
HAL Id: hal-01179780
https://hal.science/hal-01179780

Submitted on 23 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large scale MEMS robots cooperative map building
based on realistic simulation of nano-wireless

communications
Nicolas Boillot, Dominique Dhoutaut, Julien Bourgeois

To cite this version:
Nicolas Boillot, Dominique Dhoutaut, Julien Bourgeois. Large scale MEMS robots cooperative map
building based on realistic simulation of nano-wireless communications. Nano Communication Net-
works, 2015, 6 (2), pp.51-73. �10.1016/j.nancom.2015.01.004�. �hal-01179780�

https://hal.science/hal-01179780
https://hal.archives-ouvertes.fr


Large scale MEMS robots cooperative map building based on realistic simulation
of nano-wireless communications

Nicolas BOILLOT, Dominique DHOUTAUT and Julien BOURGEOIS1,1,1

Institut FEMTO-ST (UMR 6174) / Université de Franche-Comté (UFC) / Centre National de Recherche Scientifique (CNRS)
1 Cours Leprince-Ringuet - 25200 Montbéliard, FRANCE

Email : {nicolas.boillot, julien.bourgeois, dominique.dhoutaut}@femto-st.fr

Abstract

The Claytronics project has produced interesting hardware components like cylindric micro-robots called catoms and
software models to enable the concept of programmable matter. One application is the use of several catoms linked
together so that they can “walk”. These walkers can explore an area and thanks to electromagnetic wireless nano-
networks, they can communicate with each other sharing the map of the place to explore. In this paper, we study the
different parameters influencing the transmission quality of the map to a sink which uses both traditional wireless and
wireless nano-communication networks.

Keywords: Micro-robot, Claytronics, Nano-wireless, Map building, Nano-wireless simulation, Vouivre

1. Introduction

Modular robots already exist in various size and shapes, but miniaturization and Micro-Electro-Mechanical Sys-
tems (MEMS) technologies allow for even smaller robots and even larger collaborating ensembles. Communications
are central to the behavior of such ensembles, both communications between the micro devices and the macro world,
but also those between the micro robots themselves.

Within the Claytronics project [1, 2] a new type of modular MEMS robots has been designed for realizing pro-
grammable matter [3]. Each micro-robot is a cylinder called a catom (standing for Claytronics atom) that can stick to
and move around its neighbors as seen on Figure 1. An individual unit has very few functionalities but an ensemble
of catoms is able to act collectively.

Current catoms are limited to direct (by contact) communication using their surface features. This makes sense, as
an isolated catom would not be able to do much anyway (it cannot even move without help from others) and fit very
well the programmable matter paradigm. But, expanding communication range through wireless links can significantly
broaden the scope of possible applications. In previous works, we investigated such possibilities, first adding standard
CSMA/CA (Carrier Sense Multiple Access with Collision Avoidance) radio to the Claytronics simulation environment
[4] and then investigating more specific communications means, through nano-wireless (nano-antennas, terahertz band
and pulse based modulation fitting this environment), as seen in [5, 6]. Those previous works built the necessary
foundations for more complex applications.

Section 2 presents the context and is subdivided as follow : Section 2.1 recalls more precisely what Claytronics
is and how it is simulated. Section 2.2 introduces both the physical environment simulation software - DPRSim - and
the wired and wireless communication infrastructure - Vouivre. Section 2.3 first shows and discuss as the specificities
of nano-wireless communications and then presents in detail an implementation into DPRSim / Vouivre.

In section 3, a scalable application will be presented, where catoms scattered in small semi-autonomous groups,
collaboratively explore an unknown physical environment and inform a “macro” user through a data sink. This allows
a fast and detailed exploration of an unknown environment as each group of moving catoms is able to share the
map of the environment while transmitting it to the sink. This kind of application could be used in many areas. In
structural health monitoring (SHM), walkers would be able to detect very small damages in structures by comparing
the difference between the original and the current state of the structure. In a human body, they would allow detailed
monitoring of the shape a organ, for example, in the case of a cancer that would need 24/7 monitoring, it would help to

Preprint submitted to Elsevier 23 juillet 2015



understand the dynamic of the remission or development of the cancer. Multiple aspects will be considered, especially
the necessity to use nano-forwarding to cope with the limited range of the nano-transceivers, and data aggregation, to
cope with the considerable amount of data that can be exchanged when large numbers of robots are used.

Finally, detailed simulations will be conducted and discussed in section 4 where the code running on each node
will be executed individually. The network simulation will benefits from our previous works, where packet loses will
depend on the specificities of the nano-wireless channel along with the number of concurrent transmitters.

2. Context, nano-wireless and simulation environnements

2.1. The Claytronics project environment

The Claytronics project has originally been created by Intel and Carnegie Mellon University, Université de Franche-
Comté (UFC) / FEMTO-ST Institute joined the project later on. MEMS micro-robots called catoms (see simulated 3D
ones in Figure 1.a and 2D prototype on Figure 1.b) can move around or assemble to their neighbors and collaboratively
build basically any required shape. This is why they can truly be called “programmable matter”. They are covered
with structures called “features”. Those features are used as mean of both dynamic attachment (by electromagnetic or
electrostatic force [7]) and direct communication.

(a) Simulated 3D catoms

(b) Prototype (c) Actuating features to move catoms

Figure 1: Claytronics catoms

An isolated catom cannot move
by itself, but, it can by coordina-
ting the activation of its feature, it
will turn around its neighbors(s).
Figure 1.c displays 6 steps of a
rolling motion of two catoms (the
black dots shows currently activa-
ted, i.e., attracting, features). More
complex movements are possible,
but usually involve more catoms
serving as anchors and preventing
counter-reactions and movement of
both catoms. Please note that de-
pending on the distribution of the
features on their surface, catoms
may not form a regular lattice or be
aligned. Even with an appropriate
shape of the catoms, regularity is
not easy to maintain. For the sake
of simplicity, motion control algo-
rithms would tend to seek stable
and aligned formations, but this
can prove difficult in the real world,
because of the friction and the fluc-
tuations in the precision of the mo-
vements. This phenomenon should
not be neglected when later doing simulations ! In the rest of this paper we will considerate that binding 2 features of
different catoms together is an atomic and orthogonal move. As basic as it may seems, moving a catom is already a
complex problem, requiring multiple communications and coordination with one or more other catoms.

Current catoms do not possess wireless transmission capabilities. The aim of this paper is to investigate the benefits
of bringing nano-wireless to them through an application collaboratively exploring the physical environment. Because
catoms only exist at the state of a few prototypes, and because nano-wireless itself is only in its initial stages of
development, simulation is mandatory to conduct this investigation work.

2



2.2. Simulation environment

This work makes use of DPRSim as initially developed for the Claytronics project, complemented by our own
Vouivre network simulation library used for the communications.

Dynamic Physical Rendering Simulator (DPRSim) [8, 9] has been developed by Intel since 2006 for the Clay-
tronics project. This simulator is designed to support a potentially very large number (up to several millions) of
Claytronics micro-robots. DPRSim is able to simulate physics via ODE (Open Dynamics Engine, a rigid body dyna-
mic library) and to provide a 3D visualization environment via Drawstuff and OpenGL. In DPRSim, each catom is
individually represented by an object instance, and the code running on a catom is also individually instantiated. To
simulate codes running on catoms and physics, DPRSim uses a time-slicing operating mode, with an atomic duration
step (called a “tick”), and processes the whole simulation step by step.

A tick is not a divisible duration and this has many repercussions (synchronism barrier, low simulation efficiency,
etc.), especially on the messaging system.

We developed Vouivre, which has been first integrated in DPRSim but that can work now as a standalone network
simulator. It allows an adaptable trade-off between complexity and realism of the network, and is able to simulate
efficiently several simultaneous and heterogeneous timescales. It is based on discrete events simulation and can to
handle the radio channel and its concurrent accesses.

In [4], we detailed these points and also presented an extended version of DPRSim interfaced with Vouivre,
adding wireless communication capability to the simulated catoms. The radio wireless model exposed was based on
a CSMA/CA implementation using a Friis propagation model with 2.4GHz centered frequency band.

In [5, 6] we then implemented nano-communications as a pulse-based mechanism and use a dedicated modeling
of the environment to take into account the specificities of both nano-transceivers and terahertz frequency band.
Evaluations were conducted on basic test scenarios to get a better grasp of the behavior of nano-communications.

In the current paper, we keep the nano-wireless radio model but we consider a more advanced scenario where wi-
reless nano-communications between many collaborating micro-devices leads to innovative and efficient applications
at the macro level.

2.3. The nano-wireless model and its implementation

2.3.1. Specificities of electromagnetic nano-networks

1 0

Beta parameter

Figure 2: The β parameter in the TS-OOK model

Nano-wireless communications make use of nano-meter
scale antennas, and many aspects of communications are conse-
quently affected. At that scale, classical modulation schemes are
difficult to implement and pulse-based communications are pre-
ferred. Time-Spread On-Off Keying (TS-OOK) [10, 11] uses a
simple coding where the presence of a pulse carries a “1” va-
lue and its absence carries a “0”. Extremely short pulses (∼100
femtoseconds long) spread their small energy - in the order of a
picojoule - into an extremely wide channel, up to 10 THz large.

The total throughput is thus potentially extremely high, in the order of terabits/s. For a given communication,
each symbol is separated from the next by an interval orders of magnitude longer than a pulse. If T p is the duration
of a pulse and T s is the time between symbols, β (see fig 2) is the ratio T s/T p and a value of 1000 would not be
uncommon. Because of this ratio, the achievable throughput for a given transmission is also orders of magnitude lower
than the total theoretical throughput.

But a very interesting property of such a coding scheme is the ability to multiplex transmissions over time. Trans-
mitters can indeed send their symbols during the inter-symbol time of the other transmitters. Collisions may occur, but
their probability is directly dependent to the value of β and the number of concurrent transmissions. The multiplexing
capability increases with the value of β.
Of course, higher level coding schemes are required to detect and eventually correct errors.

Such a wide channel behave peculiarly compared to more common wireless technologies. In particular various
molecules in the environment will absorb parts of the spectrum while keeping others relatively untouched [12]. The
energy absorbed by the environment is radiated again and essentially acts as noise on the channel. This results into

3



equivocation. The noise on the channel rapidly increases with distance and transmission power, and rapidly surpass
the signal power at the receiver.

R2

S1

dBC

R1 S2

(a) Spatial positions

S1

S2

S1

S2

S1

S2

Sent

As 
seen 
by R1

As 
seen 
by R2

Lost 

...

...

...

...

1

0

1

1

0

0

(b) Chronogram

Figure 3: “0” symbols can be masked by “1” even if not sent at the same
time

This is happening even when no parallel trans-
mission are occurring and limits the effective com-
munication range. However communications ranging
up to tens of centimeters seems possible

Because the pulses are very short (∼100 fem-
toseconds), the propagation delay (∼3 nanoseconds
per meter) can be greater than the duration of a
pulse. Then, collisions can easily occur at receiver
side even if symbols were sent at different times. Fi-
gure 3 shows how symbols can overlap from a re-
ceiver point of view even if they were not sent at
the same time. Sender S1 sends a “1” (as a pulse)
and S2 later sends a “0” as an absence of pulse. Be-
cause receiver R1 is at the same distance from S1 and
S2, it received those symbols one after the other and
decodes them correctly. Receiver R2 is much closer
from S2 than from S1. As the propagation delay from
S1 is longer, the two symbols overlap and the “0”
from S2 is masked by the “1” from S1. Also, if the
nodes are able to move, the propagation delay will
not remain constant over time for a given communi-
cation link.

However, it is interesting to note that only in cer-
tain circumstances a symbol may be corrupted by a
collision, thus alleviating a little this problem. Only
when receiving a “0” can a node be affected by a col-
lision. If a node is currently receiving a “1”, whatever
it receives at that time from others nodes, it will still
be interpreted as a “1”. When receiving a “0”, recei-
ving other “0” will not cause a problem either. Only concurrents “1” will mask a “0” currently being received, as it
would be the case for receiver R2 for the symbol sent by S2 on Figure 3.

2.3.2. Discrete-event simulation of communications with propagation delay
Vouivre [4] is a C++ network simulation library we developed as both an extension for DPRSim and as a stan-

dalone simulator. Whereas DPRSim makes use of a time-slicing approach (time is advancing step by step, and each
duration of a step is constant), Vouivre is based on the discrete-event paradigm more commonly encountered in other
network simulators like NS3 [13], OMNeT++ [14] or OPNET [15] to cite a few. Discrete-event simulators do not
offer physics and real-world modeling like we are doing in conjunction with DPRSim : for example, mobile network
nodes are only 2D objects with no support for collision.

One of the major problem when simulating nano-networks is to provide fast simulation. As we have seen a pulse
duration in expressed in femtoseconds, so simulating few seconds of communications will require a huge number of
events.

The timescale used to represent the events occurring in nano-wireless communications has to be extremely small.
Nano-networks work in multiple THz wide bands and the duration of a TS-OOK pulse is below one picosecond.

This is not a problem for a discrete-event simulator such as Vouivre. But, the application code processing the
received messages, is executing in DPRSim and is only called at each DPRSim tick. This was causing an usually
long latency between the reception of a message and its processing. To prevent this it was necessary to reduce the
duration of a tick. As a side-effect, as DPRSim also call ODE (its physic simulation engine) between each tick to
update position and velocity, the simulation performances could have degraded a lot. To be able to correctly simulate
TS-OOK nano-communications and still have reasonably fast simulation, we decided to use a 100 picoseconds tick

4



duration as a trade-off. This duration adds a delay to the processing of each message but in most scenarios this can be
considered as harmless.

dAB

dAC

dBC

Catom A Catom B

Catom C

Figure 4: Propagation delay of electroma-
gnetic signal depends on the distance bet-
ween catoms.

We implemented new interfaces using TS-OOK over the same discrete-
event model we used in [5]. The channel model can now be changed on the
fly. In the following work, only the TS-OOK interface were used with logical
“1” being the first derivative of a 100 femtosecond long Gaussian pulse and
a duration between symbols of 5 picoseconds.

At the envisioned physical scale (nano-devices scattered over areas ran-
ging from square centimeters to square meters) and because of the extremely
small duration of the pulses, the signal propagation delay has to be taken into
account. The propagation speed is around 3 nanoseconds per meter and the
propagation delay can therefore be greater than the duration of a pulse which
can cause collisions.

Moreover, catoms are mobile objects and the distances can vary over
time.

Figure 5 shows events as they are generated when catoms represented on
Figure 4 communicate. Catoms A and B transmit information and points of
view of A, B and C are represented on Figure 5. TS-OOK uses temporal multiplexing of the radio channel such that
multiple messages can be sent at the same time. As pulses are comparatively very short compared to the time between
them, the probability of a collision is small. Moreover, as seen previously in Figure 3, only a “1” can mask a “0”. The
“1” are said to be dominant and the “0” recessive. If the symbol being received for the current packet is a “1”, other
concurrent “1” or “0” will not directly affect it. Only when receiving a “0”, if a “1” is transmitted at the same there
will be a data corruption.

Catom B : Starting to 
write «Message 2» on 

the medium.

Vouivre timeline
DPRSim interruption

Catom A is 
queueing 
«Message 

1» for 
sending.

DPRSim interruption

(External 
scheduling)

(External 
scheduling)

C start reading a message taking 
longer than remaining Tick’s time.

Message 
finally 
received 
on the 
next tick.

Message may be received or lost 
depending on the quality of the 
transmission.

Transmission 
by feature 
failed on 
Catom X.

(External 
scheduling)

Running user’s 
mailbox callbacks for 
Catom B.

Discrete 
events : 

processing 
and 

scheduling

Network 
layer and
messages 

transmission 
progress

Message 1 (receiving)

Message 1 (sending)

Catom A has 1 message to 
send ; Loading «Message 1» 

from TX spooler ;
Starting to write « Message 

1» on the medium.

Catom B is receiving 
« Message1» 

Catom A finished to 
write «Message 1».

... ...

Propagation delay 
between catoms A and C

Features of 
catoms X and 

Z are 
disconnected.

Catom C is receiving 
« Message1» 

Catom C

Catom B

Catom A

Message 2 (sending)

Message 1 (receiving)

Catom B received 
« Message1» 

Catom C received 
« Message1» 

Catom B 
finished 
to write 
«Messag

e 2».

...

Message 2 (receiving)

Message 2 (receiving)

...

dAB

dAB

dAB

dAC

dAC

dBC

Legend

Vouivre 
event

Internal 
event 

scheduling

Event 
processing

Data sending
Vouivre 

timeline is 
stalled

User event 
schedulingData receiving

Figure 5: Discrete events scheduling and consequences on the network layer

2.3.3. Simulation from receivers point of view to determine incoming message acceptance
For each receiver, a table is maintained with all incoming messages. Each receiver gets a unique table as the

received packets are affected by the propagation delay previously mentioned.

5



As previously explained, the radio channel used for nano-wireless is very peculiar. In particular, a transmitted
signal is not only impacted by a continuous attenuation with the increasing distance, but also by the noise caused
on the channel by itself and other concurrent transmissions. We have also seen that, especially when the number of
concurrent transmissions is high (from thousands to hundred of thousands), reducing the weight of the coding brings
better performances. Reducing the weight of the coding means increasing the proportion of “0” symbol (no pulse)
against the ’1’ (pulse). Even if this way of coding increases the size of the message, its ability to correctly receive the
message exceeds its drawbacks.

DPRSim is meant to simulate networks of sizes ranging from a few catoms to hundred of thousands of them.
Determining if a packet has been received correctly or nor has to be done in a practical way. We need to be able to
scale to large numbers, but still capturing the peculiar behavior of the nano-wireless radio channel.

In the programmable matter and Claytronics specific contexts, because of the application and control layers, there
will be large variations in the communication needs over time. Sometimes almost no communications are required as
the network reached a very stable state. Sometimes only a few catoms may want to transmit, and sometimes events
or user commands may trigger large and immediate urge for communications. These requirements are for example
different from those of nano-sensors networks, where the global network load is much more constant over time.

To avoid computing the propagation of each pulse we only compute changes in the number of concurrent transmis-
sions affecting the reception of an incoming packet. Those changes define one to multiple periods for this incoming
packet which are affected by a coefficient we get from a precomputed table.

Figure 6: Single-user achievable information rate in
bit/symbol as a function of the number of nano-devices
and the transmission distance. Matlab model by Jornet and
Akyildiz

The precomputed table has been generated from the statisti-
cal model of the network capacity done by Jornet and Akyildiz.
This model takes into account the number of concurrent trans-
missions along with the distance from the sender and the genera-
ted dataset is represented on Figure 6. The path-loss and noise in
the terahertz band are computed by using models introduced in
[12, 11]. A standard medium with 10% of water vapor is consi-
dered. This model takes into account the number of concurrent
transmissions along with the distance from the sender and the
generated dataset is represented on Figure 6. As the number of
catoms in the following experiments is kept relatively small (up
to a few hundreds), we did not use a variable weight coding. Ins-
tead, we used an equal probability of “0” and “1” as it is mostly
optimal for low numbers of concurrent transmission. An higher
(thousands and above) numbers would have required an adap-
tive coding, with catoms sensing the activity (or being informed
by some authority or centralized system) and choosing a more
appropriate weight.

To speedup the simulation, we only compute changes in the
number of concurrent transmissions affecting the reception of an

incoming packet. Each change is named a pivot. Each couple of pivots determines a periods in which each incoming
packet is affected by a coefficient. This coefficient is retrieved from a precomputed table generated from the statistical
model of the network capacity done by Jornet and Akyildiz. This model takes into account the number of concurrent
transmissions along with the distance from the sender. The path-loss and noise in the terahertz band are computed by
using models introduced in [12, 11]. A standard medium with 10% of water vapor is considered. This model takes into
account the number of concurrent transmissions along with the distance from the sender. We used an equal probability
of “0” and “1” but we will see in the experiment that for high (thousands and above) numbers of communicating nodes
a low-weight adaptive coding would enhance the network capacity.

Figure 7 shows the point of view - affected by the propagation delay - of a node simultaneously receiving three
messages. The impact of concurrent transmissions on the various parts of the messages has to be computed as the
average number of bits correctly received. During the first period (period A), only “message 1” is being received
and got a factor of 1 from the channel capacity table. This table takes into account the distance and the equivocation
effects of the message itself on the channel. Getting a factor of 1 is possible, but even alone on the channel, depending
on the distance it could be less. The second period (period B) has two concurrent transmissions, which get different

6



... Message 1

Message 2...

Message 3...

1 2 3 2 1

...

1.0 0.9 0.9 0.7 0.7

0.7 0.7 0.7

0.85 0.85 0.65 0.65

Bit/symbol for 
message 1,

Bits received

Numbers of 
concurrent 

senders

message 2,

message 3

0.85

A B C D EPeriod

Figure 7: Calculating the number of bits received per message by using the information rate.

coefficients because the distance to the transmitter is not the same. The third period (period C) sees more transmitters
and consequently even smaller factors. When the reception of a packet ends, a global factor for this packet is computed
proportionally from the factors of its individual periods.

For each period (computed from a couple of consecutive pivots), the information rate in bit per symbol is extracted
from the statistical MATLAB model of the network capacity done by Jornet and Akyildiz (cf. [11]). This bit informa-
tion rate is then used to compute the SCORE of the message receiving which is the average of the information rate
weighted by period lengths relatively to the whole message length.

2.3.4. Simulating redundancy
In order to reduce the number of errors, we use a MVT (Majority Vote Takers) redundancy algorithm which

increases threefold the size of the messages. When the reception of a packet ends, a correction factor computed is
applied. If a tolerance threshold is met, the message is dispatch to the mailbox of the catom. If this threshold is not
reached, the packet is lost for this receiver. But as each catom will conduct this procedure within its own environment,
the message could still be received elsewhere.

Message 1

Message 2

Message 3

Circuit 1 Circuit 2 Circuit 3

Circuit 1 Circuit 2 Circuit 3

Circuit 1 Circuit 2 Circuit 3

Message 1 R3

Message 2 R3

Message 3 R3

S1 S2 S3 S1

S1 S2 S3 S2 S1

Figure 8: Modifying the scoring system to support N-modular re-
dundancy : Redundancy circuits are shifting pivots which require
a new scoring calculation

Using TMR (Triple Modular Redundancy, cf. [16]) in
this context makes the assumption that during a commu-
nication the network condition will not vary dramatically.
This assumption ensures the equiprobability of losing a bit
during the three redundant transmissions of the message.
Having different network conditions during one message
transmission will be done in a future work.

Depending on the redundancy factor, pivots used to cal-
culate scores for incoming messages are modified. As a
consequence, the different messages are overlapping in a
different way modifying the score calculation.

Furthermore, depending on the redundancy algorithm
used and on the position of the redundancy circuits, the
ability to correct message error can also be affected. Consi-
dering these two points, it is not possible to calculate the
final score of the messages using the usual formula for N-

modular redundancy described in [17]. Indeed, these formula are using an equiprobability for all redundancy circuits
which is not the case in our situation.

7



For each redundancy factor, it is necessary to determine the probability of success of the majority vote from all
possible vote combinations. For instance, with a redundancy factor of 3 and considering Pc1, Pc2, Pc3 as individual
success vote probabilities for the 1st, 2nd and last redundancy circuit, the probability of success of the vote of the
majority circuits is given by the following formula :

Pr3 =(1 − Pc1) ∗ Pc2 ∗ Pc3

+ Pc1 ∗ (1 − Pc2) ∗ Pc3

+ Pc1 ∗ Pc2 ∗ (1 − Pc3)
+ Pc1 ∗ Pc2 ∗ Pc3

We have generated the probability of success using the same way for all the modular redundancies we have used.
On such an unfavorable environment, the probability for a symbol to be lost or corrupted is usually great. Coding

schemes adding resilience are necessary, but cannot get too complex because of limited processing power on nano-
devices. To determine whether a message with corrupted symbols can be corrected or not, a Majority Vote Takers
(MVT) algorithm [17] has been implemented.

The higher the redundancy factor is, the bigger the message size on the transmission medium will be (see Figure
8). As a consequence, it is necessary to take into account this phenomenon which shifts pivots for the score calculation
of incoming messages. Figure 8 shows the point of view of a receiver (after taking into account the propagation delay)
receiving simultaneously 3 messages without redundancy (upper part of the figure). The lower part of the figure
highlights the same situation with a redundancy factor of 3.

2.3.5. Behavior of the nano-wireless throughput

Figure 9: Average aggregated useful throughput af-
ter 200ns of simulation

To study the useful throughput related to the beta parameter, seve-
ral simulations were conducted on statics nodes in [6]. Figure 9 shows
thresholds in function of the number of concurrent senders. It is conse-
quently necessary to dynamically adapt the beta parameter when the
number of concurrent sender increases.

As explained in [6], the average number of received bits per mes-
sage, for a given receiver, is calculated using a SCORE given to each
concurrent incoming message (See Figure 7). To avoid threshold ef-
fects and to statistically smooth the results for all the simulations, a
random message acceptance decision function is used. Thus, the score
for an incoming message is processed using a probability. Messages
having high scores have better chances to be received whereas mes-
sages having low scores are likely to be lost. The information rate in
bits per symbol will change as explained in [11] depending on the num-
ber of nodes contained in the group of sender catoms. We configured
this MATLAB model for an environment compounded of air with 10%
of moisture. Three information rate matrices have been exported with
different inter-symbol durations represented by the β-parameter with values 500, 1000 and 2500

3. Cooperative map building application : objectives and algorithms

To demonstrate the capabilities and usefulness of wireless nano-communications, we present a cooperative map
building scenario. In this section we will first introduce the approach, discuss the multi-levels architecture of the
application, and finally present the selected control and communication algorithms.

3.1. A low-level motion : From catoms to walkers

Coordinating motion of catoms or ensembles of catoms is a complex problem that requires an iterative reduction
into smaller and simpler ones. We choose to simplify the main problem into two main levels :

8



Figure 10: Software driver implemented in DPRSim to control successive motions of each catom in a walker.

• Individual catom management : A seen in Section 2.1, an isolated cannot move by itself. A small group (usually at
least 3 catoms) is required. Algorithms from this level are responsible of moving a catom by managing the necessary
communications and physical interactions with its neighbors.
• Group coordination is required to coordinate a set of catoms. At the very least, the presence of others is required
for a catom to move. Catoms can communicate together through theirs features. By multi-hop routing, messages can
be relayed and we considered that each catom can discover the group to which it belongs. Each group of contiguous
catoms forms a walker. By direct wired communications, a walker can share energy, distributed CPU and memory. As
a consequence a big walker can store more map informations than a small walker.

In DPRSim, we implemented a software driver in charge of controlling the position of each catom in a walker.
Moving a walker means moving one of it component to the next feature sequence. The walking algorithm can be
viewed on Figure 10 where a first catom changes its position (steps 1 to 4) and then another one moves (steps 5 and
8), effectively progressively moving the whole group or “walker”. A leader is voted in each walker. To minimize the
stick-slip phenomena (sudden jerk forward due to friction), inertial deviations and counter-reaction, the leader will
synchronize the movement of catoms. This leader coordinates all motions inside the walker by choosing which catom
have to move and by locking others. A such semaphore is necessary because two catoms cannot move simultaneously
in a walker of 3 catoms.

Figure 11: A walker dislocation due
to a wrong next feature hop choice

Walkers may have different movements strategy related to their size. Walkers
would form a chain or “snake” instead of a pyramid. To simplify the control, each
Walker consists of 3 catoms and only one catom at a time is allowed to move.

The decision to move a catom is taken at the group level, but has been imple-
mented locally in the moving catom and in all the ones it will touch on its way to
the designated place. After each feature motion step, the moving catom will de-
termine which is the next of its feature to actuate and which is the target features
to reach among features of the others catoms of the walker. By this way, catoms
are rolling feature after feature to the intra-walker destination position (see Figure
10). Selecting a wrong stopover feature during this journey (or having a wrong
knowledge of the walker configuration) will cause the dislocation of the walker
(see Figure 11).

3.2. The walker behavior in a cluttered environment
3.2.1. Obstacle detection

To detect obstacles, several technical solutions can be considered. A proximity
sensors could be an ultra-sound sensor, it could also be a kind of radar using radio
waves. It could measure infrared signal attenuation from a transmitter to determine its relative position. Last but
not least, it could directly rely on the “features” normally used to move and sense their state (electrical current and
charge). In this work, we consider a generic proximity sensor and the collision information is extracted from the
DPRSim simulator itself to be transparently made available to the code running on the catoms.

Obstacles present in the environment are usually over-sized related to the walkers and will restrain their freedom
of movement. Whatever the technical solution for the sensing, a physical collision may occur while a catom is moving
from one position to another inside the catom (we call it “intra-walker positioning”). This catom has then to roll back
to its previous “stable” position. This “stable” position can be found within the position history and is used to select
the next branch in the backtrack tree. The “triangle” formation is easy to model and network relaying within the walker
is not necessary because each catom has all other catoms of the walker as neighbor.

9



By “fumbling” over the obstacles and moving around, a local map is progressively built. When a collision with an
unintelligent / non communicative object has been confirmed, the status of the cell is locally stored in the internal map
of the walker leader. Collisions with other walkers are recognized as such and therefore not broadcast. It is nevertheless
interesting to note that by regular sending of beacons containing their position, walkers are able to announce their
“territories” and consequently anticipate collisions. Also, temporary contact between different walkers may also be
beneficial for energy transfer or high bandwidth data exchange via wired contact interfaces.

Upon a collision with an unintelligent object and the consequent rolling back to a triangle shape by the concerned
catom, another catom of the walker is chosen by the leader to try another intra-walker-motion.

3.2.2. Intra-walker backtrack : storing catoms movements at the walker scale

Figure 12: A walker arriving in cavity trap (steps 1 and
2). It is then unable to make new moves (steps 3, 4 and 5
results in collision). The only way out is to roll back the
catom B.

Sometimes, depending one the environment, when obstacles
are small, several or all catoms composing the walker may suc-
cessively collide with various obstacles. When a catom fails to
perform an intra-walker move in a specified direction, the fai-
lure is stored and reported to the leader. This catom may then at-
tempt to process an intra-walker rolling in the opposite direction
but, in this case, the walker would temporarily go far away from
his destination. The leader can then preferentially select intra-
walker movements operated by other catoms. Independently of
the movement strategy adopted by the walker (integral rolling of
a determined catom of the walker up to reach again a “triangle”
formation or otherwise moving each catom of the walker one af-
ter another to control the walker with a “snake” behavior), the
walker may always be stuck in a pit or local optimum.

Figure 12 shows a walker arriving from the top and traveling
to the bottom. The walker gradually traps itself in a cavity desi-
gned by three obstacles. Step by step, motion possibilities of the
walker are less and less numerous. From step 3, the catom C is
unable to move in two directions. In step 4, the catom B tries then
fails an intra-walker rolling to the right. In step 5, the catom A realizes that it is also trapped. At that point no more
new movements are possible without triggering a collision (candidate movements in steps 3, 4 and 5). The only way
out, managed by the leader, is the roll back over previous successful moves. We denote that another motion strategy
like the “weaving” does not avoid the problem. The granularity of intra-walker moves would be however lower. As
result, walkers would be still bogged down but in finer obstacles. To prevent the walker to be trapped locally in such
cavities, it is essential to have a intra-walker backtrack mechanism. To avoid such situations, a intra-walker backtrack
mechanism has been implemented in DPRSim. This mechanism is used only for local motions. For map exploration,
another algorithm will be presented in next section.

3.3. The walker exploration algorithm

To better coordinate the distributed mapping of the environment, and to provide a homogeneous measurements,
our application use an overlaying grid. It is used to discretize the space and define sub-areas to explore. Although the
resolution is not defined in classical DPI unit, this dimension is however related to the diameter of catoms but also
to other physical dimensions used by the simulators (i.e., Watt, meters or bits/second used by Vouivre or related to
Newton, Kilogram or g used by ODE). This grid helps to prevent walkers from staying in the same general area and
also prevent them to cross other areas without exploring them much.

The efficiency of the exploration strategy can still be improved by trying to go around an obstacle once it has
been encountered. This translates into the leader preferring movements exploring unknown space adjacent to already
encountered obstacles. Complex environments with multiple large-scaled obstacles, pose again the problem of local
optimums. This is where the global grid described earlier becomes handy, as it enables a second level of backtrack.
These two levels of backtrack (intra-walker backtrack and spacial grid backtrack) do not have the same function. The
grid backtrack is used to correctly explore the whole map discretized in cells (think of navigating over a large area),

10



whereas the intra-walker backtrack is used to get the walker out of a jammed position (handle the details of the road).
The last image in Figure 20 shows a walker using the backtrack mechanism related to grid to leave an already scanned
area in a complex environment.

3.3.1. The autonomous walker motion algorithm with backtrack

(a) Time T=0 (b) Time T=11

(c) Time T=24 (d) Map known by C

Figure 13: Map knowledge can be carried out or broadcasted

A walker can move autonomously in the en-
vironment. To face large obstacles with complex
shapes such as labyrinths, it is necessary that wal-
kers have their own individual movement intelli-
gence. Thus each walker built its own map of the
environment and walkers are able to move without
being trapped into a local optimum.

Indeed, the geographical positions of other
walkers and the map structure itself mean that wal-
kers may, temporarily or permanently, be unable to
communicate with their partners. Partitioned net-
works may temporarily be formed.

At the beginning of the simulation, walkers are
located at random positions on the map. We can
consider that are dropped into a totally unknown
area. Some walkers may be jailed inside hollow
obstacles from which it will be impossible to get
out (see Figure 14).

The initial connectivity may be bad, but
through movements and communications they will
try to achieve and maintain a tree network topo-
logy. However, even under this assumption, the
map can change with time and new obstacles may
appear.

Similarly, it is possible that walkers are not nu-
merous enough to scan the space and must break
the network connectivity to go to explore.

Figure 14: Some walkers jailed inside a hol-
low object. Maintain a network coverage is
not always possible.

It is not possible to guarantee an overall network coverage in an unk-
nown space. As a consequence assigning exploration areas to walkers may
be counter-productive and fail to assure a reliable network coverage but fail
also to assure that walkers will be able to move to areas.

In some situations, the physical carriage of data (see Figure 13) may
be the only one way to share data. If the radio coverage is unavailable, we
can imagine, for example, a walker which would move alternatively from
a side of a jail to another to relay by carriage some informations between
2 others walkers. By the way, map knowledges can virtually travel through
radio waves but also physically through the movement of robots.

Figure 13 shows an example of these two mapping informations travel
opportunities. All walkers are out of radio communication range and start to
move in indicated directions. Walker A and Walker B are able to commu-
nicate together by radio. They exchange their map knowledges. Walker A
and Walker C are able to communicate together by radio. Walker A carried
the chunk of map (known at T=11 by the walker B) and share it now with
Walker C. The black line shows the complete overview map. The red back-
ground is the the map known both by Walker A and C. Map knowledges of

11



walkers grow with time. The temporal windows for wireless data transfer is small due to radio coverage and walker
moves. With short punctual radio link, a walker can carry the shared map of another walker.

The main proposed algorithm allows to find a path to the next undiscovered cell which is the closest from the
current walker position. It is a breadth-first traversal which favors a global direction.

Adjacent cells to the current position which contain no obstacles are firstly listed. These cells may be undiscovered
or may have been previously explored. In the case which only one of these cells is undiscovered, this cell will be the
next walker destination.

(a) Random adjacent cell priority. (b) Constant adjacent cell priority.

Figure 15: Zoom of map exploration related to adjacent cell priority

In the case which several adjacent cells are
undiscovered, it is necessary to choose and to
define a priority in the choice of the immediate
destination. So the list of next hop destination
is sorted by exploration priority order. This lo-
cal priority avoids the global convergence of all
walkers to the same destination. Indeed, if the
priority is constant, the walkers will gradually
converge globally to one of eight possible di-
rections (north, south, east, west or combina-
tion as north-east, etc...). These priorities can
be defined to be constant (cf. ), to be random
(cf. ) or by others kind of algorithms. With the
random priority, the total path length of wal-
kers is very high and it is often necessary to go
back because some cells have been let during
the travel.

1

2

3

456

7

8910

11

121314

15

(a) Local map explo-
ration algorithm

UD

A
1
2

3

4

5

6

7

8
B
12 3

4 5

67 8

(b) The utopian destination parameter acts as a com-
pass and gives a direction.

Figure 16: Local and global map exploration algorithms

To avoid both these problems we implemented an algorithm which change the adjacent cells choice priority for
each walker. We choose for each walker a global destination at the scale of the map. This destination may be un-
reachable. So we call it utopian destination. The walker will try to go to this utopian destination without necessarily
being able to reach it. For each walker, the utopian destination parameter acts as a compass and gives a distinct global
direction by defining a rotation center to select adjacent cells. Figure 16(b) shows this algorithm. Point A and B are
two possible cells in which a walker can be. UD is the utopian destination for this walker. We define the exploration
priority (numbered 1 to 8) of adjacent cells related to the distance between UD and these cells.

Note that if this utopian destination change over time, makes it possible to control the exploration of successive
areas by the walkers. A hierarchy could be implemented to allow to a local walker to distribute exploration areas to
others walkers.

As soon as all adjacent cells have been explored, we need to look at the next - larger - periphery to find a
path to an undiscovered cell. Figure 16(a) shows an example of the main algorithm. Gray cells have been pre-
viously discovered, white cells are undiscovered and others cells contain obstacles. In this example, cells 1,2 and
3 (numbers written in blue) are already discovered. As a consequence of the position of the utopian destination,

12



we will look at the next cells in this order : 4, 5, 6, 7, 8, 9 and 10 (cell numbers written in green). This is the
next periphery level. The cell 9 is undiscovered (no gray background) and will consequently be chosen. Please
note, that this algorithm does not provide the optimal path in all situations. Indeed, supposing that cells 9 and
11 would contain an obstacle, the cell 12 would be consequently chosen. The most direct path would be to cross
through the cell 5 instead of the cell 4. This algorithm can be improved to obtain more direct paths. Each time
a new periphery is determined, it would also be necessary to reorder all paths priorities in function of the uto-
pian destination. Figure 17(b) shows a lone walker (after 140 sec.). The top of the figure has not been explored
because this walker want to reach his utopian destination located in the south of the map. However the walker
need to turn around obstacles and to go through a labyrinth before being able to reach his utopian destination.

(a) Environment used in large scale si-
mulations : Matrix of 40k cells (eg.,
200*200)

(b) A walker going through a laby-
rinth.

Figure 17: Original map on the left and discovered map on the right

Figure 17(a) shows the map used in large
scale simulations. Please note that all maps
proposed in this paper let cells appear in dif-
ferent gray level. This indicate the path history
of walkers. Black cells have been recently dis-
covered and light gray is used for old disco-
vered cells. A wrong way logo is used to re-
present an obstacle. The walker size is actually
smaller than the cell size but to see walker po-
sitions on big scaled map, some circles have
been drawn in some maps. Blue circle indicate
which is the walker who is drawing the map.
Green walkers are the 8 last senders of the la-
test received messages. The last known posi-
tions of a others walker is yellow or red depen-
ding on simulation. In some maps, data sinks
have been added. A small server icon has been
used for it.

Please note that in highly detailed simulations (cf. 4.1) realized with DPRSim, the utopian destination parameter
has been manually set for all walkers to the center of the map. In high scaled simulation (cf. 4.2), this parameter is
randomly chosen for each walker at the beginning of simulations.

3.4. The network policy algorithm

As explained previously (3.3), the individual walker exploration algorithm has an intrinsic effect over the network
topology. Analogously, setting up a network topology will immobilize walkers which has a cost on the map explora-
tion. Moreover, this is not always necessary. Under some conditions, migrations of walkers will be performed. Some
will have to turn around obstacles and topology will change. It can change at different scales : locally, globally or even
to dynamically adapt related of data stream. Conversely, a good or bad map sharing will heavily influence walkers
in their explorations directions choice. All these factors are strongly nested, and choices to be taken by walkers are
themselves influenced by the partial knowledge of walkers them-selves. Indeed, the walkers do not know which map
data other walkers have. The map dissemination policy over the network is consequently an important factor. Each
walker contains 3 distinct maps in memory (see middle of Figure 18) :

— the map exclusively received by nano-wireless messages
— the map self-discovered by the walker
— the map whole map which is a merge of the 2 previous map
When a cell is visited by a walker, the self-discovered map and the whole map are updated. Similarly, when a

message is received, the network map and the whole map are updated.
Each map information exchanged by radio messages contains 4 informations : the date of the visit, the position of

the cell visited, the identifier of the walker which visited the cell and the status of the cell. Each map information is 17
bytes length. For each message, some simple headers (12 bytes) are added : the number of map information contained
in the message and the identifier of the walker sending the message.

13



Figure 18: Walker behavior

Please note that the message length will be increased before
being sent on the radio medium due to redundancy used 2.3.4.
This redundancy will be applied on the network layer. This re-
dundancy will increase the communication range as explained
in section 2.3.3. At the application layer, another type of redun-
dancy is used depending of the network policy.

Figure 18 shows the individual walker behavior in the co-
operative map building application. The bottom part of the Fi-
gure shows the “Walker motion algorithm”. This is the optional
plug-in connection with DPRSim for highly detailed simulations
(cf. 4.1), or at the contrary, some simplifications presented in 4.2
for large scaled simulations. When a walker receives a message
containing new map information about his destination, he up-
dates his current path. Another destination will be chosen related
to previously explained algorithms. In order that all walkers and
the sink acquire the map, it is necessary to relay map informa-
tions. Cartographic knowledge are disseminated by multi-hop.
However systematically relay all messages would be too expen-
sive in communication cost. The walkers travel on the map. As
a consequence they need be able to get a recent knowledge of
the immediate environment. It is necessary that despite walkers
movements, the knowledge acquired locally in an area persists
locally in this area after the departure of the walker : A walker
go out but his knowledge stay on the place. Thus walkers acqui-
ring local environment knowledge through network when they
arrive in an area. Then they improve this knowledge by them-
selves. Finally, when leaving the area, they leave it as a legacy to

closers walkers which are incoming in this area. On the other hand, walkers can physically carrier some map know-
ledge in their memory. So they can redistribute it later to new walkers meet during their journey. To take advantage of
these possibilities, we defined four algorithms which are mixed together related to fixed proportions. When the walker
sends messages (see top of Figure 18), it can promote the local map share, the overall map informations relaying, the
local map information relaying, the dissemination of its own acquisitions, etc.

— The first of these algorithms is the selection of visits by date. Only the most recent visits are added to sent
messages.

— The second of these algorithms is the selection of proximity maps knowledge. Only informations concerning
the closest to the current cell position of the walker are sent.

— The random selection is used to send some map knowledges of a walker which are randomly chosen. It may
be long away or old knowledges but it allows a overall and uniform dissemination of the map.

— The last implemented algorithm is the rollover. After each message sending, a looping counter is incremented
on all informations contained inside a map . Thus all the data will be periodically resend. This promotes global
sharing of all map knowledge.

Note that all these algorithms can be applied equally to one of the three walker maps. Applied to self-discovered
map, it help to spread of self-acquired-knowledge. Applied to the network acquired map, it promotes knowledges of
others. Message content is an important factor but other parameters must be taken into account in maps exchange poli-
cies. First, the regularity and frequency of sharing. Depending on the walkers mobility , providing informations more
or less frequently will deplete the local area knowledge persistence. Indeed, if walkers often change area, knowledge
will flee with them. Conversely, a too high a frequency sharing provide an excessive information redundancy.

We developed two methods triggering the information sharing :
— Frequency Based Sharing (FBS) : Messages with a fixed length are regularly sent.
— Variation Triggered Map Sharing (VTMS) : Messages of variable length are sent when the map updates reach

a threshold. For instance, after 20 new cells discovered or after 80 updates, a message need to be sent. (this
parameter have been used for simulations)

14



4. Simulations and results analysis

The multi-scale algorithms presented in section 3 have been implemented. Results of various policies are presented
and discussed in this section.

4.1. Highly detailed simulations in DPRSim

(a) Several walkers scanning a simple en-
vironment

(b) Ground floor map over-
view (tick 9960)

Figure 19: Exploration of an environment composed of a giant regular
square box in DPRSim

Simulations presented in this section have been
realized with DPRSim. This allows to simulate step-
by-step, feature after feature, each movement proces-
sed by catoms within walkers. These simulations de-
monstrate the proper functioning of local algorithms
for obstacle detection and for local backtrack (at the
level of a cell). By this mean, walkers are able to
move from a cell to another, are able to detect small
obstacles existing inside cells and are also able to
turn around these small obstacles to reach the next
cell.

20 walkers have been used to scan map of 20*20
cells. Two distinct environments were simulated. Fi-
gure 19 shows the first one and the map build through
nano-wireless communications. Figure 20 shows a
cluttered environment with the associated map.

(a) Snapshot of the environment
(rear view)

(b) Snapshot of the environment
(front view)

(c) Example of a walker esca-
ping a cavity trap with backtrack

(d) Map overview at tick 14940

Figure 20: Walkers scanning a complex environment

However interfacing a time-slicing based simu-
lator (DPRSim) with our discrete event simulator re-
mains costly due to synchronism implied. The low
number of walkers, the small dimensions of the map
and the large number of motions simulated does not
highlight significant losses network messages.

4.2. Large-scale simulations and study of the net-
work policy

In order to simulate a large number of walkers
in larger environments, we set the speed of move-
ment of walkers at 0.05 m/s and disable the detailed
simulations plugged with DPRSim. The map explo-
ration algorithm is initiated using discrete events and
not anymore from DPRSim ticks. Cell incoming or
cells outgoing events of walkers are no longer gene-
rated as effects of the motions of catoms within wal-
kers but simply based on travel distances that walker
have to move to go from one cell to another. When
a walker arrives in a cell containing an obstacle, he
will have to go back to the previous cell (cell which
was free). In this case, we believe that due to the pre-
sence of the obstacle, the walker has only covered
75% of the distance originally planned. To increase
simulations performance, we simulate only walkers
and considering that only walker leaders are able to
use nano-wireless communications.

15



Simulation identifier 1 2 3 4 5 6 7 8
Map sharing behavior FBS FBS FBS FBS FBS FBS VTMS VTMS
Message length (in number of cell informations) 40 80 35 35 500 100 Variable Variable
Message sending frequency 175ms 350ms 35ms 35ms 100ms 5ms
Part of closest self-discovered map of the walker 10% 3% 10% 25% 2% 5% +10%
More recent self-discovered map of the walker 30% 20% 15% 25% 35% 10%
Part of randomly choose self-discovered map 7% 8% 10% 10% 5%
Part of rollover in self-discovered 10% 15% +5% +5%
Part of closest network map acquired by the walker 15% 10% 5% 10% 10% 10% +20%
Part of recentest network map acquired by the walker 25% 30% 30% 20% 18% 20%
Part randomly choose in the network map acquired 13% 20% 30% 10% 5%
Part of rollover in the network map acquired 9% 15% 40% +10% +15%
Part of recentest whole map acquired by the walker 100% 100%

Table 1: Parameters used in large scale simulations. (FBS : Frequency based sharing ; VTMS : Variation Triggered Map Sharing.

Figure 21: CPU time related to simulated time for 500 nodes. (1 CPU
core 2.4Ghz / 6 GB RAM)

As mentioned in the previous sections and by Fi-
gure 9, it is possible to simulate radio communica-
tions for more than 1200 nodes. Simulations presen-
ted here have been however realized with 500 wal-
kers in an environment of 40 000 cells (200 * 200)
described by Figure 17(a). We have performed 8 si-
mulations by changing map sharing policies. The va-
lues used for the various parameters are available in
Table 4.2.

Figure 21 shows the computation duration requi-
red related to simulated time. The discrete events si-
mulator uses only one CPU core.

Simulation 1 and 2 have the same number of map
knowledge to share (228.5 map informations per se-
cond per walker). The simulation 1 sends smaller
messages but more frequently than the simulation 2.
Figure 22(b) shows the total cumulated amount (in
bytes) of raw data sent by all the walkers during the
simulation. We note however that the curves are dis-
tinct. This is mainly due to messages headers.

However, a message being sent cannot contain duplicated on map informations. So in the case which visits pro-
vided by various algorithms explained in 3.4 are the same, the message size can be slightly reduced related to the
nominally fixed length. Indeed, sometimes the most recent visits are also the closest visits. The total (cumulated)
number of messages sent and received by all the walkers during simulations are shown by Figures 22(c) and 22(d).
They are constants for FBS (Frequency based sharing) simulations (1, 2, 3, 4, 5 and 6). For simulations 7 and 8, there
are no messages sent at the beginning of simulation due to the trigger which is not reached. Figure 22(a) shows the
total (cumulated) of raw data received by all the walkers during simulations. We note that after 10 seconds, in some
simulations walkers received more than 50 GB of data.

It is noted that less data are sent in the simulation 5 than in simulation 8 but more data are received in the 5
simulation. This is due to the time-spreading of the messages in simulation 5 whereas the triggering mode of the
simulation 8 creates a synchronism in the message sending. Thus the maximum number of concurrent senders rises
up to 16 in the simulation 8 which causes some messages losses. The communication range is consequently reduced.

The aggregated throughput snapshot for data incoming and outgoing is indicated for simulations 1 and 5 and 7 by
Figures 22(e), 22(f), 22(g), 22(h). Simulation 5 sends large messages.

16



(a) Received data amount (b) Sent data amount (c) Number of received messages

(d) Number of sent messages (e) Incoming aggregated throughput (sim1) (f) Incoming aggregated throughput (sim5)

(g) Outgoing aggregated throughput (sim5) (h) Outgoing aggregated throughput (sim7)

Figure 22: Comparison of cumulated data amount and cumulated number of messages during simulations

At the beginning of the simulation, the nominal size of the message cannot be reached. For this reason the outgoing
aggregated throughput increases gradually before to get stable. For the simulation 1, the incoming and outgoing
aggregated throughput are very stable during the whole simulation.

Regarding simulations 7 and 8, the raw throughput is very irregular due to avalanche effect. The arrival of new
messages will result in new knowledge which triggers sending new messages. This can be seen on all throughput
relating to these simulations :

— incoming and outgoing aggregated throughput snapshot of raw data (see 22(h))
— incoming throughput snapshot of raw data on the sink (see 24(c))
— and also incoming and outgoing throughput snapshot of a majority of walker like the walker 998 for example

(see 24(f) and 24(e)).
Figure 23(c) shows the cumulative number of new cells discovered by the sink during simulations. In the case

which cells are already known by the sink, dates of visits and latests known position of the walkers is updated.

17



(a) Cumulated amount of data received (b) Number of messages received (c) Acquisition of new cells

(d) Updates of already known cells (e) Sim1 / Acquisition of new cells (f) Sim8 / Acquisition of new cells

(g) Sim4 / Updates of already known cells (h) Sim4 / Acquisition of new cells

Figure 23: Sink point of view

The cumulated number of updates during simulations is represented by Figure 23(d). Others sub-figures of 23
bring a detailed view of simulations 1,8 and 4.

Simulations 4 and 5 send the same messages number at the same frequency. It is noted however that in the
simulation 3, the sink acquire rapidly the whole map knowledge. Simulation 4 promotes the spread of self-acquired
knowledge whereas simulating 3 promotes relaying of network map knowledge acquired. In case of high walkers
mobility, simulation 4 would be more beneficial. In the map structure used for these simulations, this is not the case.

18



(a) Sim3/Sink/Incoming (b) Sim5/Sink/Incoming (c) Sim7/Sink/Incoming

(d) Sim4/Walker 882/Incoming (e) Sim8/Walker 998/Incoming (f) Sim8/Walker 998/Outgoing

Figure 24: Incoming and outgoing throughput of the sink during simulations

(a) After 2 seconds (b) After 5 seconds

(c) After 6.8 seconds (d) Incoming throughput (sink
view)

Figure 26: Zoom of oracle view near the sink in simulation 8

When a walker receives a message which
contains map informations indicating that the current
destination of walker has been explored, the walker
must choose another destination. The number of path
recomputed due to new incoming informations arri-
ved by network is shown in Figure 25(a). When this
number is high, it shows a good spread of the map.
When it is low, it indicates that a lot of walkers are
going to explore cells which have been already ex-
plored by other walkers.

Analogously, Figure 25(b) indicates in the point
of view of the oracle, the number of new cells dis-
covered related to simulated time. The oracle has an
instantaneous overall view of the whole map. Thus,
if many cases are discovered quickly, it also confirms
performances of the network policies in the envi-
ronment studied. Figure 25(c) shows for all walkers,
the cumulated number of new discovered cells ac-
quisition by walkers in their own internal map. As a
consequence, it shows the map knowledge propaga-
tion speed. However, it must take into account that
this is an average and some walkers may acquire a
lot of knowledge while others are isolated.

Simulations 7 and 8 show quite similar behaviors

19



(a) Nb of recomputed Paths (b) Nb of visits in undiscovered cells (c) Aggregated number of new cell acquisition

Figure 25: Quality of map exploration (oracle statistics)

due to their operating mode. Note however that the simulation 8 includes 30 % more data (10% on the self-discovered
map and 20% on the network acquired map) to improve the map local sharing. We can see a slight advantage of the
simulation 8 related to simulation 7 in Figure 25(c). However, the level of mobility walkers is still not enough high to
significantly highlight the performance benefit.

Figure 26 highlight effects of the map structure over networks exchanges. The sink is located in north of the map
in a cluttered area, at the cross between two ways forcing walkers to get around obstacles to go to new exploration
areas. Turning around obstacles need time which temporarily concentrates the walkers around the sink. Is thus noted
that after 5 seconds of simulation, the sink receives a lot of data (see 26(d)). However Figure 23(f) does not show
additional new cells acquisitions which means that useful data has been previously transmitted via relaying. Indeed,
simulation 8 has 15 % more data for rollover so even the most long away map informations are eventually exchanged.

4.3. Map analysis

(a) After 1 seconds (b) After 3.2 seconds (c) After 7.4 seconds (d) After 20.8 seconds

Figure 27: Sink view in simulation 5

Figures 28 and 28 shows the evolution of map seen by the sink related to time for simulations 3 and 5. We can
found two very distinct behavior : The first one for simulations 1, 2, 3, 4 relays progressively the map to sink. The
throughput is low, map sharing is lower quality, slower thereby avoiding walkers to converge locally. In contrast, for
simulations 5,6,7,8, the map sharing is faster. All walkers have a good knowledge of the map and the exploration of
new cells is much slower than the map existing knowledge sharing. This map sharing is too high quality which causes
local convergence of walkers. An additional application layer is necessary to avoid local convergence but mostly to
maintain a stable network topology.

20



(a) After 5 seconds (b) After 6.6 seconds (c) After 16.2 seconds (d) After 33.2 seconds

Figure 28: Sink view in simulation 3

(a) 1.2 seconds (b) 1.4 seconds (c) 1.6 seconds (d) 1.8 seconds (e) 2.0 seconds (f) 2.4 seconds

Figure 29: Simulation 8 : A massive assault on the same undiscovered islets causes local convergences of walkers. (oracle view)

Figure 29 shows a zoom of the map of the oracle at different moments of the 8 simulation. Walkers are randomly
located in the space at the beginning of the simulation. When walkers starting their journey, they cut the map with
their path history into small islets. The local exchange of network map is optimal. So all the walkers know their
close environment. Gradually the smaller islets will be explored which few walkers. The larger islands need more
duration to be explored, then walkers will be merged together in bigger walker groups. There is an immediate overall
convergence but several successive local convergence.

(a) Sink view (b) Oracle view

Figure 30: Simulation 8 after 27.8 second : The network topology chan-
ged ; Multi-hop relaying need more hops to reach the sink ; Sink view is
out of date

As a consequence, the network topology is chan-
ged. Figure 30 shows the view of the sink and the
view of the oracle after 27.8 seconds for the 8 simula-
tion. There is still a large number of data routes to the
sink and all nodes are able to send data to the sink.
However, the data routes are more complex and re-
laying data requires more hops. On Figure 23(b), we
can see that the number of messages received by the
sink become stable at the end of simulation. Some
walkers have the full map. In this case, they stop to
move and they consequently stop to acquire new map
exploration by them-selves. Walkers converged and
it reinforce their local knowledge. Relaying new data
is more difficult. In Figure 30, we can see that the
sink view is hightly out date. This is however less vi-
sible on the simulation 5 due to a different operating
mode.

21



5. Conclusion

This paper has presented an application where many small robots explore and cooperatively build a map of their
environment. This application shows how beneficial nano-wireless communications can be. Their strong points lie
especially in the very low power required and in the large available bandwidth, allowing for high simultaneous com-
munications.

Building complex applications involving many micro-robots is difficult, and dedicated tools are required. We used
DPRSim, the original simulator from the Claytronics project, linked to our own Vouivre communication simulation
library. The nano-communications were simulated using a discrete events approach, allowing for a level details and
precision. On the other hand, DPRSim offers a detailed vision of the walkers physical moves, along with problems
concerning obstacle detection algorithms and local backtrack.

The first sets of very detailed simulations we showed, validate walkers motion and allow for shifting to more
abstract and large scale simulations. Results of these large-scale simulations highlight a strong entanglement between
the map structure, routing algorithm, network topology and the used map exchange network policy.

Together, DPRSim and Vouivre were able to give a very good insight of the behavior of a large scale cooperative
application, allowing for the analysis of both large scale (building of the global map, information propagation in the
network) and local scale (individual walkers movements and neighboring communications).

Future work would require to consider an intermediate network abstraction layer. It should allow a better isolation
between the application and the maintenance of the network topology. At the same time, it should still be aware of the
physical constraints to help and to prevent exploration algorithm to mistakenly fragment the network.

6. Acknowledgments

We would like to thank Dr. Josep Miquel Jornet and Prof. Ian Akyildiz for sharing with us their models of the
terahertz band. This work has been funded by the Labex ACTION program (contract ANR-11-LABX-01-01) and
ANR/RGC (contracts ANR-12-IS02-0004-01 and 3-ZG1F) and ANR (contract ANR-2011-BS03-005)

Références

[1] S. C. Goldstein, J. D. Campbell, T. C. Mowry, Programmable matter, IEEE Computer 38 (6) (2005) 99–101.
URL http://www.cs.cmu.edu/ claytronics/papers/goldstein-computer05.pdf

[2] S. C. Goldstein, T. C. Mowry, Claytronics : A scalable basis for future robots, in : RoboSphere 2004, Moffett Field, CA, 2004.
[3] M. E. Karagozler, A. Thaker, S. C. Goldstein, D. S. Ricketts, Electrostatic actuation and control of micro robots using a post-processed

high-voltage soi cmos chip, in : IEEE International Symposium on Circuits and Systems (ISCAS), 2011.
[4] N. Boillot, D. Dhoutaut, J. Bourgeois, Efficient simulation environment of wireless radio communications in mems modular robots, in :

iThings 2013, IEEE Int. Conf. on Internet of Things, Beijing, China, 2013, pp. 638–645.
[5] N. Boillot, D. Dhoutaut, J. Bourgeois, Using nano-wireless communications in micro-robots applications, in : NANOCOM 2014, 1st ACM

Int. Conf. on Nanoscale Computing and Communication, ACM, Atlanta, Georgia, USA, 2014, pp. 1–9.
[6] N. Boillot, J. Bourgeois, D. Dhoutaut, Parameter study and characterization of wireless nanonetworks through simulation, in : Communica-

tions and Networking (BlackSeaCom), 2014 IEEE International Black Sea Conference on, IEEE, 2014, pp. 43–47.
[7] M. E. Karagozler, S. C. Goldstein, J. R. Reid, Stress-driven mems assembly+ electrostatic forces= 1mm diameter robot, in : Intelligent Robots

and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on, IEEE, 2009, pp. 2763–2769.
[8] B. D. Rister, J. Campbell, P. Pillai, T. C. Mowry, Integrated debugging of large modular robot ensembles, in : ICRA, 2007, pp. 2227–2234.
[9] M. P. Ashley-Rollman, P. Pillai, M. L. Goodstein, Simulating multi-million-robot ensembles, in : ICRA, 2011, pp. 1006–1013.

[10] J. M. Jornet, I. F. Akyildiz, Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band,
in : Proc. of IEEE International Conference on Communications (ICC), 2011.

[11] J. Jornet, I. Akyildiz, Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band, Wireless
Communications, IEEE Transactions on 10 (10) (2011) 3211–3221. doi :10.1109/TWC.2011.081011.100545.

[12] J. Jornet, I. Akyildiz, Channel capacity of electromagnetic nanonetworks in the terahertz band, in : Communications (ICC), 2010 IEEE
International Conference on, 2010, pp. 1–6. doi :10.1109/ICC.2010.5501885.

[13] T. Henderson, S. Roy, S. Floyd, G. Riley, ns-3 project goals, in : Proceeding from the 2006 workshop on ns-2 : the IP network simulator,
ACM, 2006, p. 13.

[14] A. Varga, R. Hornig, An overview of the omnet++ simulation environment, in : Proceedings of the 1st international conference on Simulation
tools and techniques for communications, networks and systems & workshops, Simutools ’08, ICST, 2008, pp. 60 :1–60 :10.

[15] http ://www.opnet.com/products/modeler/.
[16] R. E. Lyons, W. Vanderkulk, The use of triple-modular redundancy to improve computer reliability, IBM Journal of Research and Develop-

ment 6 (2) (1962) 200–209.
[17] J. Knox-Seith, A redundancy technique for improving the reliability of digital systems, Stanford Electronics Laboratory.

22


