Complexity aspects of web services composition

Karima Ennaoui, Lhouari Nourine, and Farouk Toumani

LIMOS, CNRS, Universite Blaise Pascal
73 rue des landais, AUBIERE, France

Abstract. The web service composition problem can be stated as fol-
lows: given a finite state machine M, representing a service business
protocol, and a set of finite state machines R, representing the business
protocols of existing services, the question is to check whether there is a
simulation relation between M and the shuffle product closure of R. In
fact the shuffle product is a subclass of the communication free petri net
and basic parallel processes, for which the same problem of simulation is
known to be 2-Exptime-hard.

This paper studies the impact of several parameters on the complexity
of this problem. We show that the problem is FExzptime-complete if we
bound either: (i) the number of instances of services in R that can be
used in a composition, or (i7) the number of the so-called hybrid states
in the finite state machines of R. Moreover, for the particular case where
the bound of the hybrid states of the finite state machines of R is set to
2, we show that the composition problem is in 3-Exptime.

1 Introduction

Web Services [1] is a new computing paradigm that tends to become a technology
of choice to facilitate interoperation among autonomous and distributed appli-
cations. The UDDI consortium defines Web services as self-contained, modular
business applications that have open, Internet-oriented, standards-based inter-
faces'. Several models have been proposed in the literature to describe different
facets of services. In particular, the importance of specifying external behaviour
of services, also called service business protocols, has been highlighted in several
research works [4,2,3]. Through literature, different models have been used to
represent web service business protocols. The Finite States Machines (FSM) for-
malism is widely adopted in this context to model statefull applications exposed
as web services where states represent the different phases that a service may
go through while transitions represent “abstract” activities that a service can
perform [4,2,3].

We consider in this paper the problem of Web Service Composition (WSC).
This problem arises from the situation where none of the existing services can
provide a requested functionality. In this case, the idea is to find out, algorith-
mically, if the target functionality could be composed out of the existing services
(components repository). This automatic approach of composition simplifies the

! http://www.uddi.org/



development of software by reusing existing components and offers capabilities
to customize complex systems built on the fly [7]. We focus more particularly on
a specific instance of WSC, namely the (business) protocol synthesis problem,
which can be stated as follows: given a set of business protocols of available ser-
vices and given a business protocol of a target service, is it possible to synthesize
automatically a mediator that implements the target service using the existing
ones?

[12] shows that when business protocols are described by means of FSMs,
the WSC problem can then be formalized as the problem of deciding whether
there exists a simulation relation between the target protocol and the shuffle (or
asynchronous product) of the available ones. This result is however based on the
implicit assumption that at most one instance of each available service can be
used in a composition. This setting has been extended in [7] to the case where
the number of instances that can be used in a composition is unbounded. WSC
is formalized in this latter case as a simulation problem between an FSM and
an infinite state machine, called Product Closure State Machine (PCSM), that
is able to compute the shuffle closure of an FSM.

Shuffle product of FSMs (and PCSM) is a subclass of Basic Parallel Processes
(BPP) [5] , the class of communication free petri nets: every transition has at
most one input place. Simulation of FSM by BPP was proven Expspace-hard by
Lasota [11] and 2-Exptime-hard in [6].

Complexity analysis of WSC was first considered by Musholl et al.[12], under
the aforementioned implicit assumption, where it is shown Exptime-Complete.
In case of unbounded instances, the WSC problem has been proved decidable
with an Ackermanian function as upper bound in [7]. The proof of [7] is based on
Dickson lemma, and hence cannot be exploited to derive tighter upper bounds.
An Expspace-hard lower bound is given by Lasota[11]. The source of complexity
derived from the analysis of the algorithm given in [7] is related to the presence
of the so-called hybrid states? in the components and loops in the target: if the
target FSM is loop free, the WSC problem becomes NP-complete and when the
components are hybrid state free the problem is proven Exptime.

In this paper, we consider additional parameters related to
bounded/unbounded web services composition. We consider as inputs an
FSM M (the target protocol) and a set of FSMs R (the protocols of the
available services) and we investigate the complexity of testing simulation
between M and the shuffle closure of R, represented as a PCSM [7]. More
precisely, we study the complexity of the following problems:

1. WSC(M,R): The problem of composing M using an unbounded number of
instances of R.

2. BC(M,R,k): The problem of composing M using at most k instances of
each FSM in R.

3. UCHS(M,R, k) : The problem of composing M using an unbounded number
of instances of R, with the number of hybrid states in R is bounded by k.

2 Hybrid states of an FSM are final states with outgoing transitions and correspond
to unbounded places in Petri net terminology.



Table 1 displays known and new complexity results regarding the WSC prob-
lem.

IM [ Acyclic FSM [ general FSM ‘
BC(M,R,1) NP-complete[7 Exptime-complete [12]
BC(M,R,k) NP-complete[7] |Exptime-complete (this paper)
WSC(M,R) NP-complete [7] Decidable [7]

UCHS(M,R,0)| NP-complete[7] |Exptime-complete (this paper)
UCHS(M,R,1)| NP-complete[7] |Exptime-complete (this paper)
UCHS(M,R,2)| NP-complete|7] 3-Exptime (this paper)

Table 1: Complexity of Web services composition problem.

Paper organisation Section 2 recalls some basic definitions needed in this paper.
In section 2, investigates the problem of bounded web services composition and
proves that it is Exptime-Complete. In section 2, we consider the web service
composition when the number of hybrid states is bounded. We show that this
problem is Exptime-Complete for £ = 0, £ = 1 and 3-Exptime for k = 2. We
conclude in section 5.

2 Preliminaries

Finite State Machine We consider in this paper service business protocols for-
mally described as FSMs. We recall below the definition of such machines.

Definition 1. (Finite State Machine (FSM))

A State Machine (SM) M s a tuple M = (X, Qnry Fars @8y, 001), where: Xy is
a finite alphabet, Qs is a set of states, dpr C Qpr X Xpr X Qs is a set of labeled
transitions, Fay C Qur is a set of final states, and ¢S, € Qus is the initial state.
If Qur is finite then M is called a Finite State Machine (FSM).

Moreover, a state ¢ € Qs is called: accessible, if there exists a path from
the initial state to q; co-accessible, if there exists a path from q to a final
state; intermediate, if ¢ ¢ Fy and Jpi,p2 € Qu, st (p1,a,9) € 0p and
(q,b,p2) € dpr, we denote by I(M) the set of intermediate states of M; hybrid,
if ¢ € Far, ¢ # qo and there exist at least one transition (g,b,p) € dpr, with
p € Qu and b € X, the set of hybrid states is denoted H(M) and terminal, if
q € Fjr and is not hybrid.

We consider here only FSMs where all states are both accessible and co-
accessible. We define the norm of a state ¢ as the finite length of the shortest
path from q to a final state. The norm of an FSM M, noted norm(M), is the
maximal norm of its states.



k-Tterated Product Machine (k-IPM) and Product State Machine (PCSM) We
start by defining the shuffle (asynchronous product) and union operations on
FSMs:

Definition 2. (Asynchronous product and Union of two FSMs)
Let M = (E[V[,QM,FM,Q%,(S]\/[) and M' = (EJW’,QJMHFM',(]%/[/,(SM/) be two
FSMs. We have :

— The shuffle or asynchronous product of M and M’', denoted M x M’,
is an FSM (E]M UE]\/[/,QJW X QJ\W;FM X F’]w/7 (q(l\)/bq?w/)?)‘) where the tran-
sition function X is defined as follows: A = {((q,4),a, (q1,¢1")) : ((¢;a,q1) €
om and ¢' = q;) or ((¢',a,q1") € opr and g = q1)}.

— The union of M and M’, denoted M U M, is the FSM (Xpr U X U {e},
Qnm U Qn U{qo}, Far U Fnr, qo, 6 Udner U{(qos€,4%,), (q0,€,0%)})-

For a set of available FSMs R = { My, ...M;}, we consider a compact structure
that abstracts all possible executions that can be produced using the components
of R. First, we begin by the simple case where each M; can be used only once:

Definition 3. (Asynchronous product of FSMs set) The asynchronous
product of all the subsets elements of FSMs repository R = {My....M,} is the
FSM: ©(R) = Uqar,, v, yor (Miy X ..o x M) where j € [0, 4].
1oty I

Second, we consider the case where the number of copies of each M; € R is
bounded by an integer k:

Definition 4. (k-iterated product of FSMs set R) The k-iterated product
of R is defined by R® = R® -1 x &(R) with R® = &(R).

Finally, we consider the general case where the number of instances of each
M; € R is unbounded. This corresponds to the product closure of R [7]:

Definition 5. (Product closure of FSMs set) The product closure of R,
noted R®, is defined as: R® = |55 R®:.

The Product Closure Machine (PCSM) of R, defined in [7] and proven
equivalent to R®, is the SM (X'r,Cre, Fc, co, Pre ), where:

L Xp = UMJ-GR E]VIJ;

2. Cre is the set of states (also called configurations of R®). Cre C N",
with: n = nr(R) + ng(R) with: n;(R) = Ya,erl|l(M;)| and ng(R) =
Y er|H(M;)|. For each configuration ¢, ¢[m] (the m' component of c) is
called a witness of the unique state ¢, € Qar;. Note that:

— ¢m is an intermediate state, if 1 <m < n;(R);
— ¢m is an hybrid state, if n;(R) +1 <m <n.
In an abuse of notation, we use ¢[m] and c¢[g,,| interchangeably.

3. Fe¢ is the set of final states. Fo = {¢ € Crelc[m] = 0, for each: 1 < m <
nr(R)}



4. ¢o = {0}" is the initial state of R®;

5. Pre C Cre X g x Cre is the set of transitions. we have (¢1,a,c3) € Pre
iff:

— there exists (qo, a,q) € Qu,, such that: gq is the initial state of M; and

calq) = c1lq) + 1 and co[p'] = ¢1[p’] for each p' # q.

— there exists (p, a,q) € Qu;, such that: ca[p] = ci[p] — 1, e2[q] = e1q] + 1
and co[p'] = ¢1[p'] for each p’ # p, q.

— there exists (p,a,q) € Qu;, such that: q is a final state or the initial
state, co[p] = c1[p] — 1 and ca[p’] = c1[p'] for each p’ # p.

Simulation preorder We recall below the definition of the simulation preorder
between two SMs.

Definition 6. (Simulation)

Let M = (X, Qur, For, qg/f, Or) and N = (X, QM,FM,qg/[,(SM) be two SMs.
A state p € Qn is simulated by a state ¢ € Qn, denoted p<<(am,n) q (P<<q
when M and N are understood from context), iff the following two conditions
hold:

1. Ya € Xy and ¥Vp' € Qpr such that (p,a,p’) € O, there exists (q,a,q") € On
such that p'<<q’, and
2. if p e Fy, then g € Fiy.

M is simulated by N, denoted M<<N, iff the initial state of N simulates the
initial sate of M.

Observe that, by definition, each transition of a PCSM can at most increase
or decrease a configuration component by 1. In addition, if a configuration is
final then all intermediate states witnesses are equal to 0. Therefore, given a
set of FSMs R and ¢ € Cre, we have EQGUMieR 1(yyelg) < morm(c). Moreover,
since final states can only be simulated by final ones, then for M an FSM and
p € Qu, if p<<c then norm(c) < norm(p). Hence, we are able to derive the
following property.

Property 1. (Intermediate witnesses bound) [7] For ¢ € Cre and p €
Qum, if p € ¢ then Yy, . raanelgl < norm(p). we denote C,J,\f@j = {c €

Cre |quUMi€R roupela) < morm(M)}.

In [7], the WSC problem in the unbounded case is reduced to simulation test
between an FSM and a PCSM and this later problem is proved to be decidable.
The proof of the termination of the algorithm given in [7] is based on the following

property:

Property 2. (configuration cover) [7] Let ¢ and ¢’ be two configurations of
R®, such that: ¢[m]| = '[m], m € [1,1] and c[m] < ¢'[m], m €]I, 1+ H|. if g<<c,
where q is a state of a SM M, then g<<c'.

we say that ¢’ covers ¢, denoted c<ic’.



We introduce below the algorithm of [7], focusing the presentation on the
structure of its execution tree.

Definition 7. (Simulation Tree)

We call a simulation tree Tsin,(M,R®) = (V,vo,E) with: vo = (¢%,c0)
is the root of the tree; V. C Qpn X C%Q@ is the set of modes; If (q,¢) €
V and q is final in M then so is c in R®; E C V x V is the set of the tree’s
edges. Ve = ((p,¢),(q,d)) € E: Ja € Xy s.t (p,a,q) € 0pr and (c,a,d) € Pre.
v = (p,c) € V is aleaf in Tsip(M,R®) iff p is terminal in A or there exists
(p,d) € P = {vg...v} such that c<c’ where P is the set of ancestors of v in
Tsim(M7 R®)

In the next section, we shall bound the size of this tree in the case of bounded
WSC problem (i.e., when the instances of services allowed to be used in the
simulation is bounded by a parameter k).

3 Bounded Composition

We call a bounded WSC problem, a service composition problem where the
number of copies of each web service in the repository R used to compose the
target M is bounded a priori by an integer k. This problem is formally stated
as follows.

Problem 1. Bounded Composition BC(M, R, k)

Input : R a set of FSMs; M a target FSM; k an integer.
Question : M<<R®*?

The particular case BC(M,R,1) has been investigated by Muscholl and
Walukiewicz [12] where it is shown to be Exptime-Complete. We shall prove
in this section that BC'(M, R, k) is also Exptime-Complete. We point out that
the straightforward reduction of BC(M, R, k) to BC(M,R,1), obtained by du-
plicating k times each service of R, is not polynomial in the input size, since k
may be large, and hence cannot be used to achieve our goal.

The parameter k drops the infinite aspect and reduces the search space. In
this case, a loop in M can only be simulated by loops in R. For example, one can
observe that, in figure 1, S; is not simulated by { Ry, R3}®k for every k € N. This
is because when we repeat the loop in Sy (k+1) times, there is no corresponding
execution in {Ry, R3}®k. However, we have S;<<{Rjy, R2}®k, for any k > 1.

In the following, we give an upper bound of the number of states that might
appear in R®*, with k € N.

Lemma 1. Let R be a set of FSM and k is an integer. The number of states in
R®* is bounded by | Cre, |<| {c € N* | c[i] < k,i € [1,n]} |= O(2™°9%)  where
n=|R|+n;(R)+ng(R).

This lemma reduces the search space to an exponential size and leads to the
following theorem.



Fig. 1. A yes instance of BC(M, R, k) with k = 1.

Theorem 1. BC(M,R,k) is Exptime-Complete

Proof. Exptime. To show that BC'(M, R, k) is Exptime, we bound the size of
the simulation tree. A node of the simulation tree corresponds to (g, c) where
q is a state of M and c a configuration of R®*. According to Lemma 1, the
number of PCSM’s configurations is bounded by k™. So the number of nodes in
the simulation tree is at most |Qp/| x k™ = 271e9(k)+log(IQul) and therefore the
complexity is in Exptime.

Exptime-Hardness. It can be deducted directly from the Exptime-Hardness
of the particular case BC(M,R,1) [12].

Another factor of complexity of the WSC problem is the number of hybrid states
in the available services. We investigate next the effect of this parameter on the
complexity of the WSC problem.

4 Bounded number of hybrid states

The presence of hybrid states is a source of complexity in a WSC problem. As
mentioned before, the size of intermediate states witnesses in configurations of
R® used to simulate M is bounded by norm(M). We are however unable to
provide a similar bound for the number of hybrid states witnesses. Figure 2
illustrates the different roles that an hybrid state of R can play to simulate a
state of M. Indeed an hybrid state of R, can be used as: (i) a terminal state,
e.g., when testing wether g5<<(1,1), we can consider the second hybrid state
of R as a terminal state and terminate the test, or an intermediate state, e.g.,
when testing wether go<<(1,1), the second hybrid state of R here plays the
role of intermediate state, or both a terminal and an intermediate state, e.g.,
when testing wether ¢; <<(1,0), a transition of @« labeled by (b, (—1,0)) only
appears in one branch in the simulation tree Ty, (M, R®). Hence, the first hybrid
state of R® is considered intermediate in one branch and terminal in the other,
or a hybrid state, e.g., when it is used to simulate an hybrid state of H(M).



Fig. 2. Example of the simulation tree

We consider in the following the problem defined below.

Problem 2. Unbounded Composition With limited number of Hybrid
States UCHS(M,R, k)

Input : k an integer; R a set of FSMs, containing at most k hybrid states; M a
target FSM.

Question : M<<R®?

It is worth noting that UCHS(M, R,k + 1) is harder then UCHS(M, R, k).
In the sequel, we progressively investigate the complexity of UCHS(M,R, k)
problem for k£ = 0, then for £ = 1 and finally for k& = 2.

4.1 Case of composition without hybrid states (i.e. k = 0)

In this section, we are interested by the problem UCHS(M,R,0). We first give
a polynomial transformation, denoted XC, which is used to reduce BC'(M,R,1)
to UCHS(N,R’,0). This transformation provides a mean to bound the number
of instances used to prove simulation.

Definition 8. Transformation K. For an FSM M = (X, Qur, Fary ¢, 0ur)
and a set of FSMs R = {M, ..., M., }, we define (M, R)=(N,R’'={N1, .., Ny })

where:

1. Each Nj; is built based on M;, by adding a letter t; to its alphabet, a final
state f; and a transition set {(q0" ti, f:)} U {(q,ts, fi)lg € Far,}. All final
states of M; become intermediate in N;.



2. N is defined as:
- EN:EMU{ti‘ISiSm};
- Qn =Qn U{ri|l <i<m};
- Fn ={rm};
-y =0y U {(q,tl,r1)|q S FM} U {(Ti,ti+1,Ti+1)|1 <i< m}

Figure 3 shows an example of a transformation K.

Fig. 3. An example of transformation K

The following propositions show that the transformation K preserves the
simulation preorder.

Proposition 1. Let M be an FSM, R = {M,..., M.} be a set of FSMs and
K(M,R)=(N,R' ={N1,..,Nn}). For p and q two states of respectively M and
R we have: P<<(M,(R)®1) 4 iﬁp<<(N,(R/)®1) q.
Proof. By construction of K(M,R), if p<<(yre1) ¢ and p is terminal in M
then P<<(w,(RH®1) ¢

We suppose next that:

If (p,a,p") € 6m, (q,0,q") € dger and p'<<(prre1) @5 then p'<<(y,(rr)e1)

and prove that P<<(N,(R)®1) ¢-

For each (p,a,p’) € dn, we have:



10

—if a € Xy, then there exists (¢,a,q') € dger C Jd(giye: such that p’
<<(v,(r7)®1) 4

— else a = t1, p' = r1 and q is a product of final states of R. therefore, there
exists (¢,t1,q') € Sryer such that ¢ = (f1,¢';,,....¢';,) where ¢;, is final
in R such that p'<<(y (rye1) ¢

We conclude that if p<<(j;ge1) ¢ then p<<(y (re1) ¢

Reciprocally, we have (p,a,p’) € dy (respectively digne,) and a ¢ {t;|1 <
i < m}iff (p,a,p’) € dp (respectively dre, ). In addition, the definition of K
ensures that if p is final in M and p<<(y,(r/)e1) ¢ then q is final in R¥®:. Hence
if p<<(N’(R/)®1) q then p<<(M$R®1) q.

In particular, we take p as the initial state of M and q the initial state of R®!.
This implies that:

Proposition 2. Let M be an FSM, R = {M,..., M;,} be a set of FSMs and
K(M,R) = (N,R' = {N1,..,Ny}). We have: M<<R®' iff N<<(R')®.

Proof. We have N<<(R')®1 iff N<<(R')®. Indeed, each path that starts from
the initial state to a final one in IV contains exactly one transition labeled by ¢;,

for each ¢ € [1,m] and a similar path in each N; contains exactly one transition
labeled by ¢;.

Hence, K is a polynomial reduction of BC(M, R, 1) problem to the UCHS prob-
lem. This enables to derive the following result.

Theorem 2. UCHS(M,R,0) problem is Exptime-complete.

Proof. According to proposition 2, the K transformation reduces BC(M, R, 1)
to UCHS(M,R,0) in polynomial time. Thus UCHS(M,R,0) is Exptime-hard.
Since it is also proven Exptime in [7], then UCH S(M, R, 0) is Exptime-complete.

4.2 Case of composition with one hybrid state

We consider the problem UCHS(M,R,1) where M is an FSM and R a set
of FSMs containing at most one hybrid state (ng(R) < 1). We denote kg =
|Q 4.2 (R)-leg(norm(M)) " Ty nodes (g,c¢) and (¢/,¢’) in a simulation tree are
called comparable if ¢ = ¢’ and either cac’ or ¢’<e. The nodes (g, ¢) and (¢, ¢)
are said incomparable otherwise.

Property 3. Let R be a set of FSMs containing at most one hybrid state. Two
configurations of R® are comparable by the cover relation, iff they have exactly
the same intermediate witnesses.

Property 4. Let S be a set of nodes of Ty, (M, R®) that are pairwise incompa-
rable, then |S| < ko.



11

Proof. In configurations considered in Ty, (M, R®), intermediate witnesses are
bounded by norm(M) (property 1). Therefore and according to property 3, the
number of incomparable configurations considered in Ty (M, R®) is at most
on1(R).log(norm(M)) “SQince S € Qar x Cre, then |S] < ko.

Proposition 3. If ny(R) < 1, then foreach (q,c¢) € Toim(M,R®), [l +1] <
ko?.

Proof. let P be a path in Ty (M, R®) and S = (v, = (G, ¢n))nernicy be a
sequence of nodes in P such that:

-v; is the i*" node met in P that is comparable to one of its predecessors
v = (gi, ¢); and

-For each 4,5 € Int, v; and v; are incomparable.

If Int = 0, then all nodes of P are not comparable. The size of P is then
bounded by ko, therefore, c[I + 1] < kg for each (q,c) in P.

We suppose next that I # () and take Int = [1,k], k& € N. We prove
recursively that for each n € [1,k], ¢, [T + 1] < n.ko.

For n =1, we have ¢1[I + 1] < k.
For 1 < n < k, we suppose that ¢,[I + 1] < n.kg. Each node v = (g, ¢) between
vy, and vy, 41 in P is either:

1. comparable to a node v; with ¢ € [1,n]. In this case, ¢[I+1] < ¢;[I+1] < n.kg
(otherwise v should be a leaf).

2. incomparable to all its predecessors. The number of such nodes is bounded
by ko. And since transitions displacements is in {—1,0, 1}I +1. then we have
c[I +1] < n.kg + ko.

Therefore ¢, 1[I + 1] < (n+1).K,.

Once we reach vy, all its possible successors are comparable to a node v; with
el +1] < ¢[I + 1], except for the last one that is the leaf of P.

Finally, since k < ko (because S is a sequence of incomparable nodes), we
conclude that each node of P is in Q4 x ([1,norm(A)]! x [1, ko?]).

Since deciding simulation only requires to visit a node once, we argue next
that this problem is in APspace: the size of a position of the simulation tree is
polynomial in the input size (Proposition 3). Hence a polynomial space alter-
nating turing machine can solve this simulation problem: universal states corre-
spond to the target’s and existential states correspond to the shuffle product’s
configurations. Given the above, we conclude that:

Lemma 2. UCHS(M,R,1) is in Exptime.

To prove the Exptime-hardness of the problem, we recall that UCHS(M, R, 0) is
Exptime-hard (theorem 2) and that UCHS(M, R, 1) is harder than UCH S (M,
R, 0).

Theorem 3. UCHS(M,R,1) is Ezptime-complete.



12

4.3 Case of composition with two hybrid states

In this section, we consider the problem of unbounded composition of web ser-
vices with at most 2 hybrid states in R, i.e. UCHS(M,R,2). Our approach is
based on relating this simulation problem to the reachability issue.

For x € Nt and y € N2, we denote the concatenation of two vectors x and
y, (z.y) € N1+i2 guch that:

2 Jlilif e[l i
()bl = {y[ﬂ if 5 € lin+ 1,01 +io]
We define the 2-dimension Vector Addition System with States (VASS) [8]
Vu,r as follows:

— States: S C Qu x {c € Nu(R)] Zi?l(n) cli] < norm(M)}.

— Transitions: W C S x S x {—1,0,1}? such that:
((g,¢), (p,d),z) € W iff there exists a € Yy, y € N? such that (p,a,q) €
Qu and ((¢,y),a,(d,y + z)) € Pre and =R ¢[i] < norm(M) and
szln(R) d[i] < norm(M).

— Initial configuration: the system starts with the state (¢!, {0}"/(®)) and the
vector (0, 0).

Figure 4 depicts an example of a VASS associated to an FSM M and a set of
FSMs R.

M R Vur
(](]A,O (110) q ,0
0,0 | (0,-1) (-1,0)
(0.1) 9,0 (1,0) 10
a0 q3,0 (7; 0
(0,-1)
rfJ471

Fig. 4. An example of a VASS associated to an FSM M and an FSMs set.

The reachability issue in 2-dimension VASSs has been investigated by
Hopcroft and Pansiot [8] in the general case where displacements are in N2.
[8] gives an algorithm to prove the semi-linearity of the reachability set of such



13

systems. The algorithm builds a tree Tp.eqcn labeled by 3-tuples (p, ¢, A.) where
p is the current state, ¢ € N? is a vector reached in the system and A. C N2
(p, ¢, A.) denotes that every vector in the linear set {c + aja; + ... + apa,li €
[1,n],a; € Ac and a; € N} can be reached in state p from the initial configura-
tion.

We consider in the following a simulation tree Ty;m, (M, R®)=(V, v, E), a
recheability tree Tyeqen(Var,r)=(V’, vj, E') and a function 7 defined as follows:

T %4 — \%4
((ps )z, Az) = (p, (c.x))

The following proposition enables to establish a connection between paths in
a simulation tree and a corresponding recheability tree.

Proposition 4. Let i = vg...vs be a path in Teim(M,R®). Then there exists a
path @' = vi.. vy in Treach(Vam,r) such that v; = w(v}), © € [0,t].

Proof. We proof by induction on the length i of the path pu = vg...v;.

For i = 0 we have vg = (¢}, co) = 7((g}!, {0} (R)), zg, Apy) = 7(v}).

Now suppose that the property is true for i < ¢ and vg...v;41 is a path in
Tsim (M, R®). Then by hypothesis there exists a path v{...v} in Treacn(Varr)s
such that v; = 7(v}), j € [0,14].

Suppose that v] is a leaf in Tyeqen(Var,r). Then according to the algorithm
of Hopcroft and Pansiot [8], we have either:

— There exist j € 0,7 — 1] such that v} = ((p,c),y, Az) and v; = ((p,c), v, Az)
with y < z (see Algorithm ?7?, line 1). This implies that v;<w;, which con-
tradicts that v; is not a leaf in Ty, (M, R®), i.e. (¢,y)<(c, x).

— There is no transition from v} in the system (see Algorithm ?7?, line 1).
But for v; = (p,(c,z)) and vi41 = (¢, (d,y)) we have v;v;41 € E which
means that (p,a,q) € dy and ((¢,z),a,(d,y)) € Pre. This implies that
((p,c), (q,d),y —x) € W. Contradiction.

Therefore, we have : v§+1 = ((q,d),y, Ay) is a successor of v in Treqen(Var,r),
with v;11 = (g, (d,y)). We conclude that u is a path in Tyeqern(Varr)-

The following corollary is a consequence of Proposition 4.
Corollary 1. Ty (M, R?®) is a sub-tree of Treach(VM,R)-

Clearly the time complexity for computing Ty, (M, R®) is dominated by
the complexity of computing Tyeqen,(Var,r). Moreover we know from [9] that the
size of Tyeqcn(Var,r) is in 2-Exptime. Hence, we derive the following complexity
result.

Theorem 4. UCHS(M,R,2) is in 3-Exptime.
Proof. According to [9], the size of Treqen,(Vam,r) is of order 0(2%") where
a = max(|S|,|W|) < ¢ x (|Qun]| x Norm(M)"(R))2 with ¢ is a constant. Then

c14coxf
according to Corollary 1, the size of Ty, (M, R®) is bounded by 22"
¢1 and ¢y are constants and 8 = log(|Qwm|) + nr(R) x log(Norm(M)).

where



14

Our proof for Theorem 4 can be seen more as an embedding of the search
space explored by a simulation test to the one explored when the reachability
issue is considered. This is an approach that can not so far be generalized because
the best upper bound provided for vector addition systems reachability is non-
primitive recursive; in fact even the existence of a primitive upper-bound is still
open [10].

5 Conclusion

In this paper we have considered two parameters that are source of complexity
of the web services composition problem. We have shown that among the con-
sidered problems, several instances remain Exptime-complete when a parameter
is bounded. It remains an open question to identify whether the unbounded web
services composition problem is in X P, where X P is the complexity class that
contains all problems solvable in O(nf(*®) with n is the size of M and R, and f
is a recursive function. Since FPT C X P, it is interesting as well to investigate
what kind of fixed parameters can lead to FPT complexity.

References

1. Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services:
Concepts, Architectures and Applications. Springer, 2010.

2. B. Benatallah, F. Casati, and F. Toumani. Web Service Conversation Modeling: A
Cornerstone for E-Business Automation. IEEE Internet Computing, 08(1):46-54,
2004.

3. D. Berardi, D.Calvanese, G. De Giacomo, R. Hull, and M. Mecella. Automatic
composition of transition-based semantic web services with messaging. In VLDB,
pages 613-624, 2005.

4. T. Bultan, X. Fu, R. Hull, and J. Su. Conversation specification: a new approach
to design and analysis of e-service composition. In WWW’03. ACM, 2003.

5. Sgren Christensen. Decidability and decomposition in process algebras. 1993.

6. Jean-Baptiste Courtois and Sylvain Schmitz. Alternating vector addition systems
with states. In Mathematical Foundations of Computer Science 2014, pages 220—
231. Springer, 2014.

7. Ramy Ragab Hassen, Lhouari Nourine, and Farouk Toumani. Protocol-based web
service composition. In ICSOC, pages 38-53, 2008.

8. John Hopcroft and Jean-Jacques Pansiot. On the reachability problem for 5-
dimensional vector addition systems. TCS, 8(2):135-159, 1979.

9. Rodney R Howell, Louis E Rosier, Dung T Huynh, and Hsu-Chun Yen. Some com-
plexity bounds for problems concerning finite and 2-dimensional vector addition
systems with states. T'CS, 46:107-140, 1986.

10. S Rao Kosaraju. Decidability of reachability in vector addition systems (prelimi-
nary version). In Proceedings of the fourteenth annual ACM symposium on Theory
of computing, pages 267-281. ACM, 1982.

11. Slawomir Lasota. Expspace lower bounds for the simulation preorder between
a communication-free petri net and a finite-state system. Inf. Process. Lett.,
109(15):850-855, 2009.



15

12. Anca Muscholl and Igor Walukiewicz. A lower bound on web services composition.
Logical Methods in Computer Science, 4(2), 2008.



