover, τ and α assume values
in the following ranges −∞≤ τ ≤ ∞ and 0≤ α ≤ π .

By denoting with ρR =
√
(z−a)2 + x2 and ρL =√

(z+a)2 + x2 the distance from the foci, i.e. the projections
on the motion plane of landmarks FR and FL, respectively,
we have τ = log

(
ρL
ρR

)
and α = arccos

(
ρ2

R+ρ2
L−4a2

2ρRρL

)
. From

previous equations, after some algebra, it is possible to show
that curves with constant τ are given by x2 +

(
z− a

tanhτ

)2
=

a2

sinh2 τ
, which is the equation of a circle whose center is on

the z axis with coordinates (0, a
sinhτ

) and radius R = a
|sinhτ| .

These circles have been previously denoted by C⊥α ∈ C⊥α .
On the other hand, if α is constant, we obtain curves given
by

(
x− a

tanα

)2
+ z2 = a2

sin2 α
, which is the equation of a

circle passing through the projection in the motion plane of
landmarks FR and FL, centered on the Xw axis at ( a

tanα
,0)

and radius R = a
|sinα| . These circles have been previously

denoted by Cα ∈ Cα .
To describe the position of the vehicle on the motion

plane w.r.t. the door, let us consider a slightly different pair
of coordinates, i.e. τ and α̂ = π − α . Notice that, α̂ is
the supplementary angle of the angle at the circumference.
Moreover, the middle of the door is the origin of those
coordinates. Finally, as for elliptic coordinates, to univocally
describe the vehicle configuration, let us introduce the angle
βb between the heading of the vehicle and the tangent to
the circle C⊥α passing through the vehicle position. The
expression of this angle w.r.t. α and τ and θ is

βb = arctan
(

sinα sinhτ

1− cosα coshτ

)
−θ +π . (13)

Notice that, as well as in case of the elliptic coordinates,
also the bipolar coordinates can be computed directly from
measurements of features in the image plane. The explicit
expressions are not reported for space limitations but can be
determined by following a similar procedure.

B. Kinematic model of the vehicle in bipolar coordinates
The kinematic model of the vehicle in bipolar coordinates

λ = (τ, α̂, βb) becomes

τ̇ =
ν

a
((1+ cos α̂ coshτ)sin(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))+

+cos(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))sin α̂ sinhτ)

˙̂α =
ν

a
(−cos(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))(cos α̂ coshτ +1)+

+sin α̂ sin(βb− arccot(cot α̂ cothτ + csc α̂ cschτ))sinhτ)

β̇b =−ω +
ν

a
(cos α̂ + coshτ)2(cosβb csc α̂ + cschτ sinβb)

(cos α̂− coshτ)
√

1+(cot α̂ cothτ + csc α̂ cschτ)2
.

(14)
Recalling that the maximum value ˙̂αmax of ˙̂α is obtained

along circles of C⊥α , i.e. with βb = 0, by the second equation
of (14) we have

˙̂αmax = ˙̂α
∣∣
βb=0 =−

ν(cos α̂ + coshτ)

a
. (15)



For positive values of ν , (15) is negative and is zero if
τ = 0 and α̂ = π (or α = 0), i.e. very far from the door.

VI. FEEDBACK CONTROL LAW IN BIPOLAR
COORDINATES

The main idea of designing the feedback control law in
bipolar coordinates is to define a smooth vector field E
obtained by derivation of an appropriated potential function
F . Let us hence consider the following function

F(τ, α̂) =
(−cos α̂ +K coshτ)

a
, (16)

where K is a positive constant. This function is always
positive and has a global minimum at the middle of the door,
i.e. with τ = 0 and α̂ = 0. Notice that, F is very similar
to (15). By applying the differential nabla-operator ([15]) to
the scalar function F(τ, α̂), we obtain the vector field

E(τ, α̂) = ∇F(τ, α̂) =
coshτ− cos α̂

a2

[
K sinhτ

−sin α̂

]
. (17)

Fig. 4(a) shows level curves of F(τ, α̂) as well as the
vector field. Notice that, all flow lines converge toward point
(τ, α̂) = (0,0), that, in Cartesian coordinates, corresponds to
the middle of the door. In Fig. 4(b), the same potential field
and associated vector field in Cartesian coordinates is also
reported.
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Fig. 4. Vector field obtained as the gradient of F(τ, α̂) both in bipolar
and Cartesian coordinates.

The objective is now to determine a feedback control
law that steers the vehicle along the vector field repre-
sented in Fig. 4(a) in bipolar coordinates, or represented in
Fig. 4(b) in Cartesian ones. Let φ be the angle βb when
the vehicle is aligned with the vector field at any point
(τ, α̂). The angle φ can be easily obtained from (17), φ =
−arctan2(K sinhτ, sin α̂) . Let us define the error σ = βb−φ

and force the dynamics of s to be σ̇ =−Kβ σ , Kβ > 0, by

ω = Kβ (βb−φ)+ φ̇+

+
ν

a
(cos α̂ + coshτ)2(cosβb csc α̂ + cschτ sinβb)

(cos α̂− coshτ)
√

1+(cot α̂ cothτ + csc α̂ cschτ)2
.

(18)
Once the vehicle is aligned with the vector field, it should
reach the middle of the door. To do that, let us consider the
following continuously differentiable function V in terms of
τ , α̂ and σ ,

V =
1
2
(τ2 + α̂

2 +σ
2) ,

and consider its time derivative along the trajectories of the
system. By using (18) and choosing the forward velocity as

ν = Kν(α̂ cosβb− τ sinβb) , (19)

we obtain

V̇ =−K1 (βb−φ)2− (cos α̂ + coshτ)(α̂ cosβb− τ sinβb)
2

a
≤ 0 ,

which is negative semi-definite. As the function V is positive
definite, according to the Lasalle’s invariance principle, the
trajectories of the system converge to the largest invariant
set R = {λ |V̇ (λ ) = 0}. By simple computation, R = R1∨R2
where R1 = {λ |{α̂ cosβb − τ sinβb = 0} ∧ {βb = φ}} and
R2 = {λ |{α̂ = 0,τ = 0}∧{βe = φ}}. After simple compu-
tations, we obtain that R1 = {λ |{α̂ = π}∧{τ = 0}} while
R2 = {λ |λ = 0}. It is possible to show that, if K 6= 0, R1 is not
an invariant set. Indeed, for λ = [0, π, 0]T we have ν 6= 0 and
thus the system can escape from R1. As a consequence, point
λ = (0, 0, 0) is the only invariant set and we can conclude on
the local asymptotic stability of the origin. Moreover, as the
Lyapunov function is radially unbounded, we can conclude
on the global asymptotic stability of the origin. The control
law developed in this section is hence able to steer the vehicle
exactly through the middle of the door.

VII. SIMULATIONS

In this section, simulations showing the effectiveness of
the control laws proposed in Sections IV and VI are pre-
sented. For both cases, two virtual frameworks are consid-
ered. In the first case, the robot is supposed to be inside a
room and the objective is to leave the room passing through
the door. In the second case, the robot is supposed to be in a
corridor and the objective is to enter a room passing through
the door. In both cases, the door is represented by two
3D points located in (0, 60, 40) cm and in (0, 60,−40) cm
w.r.t. a global reference frame. The 3D points of the scene
are projected in the image plane through a virtual camera.
The size of the image is 640× 480 and the characteristic
angle of the camera is almost π . Moreover, the image frames
are captured with a frequency of 15 frames per second
and different level of white gaussian noise with standard
deviation σ = 5,10,15 pixel to points in the image plane
is also added. As in this paper the camera is fixed on
the robot, it is not possible in the second scenario (see
Figs. 5(d) and 6(d)) to perform the task without loosing
at least one landmark, even if a very large Field-of-View
has been considered. For this reason, in the second scenario
we directly assume that elliptic or bipolar coordinates are
available and some white Gaussian noise, equivalent to have
a 5 pixel Gaussian noise in the image plane, is directly added
to the state variables.

In Figs. 5 and 6 few trajectories of the vehicle are shown
with and without noise for the two cases, chosen among
the several trajectories analyzed for each case. The average
error w.r.t. the middle of the door is also reported in the
caption of each picture with and without noise (εw and
εwo, respectively). The simulations show that both feedback
control laws work properly in spite of image noise. However,
the control law in bipolar coordinates seems to be more
sensitive to image noise than the control law in elliptic
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(a) σ = 5 pixel: εw = 2.09±1.53 cm
and εwo = 2.37±1.51 cm.
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(b) σ = 10 pixel: εw = 1.41±1.30 cm
and εwo = 2.37±1.43 cm.
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(c) σ = 15 pixel: εw = 0.45±1.12 cm
and εwo = 2.37±1.37 cm.
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(d) σ = 5 pixel: εw = 4.43±4.68 cm
and εwo ≈ 6.85±2.92 cm.

Fig. 5. Simulations with the feedback control law in elliptic coordinates: trajectories of the vehicle without and with white gaussian noise, continuous
and dashed lines, respectively. The vehicle leaves a room in (a), (b) and (c) and enters a room from a corridor (d), by passing through a door.

−50 0 50 100 150 200 250 300 350 400 450
−50

0

50

100

150

200

250

300

350

400

FL

FR

XW [cm]

Z W
 [c

m
]

(a) σ = 5 pixel: εw = −0.027 ±
0.016 cm and εwo = −0.0113 ±
0.0053 cm.
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(b) σ = 10 pixel: εw = −0.043 ±
0.028 cm and εwo = −0.0095 ±
0.0036 cm.
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(c) σ = 15 pixel: εw = −0.053 ±
0.040 cm and εwo = −0.0095 ±
0.0039 cm.
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(d) σ = 5 pixel: εw = 0.1± 0.33 cm
and εwo ≈ 0 cm.

Fig. 6. Simulations with the feedback control law in bipolar coordinates: trajectories of the vehicle with and without white gaussian noise, continuous
and dashed lines, respectively. The vehicle leaves a room in (a), (b) and (c) and enters a room from a corridor (d), by passing through a door.

coordinates when the vehicle is far away from the door, while
it works very well near to the door, especially while entering
a room from the corridor. This may suggest a possible
strategy: use elliptic control laws when the robot is far away
from the door and bipolar ones when it is sufficiently near
to the door or when the vehicle is very near the wall. Future
works will be dedicated to better investigate this strategy.

VIII. EXPERIMENTS

The experimental setup comprised of a Vivotek Wireless
Network Camera with Pan–Tilt (PT7137) fixed at the middle
of the wheel axel of the RobuLAB–10 mobile platform
by Robosoft. The image resolution was 640× 480 and the
camera Horizontal and vertical FOV magnitude are around
50 deg and 40 deg, respectively. Moreover, in our exper-
iments, the pan–tilt mechanism is not used. The camera
has been calibrated by using tools available in the Opencv
vision library. The result of this procedure, which cannot
be reported here for the sake of space, showed that the
camera presented radial distortions. The noise level has
been estimated to have a standard deviation σ = 0.05 pixel.
Moreover, the controller rate was around 20 Hz.

In this paper we did not consider the problem of door
detection. The door is indeed represented by two circular
landmarks at the same height from the plane of the robot
motion. The projection of the landmarks in the image plane
are detected by using tools available in the Opencv and VISP
libraries. Because of the limited FOV aperture, the robot
loses the landmarks while passing through the door. In our
experiments, the parameters in the control laws are chosen

such that the vehicle is almost aligned to the middle of the
door just before losing the landmarks. Starting from this
configuration, which is quite close to the door (depending on
the FOV magnitude), an open loop control law with ω = 0
and ν = const. is applied. Of course, other better solutions
might be used. For example, assuming the height of the
landmarks known and by using the pinhole camera model,
starting from the last available positions of the landmarks
in the image plane, a prediction of the future ones can be
obtained and used in the control laws. In Figs. 7 and 8
the trajectories of the robot starting from different initial
configurations and obtained by applying the feedback control
laws based on elliptic and bipolar coordinates, respectively,
are reported. The state variables of the robot and hence
the trajectories towards the door have been measured by
using the Motion Capture system. Of course, no information
coming from this sensor are used in the control law which
is a purely Image-Based visual servo control. Finally, the
distance between the two landmarks is 68 cm. A video of
the experiments is available (Video).

IX. CONCLUSIONS AND FUTURE WORKS

In this paper, a geometric approach to steer a robot subject
to nonholonomic constraints through a door by using visual
measurements coming from a fixed on-board monocular
camera, has been provided. Feedback control laws able to
steer the vehicle through the middle of the door by exploiting
the natural planar geometry induced by the presence of a
door in the environment have been obtained. Simulations and
experimental results have been also reported.

http://projects.laas.fr/gepetto/uploads/Members/ICRA2015_video.mp4
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(a) Vehicle trajectories.
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Fig. 7. Experimental results obtained applying the control law in elliptic coordinates. The control parameters are w = 0.0012, K = 0.7 and λ = 310.
Average linear velocity of 0.3 m/s.
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(a) Vehicle trajectories.
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Fig. 8. Experimental results obtained applying the control law in bipolar coordinates. The control parameters are K = 2, K1 = 4 and Kν = 0.15. Average
linear velocity of 0.4 m/s.

The objective of this paper has also been to furnish
an interesting base for future studies on the investigation
of human trajectories during a rest–to–rest task, i.e. from
an initial configuration to a final one. Our ultimate goal
is to characterize the role of sensory systems and of the
geometry of the environment in the shape of the trajectories
followed by human beings. From a biological point of view,
a lot of effort has been done to investigate how sensory
systems, and in particular vision, influence motion patterns
of human beings while going towards a target [16]. In
particular, when a human subject goes toward a target at
a constant velocity, it has been shown that it behaves as
a nonholonomic system: the velocity remains tangent to the
sagittal plane. A fundamental step in this view is to introduce
in the framework of this paper a pan–tilt mechanism to
take into account that humans can turn the head. This is
very important in order to accomplish the task of entering
a room from a corridor. Future work will be also to extend
the feedback control laws in presence of obstacles. Indeed,
the two landmarks representing the door can be seen as the
nearest points, in the image plane, between two obstacles.
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