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ABSTRACT 

This paper presents various extensions of the so-called two-flux models for prediction of 

reflectance and transmittance of diffusing media, i.e. the Kubelka-Munk model, introduced in 

[HDI062], and the extension of Kubelka-Munk for stacks of diffusing layers. A first matrix 

formulation of the Kubelka-Munk differential equations leads to a matrix framework based on 

transfer matrices, which can be extended to stacks of diffusing layers, stacks of nonscattering 

films, and stacks of scattering and non-scatterings films as a generalization of the Williams-

Clapper model for prediction of the reflectance of paper photographs, each of these 

configurations being illustrated through various examples. This paper also exposes the limits 

of the two flux approach and shows that the matrix formalism extends in a straightforward 

manner to multiflux models, where the size of the matrices is increased.    

1. INTRODUCTION 

Although prints and paints are often considered as “surfaces”, they are actually made of 

various layers of more or less scattering and absorbing media. This is obvious in printing 

where a strongly scattering substrate (e.g. paper) is coated with absorbing, almost non-

scattering substances (inks). In glaze painting, the board is first coated with a white diffusing 

paint layer aimed at reflecting light in a uniform way in every direction; it is then coated with 

several absorbing layers, almost nonscattering, for coloration; it is finally coated with a clear 

varnish for protection [1, 2]. More complex structures may be found everywhere, for example 

photos under glass or books covered by a protection film: light is reflected multiple times 

between the colored object and the protecting element, thus changing the color rendering of 
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the object. Optical models predicting the color rendering of transparent films, glass plates, 

paints or printed papers taken individually are relatively well known (see [HDI062], Section 

4.2, and [HDI051]). However, the combination of these models, necessary when various 

elements are on top of each other, is less common. In many cases, i.e. when each of the 

stacked elements is strongly scattering or non-scattering, the spectral reflectance or 

transmittance of the object can be predicted using a two-flux model describing the forward 

and backward propagation of fluxes and their mutual exchanges due to scattering in layers 

and reflections by their interfaces. The two-flux approach is theoretically permitted when the 

angular distribution of light does not vary after several reflections between the stacked 

elements [3]: this is the case for strongly scattering layers illuminated by a Lambertian flux, 

addressed in Sections 2 and 3, and for nonscattering layers illuminated by a collimated flux, 

addressed in Section 4. The two-flux approach also enables addressing stacks where strongly 

scattering layers and non-scattering layers are alternated (Section 5).  

In its classical form introduced by Kubelka and Munk [4, 5], the two-flux model is expressed 

in terms of flux attenuations due to scattering and absorption, parameterized by scattering and 

absorption coefficients. The flux attenuations in infinitesimal sublayers are written under the 

form of scalar differential equations, or equivalently under the form of one vector differential 

equation, involving an attenuation matrix, presented in Section 2. By integrating this vector 

differential equation, the incoming and outgoing fluxes at both sides are related through one 

matrix, which models the flux transfers between each other and is thus qualified as transfer 

matrix. This transfer matrix formalism is shown to be very convenient when different media 

are coated upon each other, or when several slides of media are stacked to each other. As 

Kubelka in his paper of 1954 dedicated to non-homogeneous layers [6], the matrix model can 

be extended to reflecting-transmitting components with distinct reflectances on their two 

sides. The transferred flux fractions are thus represented by the reflectances and 

transmittances of the layers, and possibly of their interfaces, which can be either predicted or 

deduced from spectral measurements. Layers may have any thickness (provided they are 

thicker than the coherence length of the incident light) and may be themselves composed of 

various elements. Several examples will be developed in Section 3 to 5, illustrating the easy 

computation of the reflectance and transmittance of stacked elements knowing, by 

measurement or by prediction, their individual reflectances and transmittances. The matrix 

formalism has also the advantage to be easily extensible to multiflux when several directions 

of light need to be treated in parallel, as shown in Section 6 in the case of homogenous layers.   
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2. REVISITING THE KUBELKA-MUNK MODEL (TWO-FLUX MODEL) 

This section revisits the Kubelka-Munk model whose classical formulation has been 

introduced in [HDI062], Section 7. We present here a matrix formulation of the differential 

equations which simplifies the computation of reflectance and transmittance of homogenous 

scattering layers and enables appreciable extensions. 

2.1. Matrix method to solve the Kubelka-Munk differential equation system 

The Kubelka-Munk model considers a thin slice of diffusing medium whose thickness dz  is 

small compared to its two other dimensions. Let us denote as j  a diffuse light flux oriented 

upwards (increasing altitude z ) and as i  a diffuse light flux oriented downwards (decreasing 

altitude z , see Figure 1). We assume that all variations of the light fluxes are only due to 

absorption and scattering. We denote as K the linear absorption coefficient and as S the linear 

backscattering coefficient. Flux i and j, as well as coefficients K and S may be functions of the 

wavelength. In order to simplify the notations, we omit their dependence on wavelength and 

implicitly assume that they may have distinct values in the different wavebands of the visible 

spectrum. This also holds for every equation in this paper.  

 

Figure 1: Upwards and downwards fluxes in a layer of thickness h. 

While crossing the slice of medium, flux j  decreases by an amount ⋅ ⋅K j dz  due to 

absorption and also by an amount ⋅ ⋅S j dz  due to back-scattering. It increases by the amount 

of light ⋅ ⋅S i dz  lost by back-scattering if the flux i  while crossing the same slice of medium 

in the opposite direction: 

 ( )= − + ⋅ ⋅ + ⋅ ⋅dj K S j dz S i dz  (1) 

Analyzing flux i  leads to a similar equation. Since the orientation of this flux is opposite, 

negative signs are introduced: 

 ( ) ( ) ( ) ( )= ⋅ ⋅ − − + ⋅ ⋅ − = − ⋅ ⋅ + + ⋅ ⋅di S j dz K S i dz S j dz K S i dz  (2) 
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Note that the Kubelka-Munk model does not distinguish between forward scattered light and 

light that wasn’t deviated. In other words, this model makes no distinction between a 

transparent medium, i.e. an absorbing but not scattering medium, and a hazy medium where 

scattered light reduces the contrast of objects viewed through it. Haze is the percentage of 

transmitted light that is scattered so that its direction deviates more than an angle of 2.5° 

(0.044 rad) from the direction of the incident beam [7].  

Combining equations (1) and (2) yields a system of differential equations: 

 
( )

( )

 = − + +

 = − + +


dj K S j Si
dz
di Sj K S i
dz

 (3) 

There are several ways to solve this system of equations. This chapter will focus on a matrix 

based approach that enables addressing more advanced models. Let us look at the system of 

equations (3) as a differential equation in a vector space which can be written: 

 ,
   

= ⋅   
   

K S
j jd
i idz

M  (4) 

where ,K SM  denotes the matrix of Kubelka-Munk coefficients, or “attenuation matrix”: 

 ,
( )

( )
− + 

=  − + 
K S

K S S
S K S

M  (5) 

Before solving equation (4), let us first recall that the solution for a scalar differential equation 

of the first order of the form 

 = ⋅
du m u
dz

  

is 

 ( ) ( ) ( )0
0

−= m z zu z e u z .  

Similarly, the solution for the vector differential equation (4) is  

 
( )
( )

( )
( )

0
0

0

( )
exp ( )

( )
− +     

= − ⋅     − +     

j zj z K S S
z z

i zi z S K S
 (6) 

where ‘exp’ here denotes the matrix exponential function defined by the series: 

 ( )
2 3

0
exp ...

! 1! 2! 3!

∞

=

= = + + + +∑
i

i i
M M M MM I  (7) 
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where I denotes the 2×2 identity matrix.  

Thus, by integrating the vector differential equation (4) between 0 0=z  and =z h , one 

obtains the following equation relating fluxes i and j at the altitudes 0 and h: 

 
( )
( )

( )
( ), ,

0
0

   
= ⋅   

   
K S h

j h j
i h i

M  (8) 

with 

 , , ,exp ( 0) = ⋅ − K S h K S hM M  (9) 

Note that the matrix ,K SM , expressed in terms of the scattering and the absorption 

coefficients, has a physical dimension in 1−m , whereas , ,K S hM   is dimensionless. This matrix 

relates the incoming and outgoing fluxes in the layer and models the flux transfers from each 

other. It can thus be qualified as “transfer matrix”, a concept that will be generalized in 

Section 3.  

The exponential of a square matrix always exists and satisfies several interesting properties 

[8]: 

− The exponential of the zero matrix O is the identity matrix: 

 exp( ) =O I  

− Let 1−= ⋅ ⋅M A B A , then 

 ( ) ( ) ( )1 1exp exp exp− −= ⋅ ⋅ = ⋅ ⋅M A B A A B A  

− Let A and B be two matrices that commute with each other, i.e. ⋅ = ⋅A B B A , then the 

exponential of the sum equals the product of the exponentials: 

 ( ) ( ) ( ) ( ) ( )exp exp exp exp exp+ = ⋅ = ⋅A B A B B A  

− The inverse of ( )exp M  is ( )exp −M . 

 ( ) ( ) ( ) ( ) ( )1exp exp exp exp exp−
⋅ = ⋅ − = − =  M M M M M M I  

− Let x be an real number, then 

 ( ) ( )exp exp⋅ =   
xx M M  

− The exponential of a diagonal matrix is a diagonal matrix whose entries are the 

exponential of the entries of the matrix (we will use this fundamental property to compute 

, ,K S hM  introduced in equation (8)): 
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 ( )( ) ( )1
1exp diag ,..., diag ,...,= nvv

nv v e e . 

,det( )−K S vM I  yields the characteristic polynomial of the matrix ,K SM  defined by (5): 

 2 2
,det( ) 2− = − −K S v v KSv KM I  (10) 

whose two roots are the two eigenvalues of ,K SM : 

 2
1 2= − +v K KS  (11) 

and 

 2
2 2= +v K KS  (12) 

 Assuming 1
,

−= ⋅ ⋅K SM V D V  where ( )1 2diag ,= v vD  is a diagonal matrix, and 

 
2

2

( ) 2

( ) 2

 + + + =
 + + + 

K S K KS S

S K S K KS
V , 

we have: 

 

( )
( )

1

2

, , ,

1

1

exp

exp

0

0

−

−

= ⋅

= ⋅ ⋅ ⋅

 
= ⋅ ⋅  

 

K S h K S

v h

v h

h

h

e

e

M M

V D V

V V

 (13) 

Finally, equation (8) can be written as the following matrix product: 

 
( )
( )

( )
( )

1

2

10 0
00

−    
= ⋅ ⋅ ⋅         

v h

v h

ej h j
i h ie

V V  (14) 

or equivalently as the following one: 

 
( )
( )

( )
( )

1

2

100
0 0

−
−

−

    
= ⋅ ⋅ ⋅         

v h

v h

ej j h
i i he

V V  (15) 

In this framework, the body reflectance ρ  of a layer is given by the ratio ( ) ( )/ρ = j h i h . The 

intrinsic transmittance τi  is the ratio of the downward oriented fluxes ( )0i  and ( )i h  in 

absence of upward incident flux, i.e. ( )0 0=j : 

 
(0) 0

(0)
( ) =

 
τ =  

 
i

j

i
i h

 (16) 

Therefore the following holds for a free standing medium: 
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( )
( ) ( )

1

2

1 00

0
− ρ   

= ⋅ ⋅ ⋅      τ    

v h

v h
i

ei h
i hi h e

V V   

i.e., by dividing both members of this equation with ( )i h ,  

 
1

2

1 00
1 0

− ρ   
= ⋅ ⋅ ⋅       τ    

v h

v h
i

e

e
V V  (17) 

A substrate of reflectance ρg  in optical contact with the layer of thickness h at the lower side 

( 0=z ) would impose a condition on the boundary ( ) ( )0 0= ρgj i : 

 
( )
( )

( )
( )

1

2

10 0
00

− ρ ρ   
= ⋅ ⋅ ⋅         

v h
g

v h

ei h i
i h ie

V V  (18) 

Developing equation (18) leads to the hyperbolic solution of the Kubelka-Munk model, see 

equation (26).  

2.2. The classic formulae of the Kubelka-Munk theory 

All classic formulae from the literature (e.g. Ref. [9]), can be derived from equation (14). Let 

us introduce  

 
+

=
K Sa

S
  (19) 

and  

 2 211 2= − = +b a K KS
S

  (20) 

under the assumption 0≠S . Note that  K and S, a and b are functions of wavelength. Since 

the eigenvalues 1v  and 2v  of ,K SM , given by equations (11) and (12), can be written −bS  

and bS  respectively, equation (14) can be written: 

 
( )
( )

( )
( )

10 0
00

−
−    

= ⋅ ⋅ ⋅         

bSh

bSh

ej h j
i h ie

V V  (21) 

with 

 
( ) ( ) 1

( ) 1 ( )
+ +   

= =   + +   

S a b S a b
S

S S a b a b
V  

and  

 1
2

( ) 11
1 ( )[( ) 1]

− + − 
=  − ++ −  

a b
a bS a b

V . 
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Developing equation (21) yields: 

 
( )
( )

( )
( )

( ) ( ) 01
2 0( ) ( )

− −

− −

 + − − −   
= ⋅     − + − −    

bSh bSh bSh bSh

bSh bSh bSh bSh

a b e a b e e ej h j
bi h ie e a b e a b e

 (22) 

Note that in the particular case of absence of scattering ( 0=S ), equation (22) does not apply. 

We need to go back to equation (13), which simplifies as follows: 

 
( )
( )

( )
( )

0 0
00

−    
= ⋅         

Kh

Kh

ej h j
i h ie

 (23) 

2.3. Layer in optical contact with a background 

Many practical cases, for example inks or paints deposited on a substrate, can be seen as 

layers in optical contact with a background with given reflectance ρg  (Figure 2).  

 

Figure 2: Upwards and downwards fluxes in a layer in optical contact with a background. 

The boundary condition at 0=z  can be written  

 (0) (0)= ρgj i  (24) 

Substituting equation (24) in equation (22) yields: 

 
(1 )sinh( ) cosh( )( )

( ) ( )sinh( ) cosh( )
− ρ + ρ

ρ = =
−ρ +

g g

g

a bSh b bShj h
i h a bSh b bSh

 (25) 

In the case where 0≠bSh , equation (25) can be written: 

 
( )
( )

1 coth
coth

−ρ −  ρ =
−ρ +

g

g

a b bSh
a b bSh

 (26) 

Equation (26) is the hyperbolic solution of the Kubelka-Munk equations. In absence of 

scattering ( 0=S ), equation (23) yields: 
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 2−ρ = ρ Kh
ge  (27) 

Two special cases of interest are the reflectances  0ρ  and 1ρ  of a layer in optical contact with 

an ideal black background ( 0ρ =g ), and with an ideal white background ( 1ρ =g ) 

respectively. In the case of the black background, equation (26) becomes: 

 
( )

( ) ( ) ( )0
sinh 1

sinh cosh coth
ρ = =

+ + ⋅
bSh

a bSh b bSh a b bSh
 (28) 

and in the case of the white background, it becomes: 

 
( ) ( )
( ) ( )

( )
( )1

(1 )sinh cosh 1 coth
( 1)sinh cosh 1 coth
− + − + ⋅

ρ = =
− + − + ⋅

a bSh b bSh a b bSh
a bSh b bSh a b bSh

 (29) 

Note that equation (28) can also be written 

 ( )
0

1coth⋅ = −
ρ

b bSh a . (30) 

and equation (29) can thus be written 

 
( )

( )
0

1
0

1 2 1 /
1 / 1

− + ρ
ρ =

ρ −
a

 (31) 

or, using the defining expression (19) for a,  

 1
1

0

1 11
2
 + −ρ

= = +ρ + ρ 

K Sa
S

 (32) 

This equation (32) which by definition relates K  and S  to 1ρ  and 0ρ  is an important result 

of the Kubelka-Munk theory.  

Another important result is obtained by substituting relations (30) and (32) in equation (26):  

 
( ) ( )1

0 1 00

0

0

11 1 1
1 1

1 1

  −ρ +ρ −   ρ −ρ +ρ ρ −ρρ  ρ = =
−ρ ρ−ρ

ρ

g
g g

gg

 (33) 

This equation (33) allows for predicting the reflectance ρ of the layer on a substrate of 

reflectance ρg , knowing 0ρ  and 1ρ . 

In the case of paints, ρg , 0ρ  and ρ  are easily determined by experimental means. The paint is 

applied to a contrast card as shown in Figure 3, made of a light area of reflectance ρg  and a 

dark area that behaves like an ideal black background. The dark area covered by paint directly 

provides the reflectance 0ρ . The light area covered by paint has a reflectance ρ. Once 0ρ , ρg  
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and ρ have been measured, we can deduce the reflectance 1ρ  of the paint applied on an ideal 

white background using the following formula, which comes from equation (33):  

 
( ) ( )

( )
0 0

1
0

1 1
1

ρ −ρ ρ −ρ −ρ
ρ =

ρ −ρ
g g

g
 (34) 

 

Figure 3: Contrast card with white and black areas used to determine 1ρ  and 0ρ . 

Note that the reflectances ρ , 0ρ , 1ρ , and ρg  are all functions of wavelength.  

2.4. Intrinsic transmittance of a layer with defined thickness  

The intrinsic transmittance of the layer of thickness h, defined by equation (16), can be 

expanded as follows, according to equation (22): 

 
(0) 0

(0) 2
( ) sinh( ) cosh( )( ) ( ) −

=

 
τ = = =  ++ − − 

i bSh bSh
j

i b b
i h a bSh b bSha b e a b e

 (35) 

2.5. Infinitely thick layer 

A layer of thickness h can be considered as “infinitely thick” when adding another layer of the 

same medium with finite thickness X does not modify its body reflectance, denoted as ∞ρ . 

One can thus write: 
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( )
( )

( )

( )

( )
( )

( )
( )

1

2

1 1

2 2

1

2

1

2

1

1

1

1

, ,

0 (0)
(0)0

0 0 (0)
(0)0 0

0

0

0

0

+
−

+

−

−

∞−

 +    = ⋅ ⋅ ⋅    +     
     

= ⋅ ⋅ ⋅ ⋅             
   

= ⋅ ⋅ ⋅       
  ρ 

= ⋅ ⋅ ⋅       

= ⋅

v X h

v X h

v X v h

v X v h

v X

v X

v X

v X

K S X

j X h e j
i X h ie

e e j
ie e

j he
i he

i he
i he

i

V V

V V

V V

V V

M ( )
1
∞ρ 

 
 

h

 (36) 

Furthermore, one has: 

 
( )
( )

( )
( ) ( )

1
∞ ∞+ ρ ⋅ + ρ     

= = +     + +     

j X h i X h
i X h

i X h i X h
 (37) 

which therefore means, by identification of equations (36) and (37) 

 ( ) ( ), , 1 1
∞ ∞ρ ρ   

⋅ = +   
   

K S X i h i X hM  (38) 

In linear algebra, equation (38) means that the column vector ( ,1)∞ρ  is an eigenvector of 

, ,K S XM  attached to the positive eigenvalue 2
2 2λ = +K KS . Another eigenvector attached 

to this eigenvalue is ( )2, ( ) 2+ + +S K S K KS . The two vectors being collinear, one thus has 

 
2

det 0
1 ( ) 2

∞ρ 
=  + + + 

S

K S K KS
  

which yields the following expression for ∞ρ  as a function of K and S , well-known in the 

literature [9],  

 
2

1 2∞
 ρ = + − + 
 

K K K
S S S

 (39) 

Following equation (39), the ratio of K to S can be expressed as a function of ∞ρ : 

 
2(1 )

2
∞

∞

−ρ
=

ρ
K
S

 (40) 
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Equation (40) is the most famous result from the Kubelka-Munk theory, widely used in the 

paper and textile industry. Other important results introduced above are listed in the next 

section.  

2.6. Most important formulas 

The Table below summarizes the most important formulas issued form the Kubelka-Munk 

theory.  
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Table 1: Remarkable results from Kubelka-Munk theory 

Parameter a as a function of the absorption coefficient K and 
the scattering coefficient S 

+
=

K Sa
S

 

Parameter b 2 211 2= − = +b a K KS
S  

Hyperbolic solution of the Kubelka-Munk equations, for a 
layer on a background with reflectance ρg  [equation (26)] 

1 ( coth( ))
coth( )

−ρ −
ρ =

−ρ +
g

g

a b bSh
a b bSh

 

Reflectance of a layer on an ideal black background 
( 0ρ =g ) [equation (28)] 0

1
coth( )

ρ =
+ ⋅a b bSh

 

Reflectance of a layer on an ideal white background 
( 1ρ =g ) [equation (29)] 

( )
1

1 coth
1 coth( )

− + ⋅
ρ =

− + ⋅
a b bSh

a b bSh
 

Parameter a  as a function of 0ρ  and 1ρ  [equation (32)] 1

0

1 11
2
 + ρ −

= = − ρ 

K Sa
S

 

Reflectance of a layer on a background with reflectance ρg  
as a function of 0ρ  and 1ρ  [equation (33)] 

( ) ( )0 1 0

0

1 1
1

ρ −ρ +ρ ρ −ρ
ρ =

−ρ ρ
g g

g
 

Reflectance of a layer on an ideal white background as a 
function of the reflectance ρ of this layer on some 
background with reflectance ρg  and of 0ρ  [equation (34)] 

( )0 0
1

0

1 (1 )
(1 )

ρ −ρ ρ −ρ −ρ
ρ =

ρ −ρ
g g

g
 

Intrinsic transmittance τi  of a layer [equation (35)] sinh( ) cosh( )
τ =

+i
b

a bSh b bSh
 

Reflectance ∞ρ  of an infinitely thick layer as a function of 
the  /K S  ratio [equation (39)] 

2

1 2∞
 ρ = − = + − + 
 

K K Ka b
S S S

 

/K S  ratio as a function of ∞ρ  [equation (40)] 
2(1 )

2
∞

∞

−ρ
=

ρ
K
S

 

 

2.7. Matrix formulation of the Saunderson correction 

Section 7.5 in [HDI062] introduced the Saunderson correction that accounts for the multiple 

internal reflections that occur at the interface located at the altitude h between air (medium 0) 

and the layer (medium 1), assumed to be flat. The equations (120) in [HDI062] written at 

altitude h  can also be turned into a matrix form, by recalling that the reflectance for diffuse 
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light of the interface at the air side is 01r  defined by equation (37) in [HDI062] as a function 

of the index of the medium; the transmittance from medium 0 to medium 1 is 01 011= −t r , the 

transmittance from the medium 1 to the medium 0 is 

 10 012
1

=t t
n

 (41) 

where n is the relative refractive index of the media, and the reflectance at the side of medium 

1 is 10 101= −r t .  

 

Figure 4: Reflection and transmission of diffuse fluxes at the air-layer interface. 

Let us denote as ( )′i h  and ( )′j h  the respectively downward, and upward fluxes in air (Figure 

4). The downward and upward fluxes in the layer are ( )i h  and ( )j h . One can write the two 

following equations 

 
( ) ( ) ( )

( ) ( ) ( )
01 10

01 10

′= +

′ ′= +

i h t i h r j h
j h r i h t j h

 (42) 

which may written in a matrix form: 

 
( )
( )

( )
( )

01 10

01 10

0 1
1 0

−′      
=      − ′      

t rj h j h
r ti h i h

 (43) 

This vector equation yields: 

 
( )
( )

( )
( )01

′   
=   ′   

j h j h
i h i h

f  (44) 

with 

 01 10 01 10 01
01

1001

1
1

− 
=  − 

t t r r r
rt

f  (45) 
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or equivalently, according to the relations between reflectances and transmittances of the 

interface: 

 

( )

( )

2
01

012
01

01 01
2

1 1
1

1 1
1 1

 − +
 
 =

−  −
− 

 

r n r
n

r r
n

f  (46) 

When considering the layer and its interface with air, the combination of the equations (44) 

and (8) yields:  

 
( )
( ) 01 , ,

(0)
(0)

′   
= ⋅ ⋅   ′   

K S h
jj h
ii h

f M  (47) 

We see through this equation (47) that the matrix model enables expressing the superposition 

of two reflecting-transmitting components (here a flat interface and a diffusing layer) by the 

product of matrices attached to each of them. This interesting property will be developed and 

generalized in Section 3, where the matrices are given the name of “transfer matrices”.  

Note that the reflectances and transmittances of a rough interface are numerically very close 

to those of a flat interface, tabulated in Appendix B of [HDI062] for various refractive 

indices.  Note also that equation (47) applies to diffuse fluxes only. Most measuring devices 

use at least one collimated beam of light. This needs to be accounted for when considering a 

particular measuring geometry. 

2.8. Limitations of the Kubelka-Munk model 

In order to illustrate the limits imposed by the assumptions made in the Kubelka-Munk 

framework, let us consider two extreme cases where reflectance 0ρ ≈  and transmittance 

0≈t . 

A dark piece of film has a high absorption ( 0K  ) and no scattering 0=S . Its high 

absorption makes it almost opaque. However, it can be used to observe very bright objects, as 

for instance, the filament of a light bulb. The absence of scattering yields a sharp picture. A 

piece of black cardboard has a high absorption 0K   and a high scattering 0S  . An 

observer will not be able to distinguish a sharp picture while observing a bright object behind 

the piece of cardboard. 

The Kubelka-Munk theory successfully predicts the reflectance and transmittance of a 

material assuming the light fluxes remain Lambertian through the medium. If this assumption 
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does not hold, the absorption and scattering coefficients computed from the reflectance and 

the transmittance does not correspond to the properties of the medium [10]. The Kubelka-

Munk equations predict large absorption and scattering coefficients in both cases described 

above.  

This limitation makes the Kubelka-Munk theory inapplicable to media where light fluxes are 

not always lambertian. The theory can be applied to paint where scattering is strong and 

guarantees the lambertian distribution, but not to inks where transparency favors collimated 

light fluxes. 

Let us consider another special case where non-absorbing transparent film ( 0=K ) contains 

small scattering particles that induce forward scattering. Such a film looks blurry. An 

observer would not be able to distinguish a sharp picture when putting this film in front of 

him. Surprisingly, the scattering coefficient S would be zero since it represents back-

scattering only. Actually, this scattering coefficient is not exactly zero but very small. As the 

thickness of the layer tends to infinity, backscattered flux produced by multiple scattering 

may become well perceptible.   

3. MATRIX MODEL FOR STACKS OF DIFFUSING LAYERS  

In 1954, Kubelka published an extension of the Kubelka-Munk model in case of non-

homogeneous layers [6]. When several layers are stacked together, Kubelka derived 

expressions for the reflectance and transmittance of the stack as functions of the individual 

reflectances and transmittances of the layers. These expressions were first derived for two 

layers according to a simple method based on geometrical series. However, this method 

becomes rapidly tedious when the number of layer increases. Pursuing the matrix formulation 

introduced in Section 2 in the context of the Kubelka-Munk model, we propose here to 

generalize the concept of transfer matrices relating the upward and downward fluxes entering 

and exiting the layers, which appeared through the definition of matrix  , ,K S hM  in equation 

(8). In this section, we also consider, like Kubelka in his paper, non-homogenous layers, i.e. 

layers having different reflectance at their front and back sides, which is not allowed in the 

original Kubelka-Munk model.  

Throughout this section, the following notations are used: the layers are labeled with a 

number 1,2,...=k  incremented in the order of superposition. The reflectances of their front 

face (“front reflectance”) and back face (“back reflectance”) are denoted respectively as ρk  
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and ′ρk . These two reflectances are a priori different due for example to a gradient of 

absorption coefficient across the thickness of the layer. Their transmittances are denoted as τk 

and ′τk  when light transits from front to back (“forward transmittance”), and respectively 

from back to front (“backward transmittance”). In practice, the transmittances τk and ′τk  are 

identical according to Kubelka’s nonpolarity principle for transmittance. However, we 

propose to maintain a distinction between the two notations. Downward and upward fluxes 

are respectively denoted using letters i and j. Subscripts 0,1,...=k  correspond to their 

position in the stack: 0 when the flux is in the surrounding medium at the front side, 1 when it 

is between layers 1 and 2, and so on. Figure 5 shows an example for two layers.  

  

Figure 5: Kubelka’s model described the reflections and transmissions (dashed arrows) of Lambertian fluxes 
(white arrows) between nonsymmetric diffusing layers. 

3.1. Transfer matrices 

Let us consider one layer, for example Layer 1 in Figure 5. By describing how each flux 

contributes to each other flux, we obtain the following relations: 

 0 1 0 1 1′= ρ + τj i j  (48) 

 1 1 0 1 1′= τ + ρi i j  (49) 

which may also be written  

 01 1 1

01 1 1

0 1
1 0

′τ −ρ     
=     ′−ρ τ     

j j
i i

 (50) 

or  

 0 1 1 1 1 1 1

0 1 11

1
1

′ ′τ τ −ρ ρ ρ    
=    ′−ρτ    

j j
i i

 (51) 
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The matrix in equation (51), denoted as M1, is the transfer matrix attached to layer 1 

 1 1 1 1 1
1

11

1
1

′ ′τ τ −ρ ρ ρ 
=  ′−ρτ  

M  (52) 

This line of reasoning  stands for any layer (or interface, see Section 2.7). It also stands for a 

group of layers (or of layers and interfaces), for example for the two layers described in 

Figure 5. Let us denote as 12ρ  their global front reflectance, 12τ  their forward transmittance, 

12′ρ  their back transmittance and 12′τ  their upward transmittance. We have:  

 0 12 12 12 12 12 2

0 12 212

1
1

′ ′τ τ −ρ ρ ρ    
=    ′−ρτ    

j j
i i

 (53) 

The matrix in equation (53), denoted M12, is the transfer matrix attached to the two layers. 

We can also write the equalities: 

 0 1 2
1 1 2

0 1 2

     
= = ⋅     

    

j j j
i i i

M M M  (54) 

which show that the transfer matrix of two layers is the product of the individual transfer 

matrices of the layers. This was already noticed in Section 2.7, equation (47). Note that the 

left-to-right position of the matrices in the product reproduces the forward position of the 

corresponding layers. This also holds for many layers, i.e. for any integer k 

 123... 1 2 3...=k kM M M M M  (55) 

This matrix product for successive layers extends the product of the transmittances of 

successive nonscattering layers according to Beer’s law.  

Every transfer matrix, even when obtained by a product of transfer matrices, has the same 

structure of the form: 

 
1

1
′ ′ττ −ρρ ρ 

=  ′−ρτ  
M  (56) 

From a given transfer matrix { }= pqmM , we retrieve the front reflectance ρ, back reflectance 

′ρ , downward transmittance τ and upward transmittance ′τ  in the following way:   

 

( )

12 22

22

21 22

22

/
1 /

/
det /

ρ =
τ =
′ρ = −

′τ =

m m
m
m m

mΜ

 (57) 

where the symbol ‘det’ denotes the determinant of the matrix.   
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Note that similar transfer matrices are used in wave optics to model the propagation of 

electric fields [12] or incoherent light beams [13, 14] in thin multilayers. Compared to the 

geometrical series, the matrix method becomes very advantageous as soon as more than two 

layers are superposed.  

3.2. Examples 

Let us come back to the example of two layers and expand the transfer matrix M12 

 

( ) ( ) ( )
( )

12 1 2

1 1 1 1 1 2 2 2 2 2

1 21 2

1 2 1 1 1 1 2 2 2 2 1 2 1 1 1 1

2 1 2 2 2 2 1 21 2

1
1 1

1
1

= ⋅

′ ′ ′ ′τ τ −ρ ρ ρ τ τ −ρ ρ ρ   
= ⋅   ′ ′−ρ −ρτ τ    

′ ′ ′ ′ ′ ′ ′−ρ ρ + τ τ −ρ ρ τ τ −ρ ρ ρ +ρ τ τ −ρ ρ 
=  ′ ′ ′ ′ ′−ρ −ρ τ τ −ρ ρ −ρ ρτ τ  

M M M

 (58) 

By applying formulas (57) on the matrix M12 expanded in equation (58), we retrieve the 

Kubelka’s formulas expressing the reflectances and transmittances of two layers as a function 

of the individual reflectances and transmittances of the layers.  

 12 1 1 2
12 1

22 1 21
′τ τ ρ

ρ = = ρ +
′−ρ ρ

m
m

, (59) 

 1 2
12

22 1 2

1
1
τ τ

τ = =
′−ρ ρm

, (60) 

 2 1 2 2 1
12 2

22 1 21
′ ′− τ τ ρ′ ′ρ = = ρ +
′−ρ ρ

m
m

, (61) 

and 

 
( )12 1 2

12
22 1 2

det
1

′ ′τ τ′τ = =
′−ρ ρm

M
. (62) 

These formulas are generally derived by reducing the geometrical series [6]. The individual 

reflectances and transmittances of layers, if they are homogenous, may be computed using the 

Kubelka-Munk mode and in any case, they can also be measured. Most of the time, they 

depend on wavelength. In this case, the matrix model, as well as Kubelka’s formulas, applies 

for each waveband.  

In a diffusing multilayer, the interfaces between layers have no optical effect if the layers 

have the same refractive index. Otherwise, light reflections and refractions occur at the 

interfaces and modify the flux transfers between the layers. We thus proceed as in Section 2.7, 
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by using the transfer matrices attached to the interfaces between media with refractive indices 

kn  (on the front face) and ln  (on the back face), similarly defined as in equation (45): 

 1
1

− 
=  − 

kl lk kl lk kl
kl

lkkl

t t r r r
rt

f  (63) 

Let us consider for example a symmetric layer (medium 1 with reflectance ρ and 

transmittance τ) bordered on its two faces by air (medium 0). The incoming lights at front and 

back sides are Lambertian. The transfer matrix attached to the layer with interfaces is  

 11 12
01 1 10

21 22

 
= ⋅ ⋅ =  

 

m m
m m

M f M f  (64) 

where 1M  denotes the matrix attached to the layer defined by equation (56), and 01f  and 10f  

denote the matrices attached to the front, respectively back interfaces, defined by equation 

(63). After computation, we obtain:  

 ( ) ( )2
22 10 10

01 10

1 1 ′ ′ ′= − ρ +ρ − ττ −ρρ τ
m r r

t t
 

and 

 ( )12 01 10
1 ′ ′= + ρ + ττ −ρρ  τ

m r r   

According to equations (57), we retrieve the well known formulas for the reflectance R and 

the transmittance T of the layer with its interfaces with air [15] 

 
( ) ( )

01 10
2

22 10 10

1
1

τ
= =

′ ′ ′− ρ +ρ − ττ −ρρ
t tT

m r r
 

 
( )

( ) ( )
1012

01 01 10 2
22 10 101

′ ′ρ + ττ −ρρ
= = +

′ ′ ′− ρ +ρ − ττ −ρρ
rmR r t t

m r r
 

We may generalize the method for two layers with different refractive indices, as represented 

in Figure 6. Once again, light sources are Lambertian at both sides. Transfer matrices 1M  and 

2M  defined in equation (52) are attached to the layers and transfer matrices 01f , 12f  and 23f  

defined in equation (63) are attached to the front, middle and back interfaces reflectively. The 

transfer matrix of the stack is thus given by: 

 01 1 12 2 23= ⋅ ⋅ ⋅ ⋅M f M f M f  (65) 

The reflectances and transmittances of the multilayer are then deduced from the entries of M 

according to the formulas (57).  
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Figure 6: Flux transfers between diffusing layers (dashed blued arrows) and by interfaces (solid red arrows). 

4. MATRIX MODEL FOR STACKS OF FILMS 

Although nonscattering media are not reflective by themselves, their surface reflects light. 

When several layers with distinct indices are stacked together, light is thus reflected multiple 

times. We will see that transfer matrices can also be defined in this context. Layer thicknesses 

are assumed much thicker than the coherence length of light, which thus avoid interference 

effects and enable using laws of geometrical optics. The main difference between 

nonscattering and scattering media is the fact that light propagates along straight lines, or 

broken straight lines due to refraction at the interfaces, with orientations well determined 

according to Snell’s law (Figure 7). These orientations determine the reflectance and 

transmittance at the interfaces, as well as their attenuation while crossing the layers. This is 

the reason why nonscattering layers, multilayers and flat interfaces will be first characterized 

by an angular transfer matrix, based on angular reflectance and transmittance functions. When 

the incident light is diffuse, we can integrate these functions over the set of incident angles.  
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Figure 7. In a nonscattering multilayer, the direction of the light rays in each layer is fixed. It depends only on 
the direction of the incident light, θ0, and on the refractive index of the layer.   

The reflectance of nonscattering multilayers also depends on polarization of light due to the 

polarization-dependant Fresnel formulae. If the incident light is linearly polarized in the 

incidence plane or perpendicularly to it, this polarization is maintained in the whole multiple 

reflection process and determines which Fresnel formula must be used for the reflectances 

contained within the reflectance and transmittance expressions. In the case of natural light, 

which is the type of light emitted by most light sources, we assume that the two linearly 

polarized components flow in parallel, independently of each other and with equal initial 

power (see [HDI062], Section 2.2). The multilayer's reflectance and transmittance is the 

average of the reflectances and transmittances attached to the parallel (p) and perpendicular 

(s) polarizations. This may be written by the following equation 

 
( ) ( )

2
+

= p sf R f R
X  (66) 

where X denotes a multilayer reflectance (or transmittance) for natural light, f the analytical 

reflectance (or transmittance) expression being a function of Fresnel reflectance pR  for the 

parallel polarization or sR  for the perpendicular polarization.  

Nevertheless, many nonscattering materials such as polymers have a strong optical anisotropy 

which decreases the degree of polarization of light. In practice, it is more exact to consider 

that light remains unpolarized along the whole multiple reflection process and to insert the 

Fresnel reflectance or transmittance for unpolarized light, the average of the reflectances or 

transmittances for p- and s-polarized lights, in the multilayers' reflectance and transmittance 

expressions which thus becomes 
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2
+ 

=  
 

p sR R
X f  (67) 

We will consider hereinafter this latter case. In addition to being simpler because it prevents 

having to expand expressions for each polarization and to average them, this choice is 

justified by the fact that polymers are used in our experimental applications. Nevertheless, it 

is not an issue to follow one approach or to the other: the model in itself provides only the f 

function.  

4.1. Single film at normal incidence 

Let us first consider the simple case of a nonscattering film illuminated by collimated light at 

normal incidence. The film is made of nonscattering medium with index n1. Its transmittance 

at normal incidence is denoted as T1. It is bordered by a clear medium with index n0 at front 

side, e.g. air, and by a possibly different medium with index n2 at back side, e.g. water. 

Regarding the Fresnel reflectances of the interfaces, similar notations are used as in 

[HDI062], Section 3. Since light is normal to the interfaces, we have: 

 ( ) ( )
2

0 0
 −

= =   + 

k j
jk kj

k j

n n
R R

n n
 (68) 

and  

 ( ) ( ) ( )0 0 1 0= = −kj jk jkT T R .  (69) 

In this section, the short notation jkR  for ( )0jkR  is used. 

Figure 8 shows the flux transfers between the different media. As for a diffusing layer 

[equations (48) to (51)], we may write the following matrix equation for an interface between 

media j and 1= +k j  

 
0 1
1 0

− ′     
=     ′−      

jk j kj k

jk j kj k

T J R J
R I T I

  

or, since jkT  cannot be zero at normal incidence,  

 
1

1
− ′    

=    ′ −     

j jk kj jk kj jk k

j kj kjk

J T T R R R J
I R IT

 (70) 

The matrix in equation (70), denoted jkF , is the transfer matrix attached to the interface: 

 
1

1
− 

=  − 

jk kj jk kj jk
jk

kjjk

T T R R R
RT

F  (71) 
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Figure 8. Flux transfers through the interfaces and nonscattering layer of a film of index n1 bordered by media of 
index n0 at the front side, and of index n2 at the back side.   

Note that using the relations (68) and (69), we can transform equation (71) into 

 
1 21

11
− 

=  −−  

jk jk
jk

jkjk

R R
RR

F  (72) 

Regarding the film bulk layer 2, denoting  1′I  and 1′J  the fluxes 1I  and 1J  after transmission 

across the layer, we have 

 1 11

1 1

1 0 0
0 0 1

′      
=       ′      

J JT
I It

 (73) 

i.e.,  

 1 1
1

1 1

′   
=   ′   

J J
I I

L  (74) 

where 1L  is the transfer matrix attached to the layer, which depends upon orientation but not 

on polarization of light:  

 
2

1

1

01
0 1

 
=  

 
t

T
T

L , (75) 

Combining equations (70) and (73) 

  0 2
01 1 12

0 2

   
=   

  

J J
I I

F L F  (76) 

shows that the matrix product 01 1 12F L F  is the transfer matrix of the film: 
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( ) ( ) ( )

( )

2 2 2 2 2 2 2 2
01 01 12 12 1 01 12 01 12 01 01 1

2 2 2 201 1 12 23 01 12 12 1 12 01 1

1

1

 − − − + −
 =
 − − − − 

T R T R T R R R R T R T

T T T R R T R T R R T
M  (77) 

We can retrieve the front and back reflectances and the forward and backward transmittances 

of the film using similar equations as (57). For example, the front reflectance of the film is  

  
2 2

12 01 12 1
01 2

22 12 01 11
= = +

−f
m T R TR R
m R R T

 (78) 

and its forward transmittance is 

  01 1 12
2

22 12 01 1

1
1

= =
−f
T T TT

m R R T
 (79) 

4.2. Single film at oblique incidence 

At oblique incidence, the same line of reasoning applies, except that the orientation of light is 

different in the three media. However, in a given medium, all light components form the same 

angle with the normal, as shown in Figure 7. The orientation of fluxes 0I  and 0J  is 0θ , the 

one of fluxes 1I , 1′I , 1J  and 1′J  is 1θ  and the orientation of fluxes 2I  and 2J  is 2θ . Writing 

Snell’s sine law at the successive interfaces yields the following equality 

 0 0 1 1 2 2sin sin sinθ = θ = θn n n  (80) 

from which we deduce that the angle θk  in medium k = 1 or 2 depends only on θ0, n0 and nk, 

not on the indices of the other medium: 

 ( )0 0arcsin sin /θ = θk kn n  (81) 

Equation (70) remains valid but with different definition for the transfer matrix of the 

interface, jkF , whose entries are now function of the angles θ j  (front reflectance, forward 

transmittance) and θk  (back reflectance and backward transmittance): 

 ( ) ( )
( ) ( ) ( ) ( ) ( )

( )
1

1

 θ θ − θ θ θ
 θ =
 θ − θ 

jk j kj k jk j kj k jk j
jk j

jk j kj k

T T R R R

T R
F  (82) 

The properties of the Fresnel reflectance and transmittance formulas enable transforming the 

above equation into: 

 ( ) ( )
( ) ( )

( )
1 21

1 1

 − θ θ
 θ =
 − θ − θ 

jk j jk j
jk j

jk j jk j

R R

R R
F  (83) 
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Note that there is a computational problem in case of total reflection, i.e. when ( ) 1θ =jk jR . 

The way to work around this problem is to use an alternative definition of transfer matrices, 

presented in appendix, which avoids the division by the term ( )1− θjk jR .  

Regarding the layer, equation (73) also remains valid but, once again, the transfer matrix 

attached to the layer is modified in order to account for the orientation of light in the layer. 

Note that rays oriented by an angle 1θ  from the normal are attenuated by the factor 11/cosθt  

where t, as previsouly, denotes the transmittance of rays perpendicular to the layer. The 

transfer matrix attached to the layer is therefore: 

 ( )
1

1

2/cos
1

1 1 1/cos
1

1 0
0 1

θ

θ

 
θ =  

 

T
T

L , (84) 

Equation (76) becomes  

  
( )
( ) ( ) ( ) ( ) ( )

( )
0 0 2 2

01 0 1 1 12 1
0 0 2 2

θ θ   
= θ θ θ   θ θ   

J J
I I

F L F  (85) 

and the transfer matrix of the film is given by the matrix product ( ) ( ) ( )01 0 1 1 12 1θ θ θF L F . It 

seems not necessary to expand the full expression of this matrix, but it is easy to verify that 

the front reflectance, obtained by dividing the top-right entry by the bottom-right entry, is 

  ( ) ( ) ( ) ( )
( ) ( )

1

1

2/cos2
01 0 12 1 1

0 01 0 2/cos
12 1 01 0 11

θ

θ

θ θ
θ = θ +

− θ θf
T R T

R R
R R T

 (86) 

and that the forward transmittance, inverse of the bottom-right entry, is 

  ( ) ( ) ( )
( ) ( )

1

1

1/cos
01 0 12 11

0 2/cos
12 1 01 0 11

θ

θ

θ θ
θ =

− θ θf
T T T

T
R R T

 (87) 

We can also verify that equations (78) and (79) are special cases of these expressions (86) and 

(87) when 0 0θ = , and that equations (61) and (62) of [HDI062], obtained from geometrical 

series, are also special cases of (86) and (87) when media 1 and 3 are air. 

4.3. Nonscattering multilayers 

The line of reasoning presented for the case of one film extends in a straightforward manner 

to the case of nonscattering multilayers where the layers have distinct indices. By way of 

illustration, the flux transfers in the case of two layers are represented in the Figure 9.  
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Figure 9. Flux transfers in two nonscattering layers with different indices.   

The orientation of light in media k = 1, 2 and 3 are functions of the incident angle 0θ  in 

medium 0  

 ( )3 3 3arcsin sin /θ = θ jn n   (88) 

If we want to consider illumination from the back side, the orientation of light in media j = 0, 

1 and 2 can be expressed as functions of the incident angle 3θ  in medium 3,  

 ( )3 3arcsin sin /θ = θj jn n  (89) 

The matrix model directly enables writing the transfer matrix M of the bilayer as 

 ( ) ( ) ( ) ( ) ( ) ( )
1 20 01 0 1 12 1 2 23 2θ = θ θ θ θ θt tM F L F L F  (90) 

where the matrices ( )θjk kF  are the transfer matrices attached to the interfaces defined by 

equation (83) and the matrices ( )θ
kt kL  are the transfer matrices attached to the layers defined 

by equation (84).  

The matrix method applies with any stack of nonscattering layers, for any incident angle, 

provided each layer is thicker than the coherence length of light. Various examples are 

proposed in the next sections. The orientation of light in the different layers is automatically 

embodied in the transfer matrices provided they are defined and multiplied correctly. Since 
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total reflections may occur, it is recommended that one adopts the alternative matrix 

formalism proposed in appendix.  

The reflectance and transmittance expressions given above are relative to collimated fluxes. If 

we rather consider radiances, we must consider the changes of solid angle due to the 

refractions at the interfaces, which modifies the density of flux per unit solid angle. We 

follow the reasoning developed in HDI062, Sections 3.5 and 3.6 for one interface: the 

incident, reflected and transmitted radiances, respectively denoted as 0L , RL , and NL , are 

oriented according to the angles 0θ , 0θ = θR , and respectively θN  where N denotes the 

labeling number of the surrounding medium at the back side. Since reflected and incident 

radiances fulfill equal solid angles, we have 

 ( ) ( ) ( )0 0 0 0θ = θ θR stackL R L  (91) 

where ( )0θstackR  is the front reflectance of the stack of nonscattering layers at the angle 0θ . 

The transmitted radiance fulfills a different solid angle in medium N. This introduces a factor 

( )20/Nn n , which depends only on the refractive indices of the surrounding media 0 and N: 

 ( ) ( ) ( ) ( )2
0 0 0 0/θ = θ θN N N stackL n n T L  (92) 

where ( )0θstackT  is the forward transmittance of the stack of nonscattering layers at the angle 

0θ . 

When the sample is illuminated with Lambertian light from medium 0, the reflectance stackR  

accounts for all the rays in the hemisphere by integrating the angular reflectance ( )0θstackR  in 

a similar way as in equation (46) in [HDI062]: 

 ( )
0

/2
0 0 00

sin 2
π

θ =
= θ θ θ∫stack stackR R d  (93) 

This integral holds for transmittance, by replacing ( )0θstackR  with ( )0θstackT .  

4.4. Stacks of identical nonscattering films 

Let us now consider stacks of identical films illuminated at normal incidence. We first assume 

that there is no optical contact between the films, i.e. a thin air slice remains between them. 

Since a layer of air transmits all light and does not reflect it, the corresponding transfer matrix 

is simply the identity matrix. The reflectance Rf and transmittance Tf of one film at normal 

incidence (including multiple reflections between their interfaces with air and transmissions 

through the film bulk) are given by equations (78) and (79). The corresponding transfer 

matrix, given by (77), may also be written   
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1
 −

=   − 

f f f

f f

T R R
T R

M  (94) 

Since light is not scattered in the stack, it remains perpendicular to all films. Matrix M can 

therefore be attached to each of them. The transfer matrix for the stack of films is therefore 

 = N
NM M  (95) 

whose computation can be performed through the diagonalization of M [16]: 

 1 1

2

01
0

− 
= ⋅ ⋅ 

 f

v
vT

M E E  (96) 

where ( )1 1= − α −β fv R , ( )2 1= − α +β fv R  and 

 
1 1

α −β α +β 
=  
 

E , (97) 

with 

 
2 21

2
+ −

α = f f

f

R T
R

 (98) 

and 

 2 1β = α −  (99) 

Note that the relationship between α and β [equation (99)] is similar to the one between a and 

b in the Kubelka-Munk model [equation (20)]. We thus have ( ) ( ) 1α +β α −β = , and 
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( ) ( )

1 1

2

2 1 1 2

2 1 1 2

01
0

1
2

− 
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 
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=  
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N
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f

N N N N

N N N N N
f

v
T v

v v v v
bT v v v v

M E E

 (100) 

The reflectance RN is given by the ratio of entries 12 22/m m  of matrix NM :  

 
( ) ( )

1 2

1 2

−
=

α −β − α +β

N N

N N N
v vR
v v

  (101) 

After replacing 1v  and 2v  with their respective expressions and rearranging, equation (101) 

becomes: 
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1
1

1

=
 α −β − 

 − α +β −   − α −β   
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N
f

f

R
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 . (102) 

The transmittance of the stack of films is the inverse of entry 22m  of NM  

 
( ) ( ) ( ) ( )

2

1 1
=

α +β − α −β − α −β − α +β      

N
f

N N N
f f

bT
T

R R
  (103) 

As N increases, the stack contains more interfaces and thus becomes more reflecting. It also 

contains more layers and becomes more absorbing. The reflectance varies until a limit value 

corresponding to the reflectance of an infinite stack, denoted as ∞R . Since the term raised at 

the power N in equation (102) is smaller than 1, it tends to zero. The infinite stack reflectance 

is therefore 

 
1

∞ = = α −β
α +β

R  (104) 

This variation is illustrated by the top-left graph in Figure 10 showing the spectral 

reflectances of stacks of blue acetate films ( 1 1.54=n ), studied in depth in Ref [17]. In this 

case, the reflectance increases with the number of films for all wavelengths, despite reaching 

rapidly a limit value in the spectral domain where the acetate is the more absorbing (570 – 

680 nm). Outside this waveband, the reflectance increases more regularly according to the 

number of added film-air interfaces. In contrast, since the photons have less chance to cross 

the multilayer without being absorbed or back-reflected by interfaces, the transmittance 

decreases. It strives rapidly towards zero in the absorption waveband 570 – 680 nm and 

decreases more regularly and slowly outside the absorption waveband.  

In order to change the relative index of the film surfaces, we can fill the interstices between 

films with a clear liquid, e.g. oil or water, with index denoted as 2n  (Figure 11). In this case, 

the interfaces in contact with the liquid are less reflecting than the front and back interfaces of 

the stack which are in contact with air. The global reflectance and transmittance of the stack 

are thus modified, as shown by comparing the top and middle graphs in Figure 10, 

corresponding respectively to interstices filled with air and alcohol-based liquid ( 2 1.4=n ).  
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Figure 10. Predicted spectral reflectances and transmittances at normal incidence of stacks of blue acetate films 
(1, 2, 3, 4, 5, 6 and 10 films as well as, for reflectance, infinity) separated with different media (index 2n ). 

 
Figure 11. Stack of two acetate films pasted with liquid. 
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The transfer matrices of the interfaces are denoted jkF  according to the indices of the media j 

and k being respectively at the front and back side of the interface. They are defined in 

equation (71). The transfer matrix of a film layer, tL , is given by equation (75). Recall that 

all these transfer matrices are defined for normal incidence of light. For a stack of two films, 

the transfer matrix is given by 

 ( ) ( )2 01 12 21 10= ⋅ ⋅ ⋅ ⋅ ⋅t tM F L F F L F  (105) 

and for a stack of N films, it becomes: 

 ( ) ( ) ( )2
01 12 21 12 21 10

−= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅N
N t t tM F L F F L F F L F  (106) 

The reflectances and transmittances of the stacks of films are deduced from the entries of the 

transfer matrices as indicated by equations (57). Their analytical expressions are too long to 

be shown here, but their numerical computation  is not difficult.  

It is interesting to observe in the middle graphs of Figure 10 that incrementing the number of 

films increases the reflectance in the waveband 440 – 510 nm where the films are less 

absorbing and decreases outside this domain. At 440 nm and 510 nm, the reflectance does not 

vary because there is a perfect compensation between the gain due to back-reflection of light 

by the interfaces and the loss due to absorption. The transmittance follows a similar evolution 

when the films are separated by air, despite a slower decrease due to the higher transmittance 

of the interfaces. 

In the special case where the liquid has the same refractive index as the films (oil with index 

1.54), the interfaces in contact with it do not have optical effect any more. The transfer matrix 

can be written 

 01 10= ⋅ ⋅N
N tM F L F  (107) 

The stack becomes equivalent to one thicker film with normal transmittance Nt , N being the 

number of films. The reflectance and transmittance of this layer are similarly expressed as 

those of a single film, with Nt  in place of t. The reflectance comes only from the reflection of 

light by the front and back interfaces which are in contact with air. As the number of films 

goes to infinity, the light entering the stack is entirely absorbed and only the light reflected by 

the front interface is observed. The spectral reflectance is 0.04 for all wavelengths, thus 

yielding an achromatic color.  
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4.5. Stacks of printed films 

As an extension of the previous example, we propose to study stacks of films printed with 

inks, illuminated at normal incidence. Assuming that the refractive index of the films and the 

inks are equal, from an optical point of view, the printed film is very similar to a colored film: 

it is bounded by similar interfaces and the film substrate layer is replaced with two layers in 

optical contact with same index. The transfer matrix of the printed film, pL , is thus the 

product of those of the film substrate, 
stL , and the ink layer, 

itL  

    2 2

1 01
0
 

= ⋅ =  
 

s ip t t
s i s it t t t

L L L  (108) 

which indicates that the normal transmittance of the printed film is simply the product of the 

normal transmittances of the film and the ink layer, respectively ts and ti. In theory, the printed 

film should have the same reflectance and transmittance on its two faces: flipping it without 

changing the illumination and observation conditions should not modify its visual aspect. 

However, optical phenomena sometimes generate a colored sheen only visible on the face 

with ink. Figure 12 shows the different spectral reflectances of inked and non-inked faces of a 

film printed with a Canon inkjet printer. The inked face displays a purplish aspect which is 

not observed on the other face. The higher reflectance measured on the inked face below 350 

nm and beyond 550 nm is at the origin of the purplish sheen, while the opposite face has a 

bluish color characteristic of cyan ink deposited on a weakly reflecting support. In 

transmittance, the difference between front and back sides is much smaller. We can consider 

with inkjet prints that the relative difference between the two transmittances, generally 

inferior to 1%, is independent of wavelength.  

 
Figure 12. Spectral reflectance measured at normal incidence on the inked and non-inked faces of a film printed 

with cyan and yellow ink halftones at nominal surface coverages 0.57, respectively 0.12.  
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Let us denote as fR  and ′fR  the reflectances of the printed film at the front side, and 

respectively the back side, and as fT  and ′fT  its front-to-back, and respectively back-to-front 

transmittances. These reflectances and transmittances embody the multiple reflections and 

transmissions of light by the interfaces, the film layer and the ink layers. The transfer matrix 

attached to the printed film is  

  
1

1
′ ′− 

=  ′− 

f f f f f

ff

T T R R R
RT

M  (109) 

When N identical films printed with the same color are superposed, matrix M is raised to the 

power N. We may follow similar reasoning as in Section 4.4 by diagonalizing matrix M. 

Equations (96) to (103) remain valid, except the expressions for α, β and ∞R : 

 
1

2
′ ′+ −

α = f f f f

f

R R T T
R

, (110) 

 2 ′
β = α − f

f

R
R

. (111) 

and 

 ( ) 1
∞ = α −β =

′ α +β
f

f

R
R

R
 (112) 

Since each film has different reflectances on their two sides, stacks also have different 

reflectances on their two faces. The front and back reflectances are related according to: 

  
′

′ = f
N N

f

R
R R

R
, (113) 

and the forward and backward transmittance are related according to: 

  
 ′

′ =   
 

N
f

N N
f

T
T T

T
. (114) 

The model is not only valid with films coated with uniform ink layer but also with films 

printed with halftone colors [18]. This is shown in the following experiment based on 

CG3460 films from 3M printed in inkjet. The halftones were generated by stochastic 

screening according to the algorithm proposed by Ostromoukhov [19]. Four colors were 

selected called "green", "blue", "magenta" and "yellow" samples. They were generated by 

error diffusion halftoning and produced by printing cyan, magenta, yellow and green inks at 

the respective surfaces coverages {c, m, y, g} = {0, 0, 0, 0.5} for green, {0.35, 0.15, 0, 0} for 



35 

 

 

blue, {0, 0.70, 0, 0} for magenta and {0.10, 0.10, 0.80, 0} for yellow. For each color, R, R' 

and T were measured on one film, then the number N of films was incremented and NR , ′NR  

and NT  where measured until 16 films (15 film stacks were therefore measured for each of 

the three geometries). In this experiment, ′ = γf fT T  was assumed, where γ is a constant 

independent of wavelength specified in Table 2 for each type of film. Lower γ coincides with 

higher scattering: the yellow ink is more scattering than the other inks.  

For each color, the front reflectances, back reflectances and forward transmittances of the 15 

stacks were predicted and compared to the corresponding measured spectra in terms of 

equivalent color distance expressed by CIELAB ΔE94 values. For each series of 15 

measurements-predictions, the average (and maximal in bracket) ΔE94 values are given in 

Table 2. Figure 13 shows the front reflectance and the forward transmittance of a single film 

of each color (measured, green solid lines), those of stacks of 2 to 15 films (measured, black 

solid line; predicted, red dashed line) and the reflectance of an infinite stack of films 

(predicted according to formula (112), blue dotted line).  

 

Table 2: Average and maximum ∆E94 values obtained for the different films and geometries.  
Film color γ value RN R'N TN 
  av. (max) av. (max) av. (max) 
Green  0.994 0.12 (0.23) 0.45 (0.64) 0.49 (0.96) 
Blue  0.993 0.24 (0.30) 0.50 (0.63) 0.35 (0.74) 
Magenta  0.993 0.39 (0.43) 0.20 (0.24) 1.21 (1.68) 
Yellow  0.990 0.55 (0.68) 0.97 (1.17) 2.41 (3.94) 

 

For the green and blue colors, the prediction accuracy is excellent in both reflection and 

transmission modes. For the other two colors, the accuracy is good in reflectance mode and 

poorer in transmission mode. This is certainly due to scattering: in this experiment, the yellow 

ink was more scattering than the other inks. By looking at far objects through different films, 

blurring was more pronounced with films with much yellow. This is consistent with the fact 

that the γ value is lower for the yellow films.  
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Figure 13. Front reflectances (left) and forward transmittances (right) at normal incidence of single film 

(measured, green lines) and of stacks of 2 to 16 green films (measured, solid black lines, and predicted, red 
dashed lines). The numbers at the right of the curves indicate the number of films in the stack and the symbol ∞  

designates the predicted infinite stack reflectance (dashed blue line).  
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4.6. Stacks of printed films on top of a specular reflector 

Mirrors are also nonscattering reflectors and can be treated, despite zero transmittance, by the 

matrix model. The transfer matrix attached to a mirror with reflectance at normal incidence 

mR  is simply defined as  

 
1 0

0
 

=  
 

m
mR

M . (115) 

When nonscattering elements, e.g. films, are placed on it, only the front reflectance can be 

defined, the back reflectance and the transmittance making no sense in this case.  

Let us place a stack of N identical printed films in front of the mirror. As previously, we 

denote as fR , ′fR , fT , and ′fT  the front reflectance, back reflectance, forward transmittance 

and backward transmittance of one film at normal incidence. The transfer matrix attached to 

the specimen is 

 
{ }
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1 01
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01
0 1

′ ′−   
= = ⋅   ′−   
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f f f f f

ij N
f mf

N N N N N m

N N m

T T R R R
m

R RT

R T T R R R
T R R

M
. (116) 

where NR , ′NR , NT  and ′NT  denote the front reflectance, back reflectance, forward 

transmittance  and backward transmittance of the stack of N films at normal incidence, 

respectively given by Eqs. (102), (113), (103) and (114), with a and b given by equations 

(110) and (111).  

Finally, the reflectance of the stack with mirror, ratio of entry m12 to entry m22, is 

 , 1
′

= +
′−

N N m
m N N

N m

T T RR R
R R

, (117) 

valid for all wavelengths and for any 0≥N .  

Measured spectral reflectances ( ), λm NR  are plotted in Figure 14 for stacks of the blue and 

green printed films previously studied, respectively placed in front of a red reflector (copper 

mirror covered by a film coated with red ink) and a magenta reflector (achromatic mirror 

covered by a film coated with magenta ink). In both cases, the number of films was 

incremented from 1 to 13. The predictions given by Eq. (117) satisfyingly match the 

measurements: the average ΔE94 value assessing the deviations between predicted and 
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measured spectra was 0.42 units (maximum 0.66 units) for the green films on the magenta 

background, and 0.64 units (maximum 0.75 units) for the blue films on the red background.  

Through these examples, we observe that as the number of films in front of the mirror 

increases, the spectral reflectance of the samples varies differently with the wavelength, or 

more precisely according to the relative values of the mirror reflectance and the infinite stack 

reflectance. Hence, ,m NR  either increases or decreases and may even be constant for 

wavelengths where the spectral reflectances of background and infinite stack meet.   

 
Figure 14. Spectral reflectances of (a) blue films in front of a red reflector and (b) green films in front of a 
magenta reflector. The numbers denote the numbers of films and line colors roughly reproduce the colors 

associated to the plotted spectra. Spectral reflectances of the mirror alone (label 0) and of an infinite stack of 
films (label ∞) are in dotted and dashed lines respectively.  

5. STACKS OF DIFFUSING AND NONSCATTERING LAYERS 

The two-flux models presented in the previous sections for strongly diffusing layers and for 

non-scattering layers can be extended to mixed stacks of strongly diffusing and nonscattering 

layers. The transfer matrices attached to the diffusing layers are similarly defined as in 

equation (52). Those attached to the nonscattering layers and flat interfaces, however, must be 

adapted to the angular distribution of the light they receive. We saw in Section 4 that the 

trajectories and the attenuation of collimated light within a nonscattering multilayer are fully 

determined by the incident angle. Hence, every sequence of consecutive nonscattering layers 

and flat interfaces in the multilayer is considered as one nonscattering component. The 

angular transfer matrix model developed in Section 3 will help to get the analytical 
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expressions for their front reflectance R(θ), back reflectance R’(θ), forward transmittance T(θ) 

and backward transmittance T’(θ). When the incident light is diffuse, we integrate these 

angular functions  with respect to the angular distribution of light, which is in practice either 

collimated when it comes from a directional light source or Lambertian when it comes from a 

Lambertian light source or a diffusing layer. In this latter case, the angular function X(θ) is 

integrated over the hemisphere, thus yielding an integral similar to the one of equation (93): 

  ( )
/2

0
sin 2

π

θ=
= θ θ θ∫X X d  (118) 

This is the case when the nonscattering component is located between two diffusing layers 

(Figure 15.a). The transfer matrix is therefore 

 1
1

′ ′ −
 ′− 

TT RR R
T R

  




 (119) 

where symbol  ~ denotes the integration defined by equation (118).  

 

Figure 15. Flux transfers through a nonscattering element located (a) between two diffusing layers, (b) at the 
front edge position.  

When the nonscattering component is in an external position, for example at the front side, its 

global front reflectance, back reflectance, forward transmittance and backward transmittance, 

respectively denoted Rs, Ri, Tin and Tout, account for the angular geometry of the light source 

and detection system (see Figure 15.b). Their expressions in terms of the angular functions 

R(θ), R’(θ), T(θ) and T’(θ), are given in Table 3 for typical configurations: collimated (e.g. 0° 

or 45°) or Lambertian incident light and observation over the hemisphere or in one direction. 

The forward transmittance depends only on the illumination geometry and the back 

transmittance only on the observation geometry. If light is collected over the hemisphere, and 
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since the light coming from the diffusing layer is also Lambertian, the back transmittance is 

T . In the case of a directional observation, only the radiance directed toward the observer is 

considered. It corresponds to a fraction 1/π of the Lambertian irradiance issued from the 

diffusing layer, attenuated by the angular reflectance of the nonscattering component, and 

divided by the term n2 in order to take into account the change of solid angle due to the 

refractions, where n is the refractive index of the diffusing medium (see equation (92), the 

index of air being 1 in the present case). The front reflectance Rs depends on both illumination 

and observation geometries. When the incident light is collimated, it is the angular reflectance 

R(θ) evaluated at the incidence angle provided the reflected light is collected by the detection 

system; otherwise it is zero. When the incident light is Lambertian, Rs is the diffuse 

reflectance R  if all the reflected light is collected by an integrating sphere; it is the angular 

reflectance R(θ) evaluated at the observation angle if the detection device is collimated, 

knowing that only a fraction 1/π of the Lambertian irradiance is in the concerned direction. 

Lastly, the back reflectance Ri is independent of the measuring geometry: it accounts for the 

reflection of the Lambertian light issued from the diffusing layer: 

  ( )
/2

0
sin 2

π

θ=
′ ′= = θ θ θ∫iR R R d  (120) 

The transfer matrix attached to the nonscattering component is  

  
1

1
− 

 − 
in out s i s

iin

T T R R R
RT

 (121) 

 

Table 3: Expressions for Rs, Tin, and Tout according to the illumination and observation 

geometry  
 Rs Tin Tout 

Collimated incident light at angle 
α and observation over the 
hemisphere 

( )αR  ( )αT  ′T  

Collimated incident light at angle 
α and observation in one direction 
ψ 

( )   if  
0  otherwise

α α = ψ



R
 ( )αT  ( ) 2/′ ψT n  

Lambertian incident light and 
observation over the hemisphere R  T  ′T  

Lambertian incident light and 
observation in one direction ψ ( ) /ψ πR  T  ( ) 2/′ ψ πT n  

 



41 

 

 

Once all the transfer matrices attached to the nonscattering components (i.e. the sequences of 

nonscattering layers and interfaces) are determined, they can be multiplied with those attached 

to the diffusing layers. For example, a nonscattering component on top of a symmetric 

diffusing layer with reflectance ρ and transmittance τ has the transfer matrix given by 

  ( ) ( ) ( )

( )

2 2

2 2

2 2

1 1
1 1

1

1

−    τ −ρ ρ
= ⋅   − τ −ρ   

 − ρ + − τ −ρ + − ρ
 =
 τ −ρ − τ −ρ − ρ 

in out s i s

iin

s in out s i s in out s i

in i i

T T R R R
RT

R T T R R R T T R R

T R R

Q

 (122) 

We can deduce from it the front reflectance (ratio of entries 12 22/q q ) 

 
1

ρ
= +

− ρ
in out

sample s
i

T TR R
R

 (123) 

or the back transmittance ( 22det / qQ ), corresponding to the same observation conditions as 

the front reflectance, with the light coming from beside the diffusing layer:  

  
1

τ′ =
− ρ
out

sample
i

TT
R

 (124) 

We may imagine specimens consisting of several alternations of diffusing and nonscattering 

components. The examples which are proposed in the next sections will be based on this 

configuration, the simplest being a nonscattering component is on top of a diffusing layer.  

5.1. Paper coated with gelatin (Extended Williams-Clapper model) 

In 1953, Williams and Clapper proposed a prediction model for the spectral reflectance of 

glossy photographs, made of paper coated with photochromic gelatin [20]. The original 

Williams-Clapper reflectance formula, derived from a description of the multiple reflections 

between the paper and the surface yielding a geometrical series, is based on the 45°:0° bi-

directional geometry. A formula based on the diffuse-directional geometry was later derived 

by Shore and Spoonhower [21] and has been recently extended to the transmittance [15]. All 

these formulas can be obtained with the matrix method, for which the interest is rather limited 

in such a simple case but offers a good example of application. The interest of the method will 

be more striking when increasing the number of layers.  

The photographic paper is composed of the air-gelatin interface, the gelatin layer with spectral 

normal transmittance ( )λgT , and the paper support with spectral reflectance ( )ρ λ  and 
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spectral transmittance ( )τ λ . Paper and gelatin are assumed to have the same refractive index 

n. Since, they are in optical contact, the interface between them has no optical effect.  

The air-gelatin interface and the gelatin layer are two consecutive nonscattering elements 

located at the front position. They are considered as one nonscattering component whose 

transfer matrix is similar to equation (121). The transfer matrix attached to the photographic 

paper is therefore similar to equation (122) and its reflectance has an expression similar to 

equation (123). In this reflectance expression, Rs, Tin, Tout and iR  are functions of the normal 

transmittance ( )λgT  and the index gn  of the gelatin and depend on the measuring geometry. 

They are obtained in two steps.   

The first step is to compute the angular transfer matrix ( )0θG  of this nonscattering 

component. It is the product of the angular transfer matrix attached to the air-gelatin interface, 

given by equation (82) with labels j = 0 for air and k = 1 for the gelatin, and the angular 

transfer matrix attached to the gelatin layer given by equation (84): 

 
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

1 1

0 01 0 1

2/cos
01 0 10 1 01 0 10 1 01 0

1/cos 2/cos
01 0 10 1

1

1

θ

θ θ

θ = θ θ

  θ θ − θ θ λ θ     =   θ λ   − θ λ    

g

g

g g

T T R R T R

T T R T

G F L

 (125) 

where 0θ  denotes the orientation of light in air, ( )1 0arcsin sin /θ = θ n  the corresponding 

orientation in the gelatin and ( )01 0θR  the Fresnel angular reflectance of the interface at the 

air side.  

We deduce from ( )0θG  the front angular reflectance, ( )01 0θR , the back angular reflectance, 

( ) ( ) 12/cos
10 1

θ
 θ λ gR T , and the upward and downward transmittances, ( ) ( ) 11/cos

01 0
θ

 θ λ gT T . 

The exponents can be expressed as functions of 0θ  thanks to the following transformation: 

  ( )( ) ( )21 0 0cos cos arcsin sin / 1 sin /θ = θ = − θn n  (126) 

In a second step, we consider the orientations of light in the nonscattering component, 

assuming a 45°:0° measuring geometry as Williams and Clapper in their original paper. 

According to the formulas given in Table 3, we obtain: 

 0=sR ,  

 ( ) ( ) ( )01 45 βλ = ° λin gT T T  
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with  

 
2

2

4 1
β =

−

g

g

n

n
, 

 ( ) ( ) ( )10
2

0 λ
λ =

π
g

out
g

T T
T

n
, 

and  

 ( ) ( ) ( )
( )( )
( )

1/2 2/cos
10 1 1 1 100

exp 1
sin 2

exp 1 1

γ
π θ λ −

 λ = θ λ θ θ ≈  −∫
g

i g
T

R R T d R   

where 10R  is the diffuse reflectance of the surface at the gelatin-side (also denoted as 10r  in 

[HDI062], Section 3.6) and γ a coefficient minimizing the difference between the integral and 

the approximation function for the considered refractive index ( 2.91γ =  for gn  = 1.53, see 

Table 4).  

Finally, the reflectance formula (123), multiplied by π, gives the spectral reflectance factor of 

the photographic paper which would be measured with a commercial instrument calibrated 

with  respect to the reflectance of a perfectly white diffuser (equal to 1/π): 

 ( ) ( ) ( ) ( ) ( ) ( )
( )( ) ( )

145:0
01 1045:0

2 exp 1
10 1

45 01ˆ
1 / 1

γ

+β

 λ − 
−

° ° λ ρ λλ
λ = = ⋅

π − ρ λg

gWC
WC Tg

e

T T TR
R

n r
 (127) 

Since the spectral reflectance ρ(λ) of the paper substrate cannot be measured directly due to 

the presence of the paper-air interface, we want to deduce it from measurement. We thus take 

the paper in an area where the gelatin is uncolored (normal transmittance 1) or, if available, 

the paper without gelatin provided its surface is flat. The reflectance factor given by equation 

(127) thus becomes 

 ( ) ( ) ( ) ( )
( )

01 10
2

10

45 01ˆ
1
° ° ρ λ

λ =
− ρ λp

g

T T
R

rn
 (128) 

Assuming n is known, we can compute the Fresnel functions and only the background 

reflectance ρ remains unknown. We obtain it by reversing the equation (128): 

 ( ) ( )
( ) ( ) ( )

2

2
01 10 10

ˆ
ˆ45 0

λ
ρ λ =

° ° + λ
p

g p

n R
T T n r R

 (129) 

In the case of a d:0° geometry, according to the formulas of Table 3, we obtain: 
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( )01 0°

=
πs

R
R , 

 ( ) ( ) ( ) ( ) ( )
2

0/2 1/ 1 sin /
01 0 0 0 010

sin 2
π − θ µ λ = θ λ θ θ ≈ λ ∫

n
in g gT T T d T T  

where 01T  is the diffuse transmittance of the surface from air to gelatin (also denoted as 10t  in 

[HDI062], Section 4.6) and µ is again a coefficient minimizing the difference between the 

integral and the approximation function for a given refractive index (µ = 1.13 for gn  = 1.53,  

see Table 4), and  

 ( ) ( ) ( )10
2

0° λ
λ =

π
g

out
g

T T
T

n
 

The spectral reflectance factor in respect to the perfect diffuser is [21] 

 ( ) ( ) ( ) ( ) ( )
( )( ) ( )

1
01 10:0

01 2 exp 1
10 1

01ˆ 0
1

γ

+µ
°

 λ − 
−

° λ ρ λ
λ = ° + ⋅

− ρ λg

gd
WC Tg

e

T T T
R R

n R





 (130) 

Equation (124) gives the transmittance of the photographic paper observed in the same way as 

in reflectance and illuminated from behind. For a d:0° geometry, the spectral transmittance 

factor is   

 ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( )

10:0
2

10

01ˆ
1 1

° ° λ τ λλ τ λ
λ = π = ⋅

′− λ ρ λ − ρ λ
gd out

WC
g

T TT
T

R Rn 

 (131) 

This method can be easily adapted to different measuring geometries. It automatically takes 

into account the flux transfers between the diffusing layer and the nonscattering component 

by respecting the orientation-dependent attenuation of each ray in the nonscattering layer.   

Table 4. Values for parameters γ and μ as a function of the refractive index 

gn  γ μ 
1.45 3.03 1.15 
1.47 2.99 1.14 
1.50 2.95 1.13 
1.53 2.91 1.13 
1.55 2.88 1.12 
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5.2. Diffusing support protected with colored films 

After the photographic paper, a book cover protected by a plastic film is a second example 

where a nonscattering component is on top of a diffusing background. Since the film and the 

cover are generally not in optical contact, there is an interstice between them filled by air. We 

may generalize this example by considering several films identical to each other. The 

structure of the specimens is represented in Figure 16 for two films. Since there is a 

nonscattering component on top of a diffusing layer, the reflectance and transmittance have 

similar expressions as (123), and respectively (124). We just have to compute the parameters 

Rs, Tin, Tout, and Ri in terms of the different refractive indices, the spectral reflectance ( )ρ λ  

and transmittance ( )τ λ  of the diffusing layer, and the spectral normal transmittance ( )1 λT  of 

each film deduced using equation (66) of [HDI062] from the measured spectral transmittance 

( )λfilmT  of the film:  

 ( )
( ) ( )
( ) ( )

44 2 2 2
1 1 1

1 4
1

64 1 8

1

+ − λ −
λ =

− λ

film

film

n n T n
T

n T
 (132) 

where n1 is the refractive index of the film.  

 

Figure 16. Nonscattering films on top of a diffusing background. 

Regarding the nonscattering component, we can use the matrix model to determine its angular 

reflectances and transmittances, which will then be integrated with respect to the measuring 

geometry. We denote as 0θ  the incident angle in air, ( )0arcsin sin /θ = θj jn  the subsequent 

angles in the media of index jn . The angular transfer matrix attached to it is the product of 

the transfer matrices attached to the different components, i.e. the interfaces and the layers, 

respectively, defined by equations (82) and (84).  The air layers are optically neutral and the 
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transfer matrices attached to them are unit matrices, and therefore omitted in the calculation. 

For N films, the angular transfer matrix ( )0θN filmsM  of the nonscattering component is given 

by 

 ( ) ( ) ( ) ( ) ( )0 01 0 1 1 10 1 01 0θ = θ θ θ θ  
N

N filmsM F L F F  (133) 

From this angular transfer matrix, using equations (57), we obtain analytical expressions for 

the front reflectance ( )0θNR , back reflectance ( )2′ θNR , downward transmittance ( )0θNT  

and upward transmittance ( )2′ θNT . It would take too much place to show them here, but there 

is no difficulty obtaining them using symbolic or numerical computation software.  

Then we consider the orientations of light in the nonscattering component with respect to the 

measuring geometry. For the d:0° geometry that we have selected, the formulas of Table 3 

give 

 

( )

( )
2
2

0 /

0

= ° π

=

′ °
=

π

′=

s N

in N

N
out

i N

R R

T T
T

T
n

R R





 (134) 

where symbol ~ has the same meaning as in equation (118). Note that since these four terms 

embody the film’s normal transmittance ( )1 λT , all of them depend of wavelength.  

In order to obtain the spectral reflectance ρ(λ) and transmittance τ(λ) of the diffusing layer, 

we measure the spectral reflectance and transmittance factors of the diffusing support with an 

instrument base on the d:0° geometry. Their respective expressions are, for each wavelength, 

 ( ) ( )02 02
02 2

202

01ˆ 0
1

° ρ
= ° + ⋅

− ρp
T T

R R
Rn





 (135) 

and 

 
( )02

2
202

01ˆ
1

° τ
= ⋅

− ρp
T

T
Rn 

 (136) 

where ( ) ( ) ( ) ( )2 2
02 02 2 20 1 0 1 / 1= − = − +R T n n  is the Fresnel reflectance of the interface at 

normal incidence, 20R  is its diffuse reflectance of the interface at the paper side [see HDI062, 

equation (46)] and ( )2
02 02 2 201= = −T t n R   is its transmittance for Lambertian light coming 

from air. Since these terms, independent of wavelength, can be computed as soon as n2 is 
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known, we can deduce ( )ρ λ  and ( )τ λ  from equations (135) and (136). After some 

rearrangements, we get: 

 ( ) ( ) ( )
( ) ( )

02

20 02

ˆ 0
ˆ 1 0

λ − °
ρ λ =

λ + − °
p

p

R R
R R R

 (137) 

and 

 ( ) ( )
( )

( ) ( )
( ) ( )

2
2 02 20 02

02 02 20

ˆ 1 0 0
ˆ1 0 1 0

 λ − ° + °
τ λ = ⋅   − ° − ° + λ 

p

p

n T R R R
R R R R





 (138) 

Finally, the spectral reflectance and the transmittance of the specimen have similar 

expressions as equations (123) and  (124) respectively. By multiplying them by π, we obtain 

the following expressions for the reflectance and transmittance factors, for each wavelength:  

 ( ) ( ):0
2
2

01ˆ 0
1

° ′ ° ρ
= ° + ⋅

′− ρ
d N N

N films
N

T T
R R

Rn





 (139) 

and 

 
( ):0

2
2

01ˆ
1
′ ° τ

= ⋅
′− ρ

d N

N

T
T

Rn 

 (140) 

Be aware of that all terms in these equations (139) and (140), except 2n , depend on 

wavelength.  

As a first application of the model, we selected glossy papers printed in inkjet with various 

fulltone colors (cyan, magenta, red, green, blue and black) and halftone colors (cyan and 

magenta inks at 50%). Figure 17 shows the normal transmittance of the blue acetate film as 

well as the changing of reflectance spectrum due to the presence of the film for the fulltone 

magenta sample. The reflectance and the transmittance of each paper covered by one film 

were predicted by the model above, with k = 1 in this case. The differences between 

predictions and measurement were calculated in terms of color distances by computing the 

CIELAB ∆E94 values in respect to the D65 standard illuminant. In reflectance mode, we 

obtained an average ∆E94 value of 0.46 for the 12 samples, which proves the excellent 

accuracy of the model. In transmittance mode, satisfying predictions are also obtained, even 

though slightly less accurate than in reflectance model with an average ∆E94 value of 1.15.  
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Figure 17. Spectral reflectance of (solid line:) a magenta printed paper and of (dashed line:) this paper covered 
by a blue acetate film of normal transmittance ( )1 λT . 

A second application of the model was carried out from 125 printed CMY halftones printed 

by a  Canon Pixma Pro9500 inkjet printer on  Canon MP101 papers, and covered them by a 

standard transparent film for electrophotographic printing. Predictions were performed in 

reflectance mode and compared to the measured spectra. Good prediction accuracy is also 

proved by obtaining an average ∆E94 value of 0.50. This experiment is representative of the 

model's capacity to predict the change in spectral reflectance of prints when they are placed 

under glass or under protection film. This change in reflectance, and therefore of color, is not 

only due to the wavelength-dependent absorption of light by the protection film, but also on 

the direct reflection of light by the film and the multiple reflections of light between the film 

and the print.  
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Figure 18. Measured (solid lines) and predicted (dashed lines) spectral reflectances of 1 to 5 acetate films on top 
of (a) white PVC and (b) green paper with respective reflectance Rp plotted in dotted line. R∞ denotes the 

reflectance of an infinite stack of films.  

A third application of the model was based on stacks of blue acetate films deposited on top of 

green glossy paper and white glossy PVC. One to five films were deposited in each case. The 

spectral reflectances measured with a d:8° geometry (or equivalently with a d:0° geometry) as 

well as the predicted ones are plotted in Figure 18. The ∆E94 values computed between 

predicted and measured spectra are all below 0.25 unit in the case of the white PVC and 0.49 

unit in the case of the green paper, thus showing the high accuracy of the model. In the case 

of the green paper, we observe similar phenomenon as for film in front of a specular 

background: the different spectra have same value at a given wavelength, presently 500 nm. 

This invariance occurs precisely at the wavelength where the reflectance of the paper, pR , 

coincides with the reflectance ∞R  of the infinite stack of films. This is well-known in the case 

of oil paintings, particularly regarding the art-glaze technique where a white diffusing board is 

coated with several weakly pigmented, almost nonscattering layers [1, 2].   

6. MULTIFLUX MODELS 

The shortcomings of the two-flux model regarding collimated light and forward light 

scattering can be addressed by taking additional fluxes into account, corresponding to various 

angular distributions. This is especially needed when the medium is sufficiently scattering to 

not be considered as non-scattering, and not sufficiently scattering to be considered as 

strongly diffusing, i.e. Lambertian. We thus come back to the Kubelka-Munk formalism 

where the propagation of light in uniform layers is expressed in terms of absorption and 

scattering coefficients. Here, we present two classical configurations based on both collimated 

and diffuse fluxes: the four-flux model [22, 23], and the three-flux model [24].  

6.1. The four-flux model 

Let us consider an upward collimated flux, denoted θJ , and a downward collimated flux 

denoted θI , where θ  is the angle of incidence of the collimated beam. Looking at a slice of 

thickness dx , the upward oriented flux is attenuated by / 2cosθKdx  due to absorption and 

/ cosθSdx  due to scattering. The same process applies also to the downward oriented flux. 

For the collimated fluxes, there is no gain from any other flux. The variation of intensity is 

summarized in the following equation system: 
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θ
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 θ ⋅ = − −

 θ ⋅ = +


dJ K J SJ
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dI K I SI
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 (141) 

Applying the same matrix form as for the Kubelka-Munk model yields: 

 
0( ) (0)02exp

( ) (0)cos0
2

θ θ

θ θ

  − −     − = ⋅      θ      +    

K SJ h Jh
I h IK S

 (142) 

Note that the amounts of light lost by scattering by θI  and θJ  contributes to the diffuse fluxes 

i  and j . Combining equations (142) and (8) leads to  

 4 , ,

( ) (0)
( ) (0)
( ) (0)
( ) (0)

θ θ

θ θ

   
   
   = ⋅
   
   
   

K S h

J h J
I h I
j h j
i h i

M  (143) 

where 4 , ,K S hM  is the 4 4×  matrix defined as follows: 

 4 , ,

1 0 0 0
cos 2

10 0 0
cos 2exp ( 0)

( )
2cos 2cos

( )
2cos 2cos

 −  +   θ    
   +   θ  = −  
  − +  θ θ  
  − − − +  θ θ  

K S h

K S

K S
h

S S K S S

S S S K S

M  (144) 

The same calculation methods apply to this 4 4×  matrix denoted 4 , ,K S hM  as for the Kubelka-

Munk matrix , ,K S hM  introduced in Section 2.2, equation (9). The matrix exponential, as 

defined by equation (7), can be calculated by diagonalization of 4, ,K SM , i.e. the matrix inside 

the exponential function in equation (144). 

The Saunderson correction applies to ( )j h  and ( )i h  the same way as described in Section 2.7 

for the Kubelka-Munk model. However, another transfer matrix must be defined for the 

collimated fluxes  (0)θI  and (0)θJ , similar to the one introduced in Section 4.2, equation 

(82). Assuming sin 1θ ≤n , the external collimated fluxes, denoted ( )0ψ′I  and ( )ψ′ 0J  where 

ψ denotes the orientation of light in air, are related to the collimated fluxes in the medium, 
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denoted (0)θI  and (0)θJ , by the Fresnel angular reflectances using the transfer matrix 

( )12 ψF  defined as in equation (72): 

 

( )
( ) ( )

( )
( ) ( )

( )
01 01

01 01

0 ( )
0 ( )

( )1 21
( )1 1

ψ θ

ψ θ

θ

θ

′   
= ψ ⋅   ′   

− ψ ψ   
= ⋅   − ψ − ψ   

J J h
I I h

J hR R
I hR R

12F
 (145) 

Combining equations (145) and (44) yields a 4 4×  Saunderson correction matrix: 
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Combining equation (146) and equation (143) yields a new relation that relates the fluxes in 

the external medium with the fluxes at the bottom of the layer: 

 

( )
( )
( )
( )

( )
( )
( )
( )

4 4 , ,

0 0
0 0
0 0
0 0

ψ θ

ψ θ

′   
   ′   = ⋅ ⋅
   ′
   ′   

Saunderson K S h

J J
I I
j j
i i

M M  (147) 

where ψ and θ denote the orientations of light in air, and respectively in the medium.  

6.2. The three-flux model 

In most experimental set-ups a Lambertian reflector is used as background for the medium to 

be analyzed. As a consequence the incident collimated light beam is turned into a Lambertian 

light flux after the first reflection on the background: (0) 0=J  and (0) ( (0) (0))= +gj R i I . 

The four-flux model can be simplified accordingly: 
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cos 2( ) (0)

( ) exp ( ) 0 (0)
2cos

( ) (0)
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For decades, the three-flux model was the most effective model to be implemented in color 

formulation packages. It offered a good compromise between precision and computation 

effort [11]. 

In the special case of a non-scattering material ( )0=S  in optical contact with a substrate of 

reflectance gR , equation (148) simplifies as follows: 
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7. CONCLUSIONS 

The main interest of the two-flux models, i.e. the Kubelka-Munk model and Kubelka’s 

layering model, lies in the analytical expressions they provide for reflectance and the 

transmittance of layers and stacks of layers. This is probably the reason of their amazing 

success. In these analytical expressions, the parameters attached to the layers can be directly 

or indirectly related to reflectances and transmittances measured using a spectrophotometer, 

and those attached to the interfaces can be computed from the Fresnel formulas when the 

optical indices are known. Thanks to the extensions presented here based on transfer matrices, 

the Kubelka-Munk model, Kubelka’s model and Saunderson’s correction can be easily 

transposed to more complex configurations, for example the case of many layers with distinct 

optical indices. They thus enable the prediction of the visual rendering of many common 

colored surfaces such as inked papers, paintings, photographs, protection films… Fairly good 

prediction accuracy can be achieved provided the implicit assumptions of the two-flux 

approach are well satisfied. The Kubelka-Munk model assumes homogeneous, significantly 
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scattering layers and Lambertian illumination. In Kubelka’s model, layers are not necessarily 

homogenous: their scattering and absorption coefficients can vary as a function of the depth, 

and in a stack, they can have distinct optical indices. The model applies with stacks of 

strongly scattering layers illuminated with Lambertian flux, and with stacks of nonscattering 

layers illuminated with collimated flux. By extension, the model also applies to stacks of 

nonscattering layers illuminated with diffuse flux by considering this diffuse flux as a 

collection of collimated rays: the angular reflectances and transmittances yielded by the 

model are summed up over the range of orientations of the rays. Thanks to this, stacks of 

strongly scattering and nonscattering layers can also be addressed provided the geometry of 

illumination for each layer is specified.  

When these assumptions are not satisfied, the two-flux approach may fail and more complex 

models must be used. The three-flux and four-flux models extending the Kubelka-Munk 

model, presented in Section 6, apply for example in the case of scattering layers illuminated 

by collimated light. There exist other approaches, for example a numerical solving of the 

radiative transfer equation (see [HDI062], Section 6, as well as reference [24] for the 

relationship between the radiative transfer theory and the three- and four-flux 

approximations), but they generally need modeling the optical properties of the media at small 

scale as well as more important computational effort, while no analytical expression can be 

expected. This is the reason why in most applications the two-flux approach is tested at first 

and, when it is not accurate enough, simple extensions are often developed hoping to reach 

the expected prediction accuracy.  

8. APPENDIX – ALTERNATIVE DEFINITION OF TRANSFER 
MATRICES 

The transfer matrix of a flat interface as defined in Section 4.2 by equation (82) becomes 

indefinite when the orientation of light exceeds the critical angle because the reflectance Rjk is 

1, therefore the transmittance Tjk is 0. In order to prevent computational problems, we 

recommend using an alternative general definition for the transfer matrices where the 

downward transmittance is incorporated into the matrix in a third row and third column:  

 
0

1 0
0 0

′ ′ττ −ρρ ρ 
 ′= −ρ 
 τ 

M  (150) 
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where ρ, ρ’, τ, τ’ resp ectiv ely deno te the u pp er reflectance, the back reflectance, the 

downward reflectance and the upward transmittance.  

These 3×3 matrices can be multiplied in the same way as the 2×2 transfer matrices without 

any chance of division by zero. Reflectances and transmittances are deduced from the entries 

( ) , 1,2,3=ijm i j  of the 3×3 matrix in the following way: 

 

( )

12 22

33 22

12 22
2

22 33

/
/

/

det /

ρ =
τ =
′ρ = −

′τ =   

m m
m m

m m

m mΜ

 (151) 

Let us examine what happens in the matrix product of equation (90) when a total reflection 

occurs at the middle interface. The transfer matrix of the middle interface, ( )12 1θF , is given 

by (82) with the Fresnel reflectance ( )12 1θR  equal to 1. After conversion into the 3×3 matrix 

format, we have 

 ( )12 1

1 1 0
1 1 0

0 0 0

− 
 θ = − 
 
 

F  (152) 

With this matrix ( )12 1θF , the product of matrices in equation (90) provides the following 

front reflectance for the multilayer, which contains no terms relative to the second layer or the 

back interface: 

 ( ) ( ) ( ) ( )
( )

1

1

2/cos
10 1 01 0 1

0123 0 01 1 2/cos
10 1 11

θ

θ

θ θ
θ = θ +

− θ

T T t
R R

R t
 (153) 

The fact that no light enters the second layer is therefore automatically taken into account by 

the model. The downward transmittance is zero. The back reflectance and the upward 

transmittance, in this case, make no sense anymore.  
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Abstract


This paper presents various extensions of the so-called two-flux models for prediction of reflectance and transmittance of diffusing media, i.e. the Kubelka-Munk model, introduced in [HDI062], and the extension of Kubelka-Munk for stacks of diffusing layers. A first matrix formulation of the Kubelka-Munk differential equations leads to a matrix framework based on transfer matrices, which can be extended to stacks of diffusing layers, stacks of nonscattering films, and stacks of scattering and non-scatterings films as a generalization of the Williams-Clapper model for prediction of the reflectance of paper photographs, each of these configurations being illustrated through various examples. This paper also exposes the limits of the two flux approach and shows that the matrix formalism extends in a straightforward manner to multiflux models, where the size of the matrices is increased.   

1. Introduction


Although prints and paints are often considered as “surfaces”, they are actually made of various layers of more or less scattering and absorbing media. This is obvious in printing where a strongly scattering substrate (e.g. paper) is coated with absorbing, almost non-scattering substances (inks). In glaze painting, the board is first coated with a white diffusing paint layer aimed at reflecting light in a uniform way in every direction; it is then coated with several absorbing layers, almost nonscattering, for coloration; it is finally coated with a clear varnish for protection [1, 2]. More complex structures may be found everywhere, for example photos under glass or books covered by a protection film: light is reflected multiple times between the colored object and the protecting element, thus changing the color rendering of the object. Optical models predicting the color rendering of transparent films, glass plates, paints or printed papers taken individually are relatively well known (see [HDI062], Section 4.2, and [HDI051]). However, the combination of these models, necessary when various elements are on top of each other, is less common. In many cases, i.e. when each of the stacked elements is strongly scattering or non-scattering, the spectral reflectance or transmittance of the object can be predicted using a two-flux model describing the forward and backward propagation of fluxes and their mutual exchanges due to scattering in layers and reflections by their interfaces. The two-flux approach is theoretically permitted when the angular distribution of light does not vary after several reflections between the stacked elements [3]: this is the case for strongly scattering layers illuminated by a Lambertian flux, addressed in Sections 2 and 3, and for nonscattering layers illuminated by a collimated flux, addressed in Section 4. The two-flux approach also enables addressing stacks where strongly scattering layers and non-scattering layers are alternated (Section 5). 

In its classical form introduced by Kubelka and Munk [4, 5], the two-flux model is expressed in terms of flux attenuations due to scattering and absorption, parameterized by scattering and absorption coefficients. The flux attenuations in infinitesimal sublayers are written under the form of scalar differential equations, or equivalently under the form of one vector differential equation, involving an attenuation matrix, presented in Section 2. By integrating this vector differential equation, the incoming and outgoing fluxes at both sides are related through one matrix, which models the flux transfers between each other and is thus qualified as transfer matrix. This transfer matrix formalism is shown to be very convenient when different media are coated upon each other, or when several slides of media are stacked to each other. As Kubelka in his paper of 1954 dedicated to non-homogeneous layers [6], the matrix model can be extended to reflecting-transmitting components with distinct reflectances on their two sides. The transferred flux fractions are thus represented by the reflectances and transmittances of the layers, and possibly of their interfaces, which can be either predicted or deduced from spectral measurements. Layers may have any thickness (provided they are thicker than the coherence length of the incident light) and may be themselves composed of various elements. Several examples will be developed in Section 3 to 5, illustrating the easy computation of the reflectance and transmittance of stacked elements knowing, by measurement or by prediction, their individual reflectances and transmittances. The matrix formalism has also the advantage to be easily extensible to multiflux when several directions of light need to be treated in parallel, as shown in Section 6 in the case of homogenous layers.  

2. Revisiting the Kubelka-Munk model (two-flux model)

This section revisits the Kubelka-Munk model whose classical formulation has been introduced in [HDI062], Section 7. We present here a matrix formulation of the differential equations which simplifies the computation of reflectance and transmittance of homogenous scattering layers and enables appreciable extensions.


2.1. Matrix method to solve the Kubelka-Munk differential equation system


The Kubelka-Munk model considers a thin slice of diffusing medium whose thickness 
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 is small compared to its two other dimensions. Let us denote as 

[image: image2.wmf]j


 a diffuse light flux oriented upwards (increasing altitude 
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) and as 
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 a diffuse light flux oriented downwards (decreasing altitude 
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, see Figure 1). We assume that all variations of the light fluxes are only due to absorption and scattering. We denote as K the linear absorption coefficient and as S the linear backscattering coefficient. Flux i and j, as well as coefficients K and S may be functions of the wavelength. In order to simplify the notations, we omit their dependence on wavelength and implicitly assume that they may have distinct values in the different wavebands of the visible spectrum. This also holds for every equation in this paper. 
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Figure 1: Upwards and downwards fluxes in a layer of thickness h.

While crossing the slice of medium, flux 
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 decreases by an amount 
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 due to absorption and also by an amount 
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 due to back-scattering. It increases by the amount of light 
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 lost by back-scattering if the flux 
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 while crossing the same slice of medium in the opposite direction:
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Analyzing flux 
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 leads to a similar equation. Since the orientation of this flux is opposite, negative signs are introduced:
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Note that the Kubelka-Munk model does not distinguish between forward scattered light and light that wasn’t deviated. In other words, this model makes no distinction between a transparent medium, i.e. an absorbing but not scattering medium, and a hazy medium where scattered light reduces the contrast of objects viewed through it. Haze is the percentage of transmitted light that is scattered so that its direction deviates more than an angle of 2.5° (0.044 rad) from the direction of the incident beam [7]. 


Combining equations (2)

 yields a system of differential equations:
(1)

 and 
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There are several ways to solve this system of equations. This chapter will focus on a matrix based approach that enables addressing more advanced models. Let us look at the system of equations (3)

 as a differential equation in a vector space which can be written:
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where 
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M


 denotes the matrix of Kubelka-Munk coefficients, or “attenuation matrix”:
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Before solving equation (4)

, let us first recall that the solution for a scalar differential equation of the first order of the form
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Similarly, the solution for the vector differential equation (4)

 is 
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where ‘exp’ here denotes the matrix exponential function defined by the series:
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where I denotes the 2×2 identity matrix. 


Thus, by integrating the vector differential equation 
(4)

 between  GOTOBUTTON ZEqnNum759684  \* MERGEFORMAT  and 
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, one obtains the following equation relating fluxes i and j at the altitudes 0 and h:
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with
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Note that the matrix 
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, expressed in terms of the scattering and the absorption coefficients, has a physical dimension in 
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  is dimensionless. This matrix relates the incoming and outgoing fluxes in the layer and models the flux transfers from each other. It can thus be qualified as “transfer matrix”, a concept that will be generalized in Section 3. 

The exponential of a square matrix always exists and satisfies several interesting properties [8]:

· The exponential of the zero matrix O is the identity matrix:
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· Let A and B be two matrices that commute with each other, i.e. 
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, then the exponential of the sum equals the product of the exponentials:
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· The inverse of 

[image: image36.wmf](


)


exp


M


 is 

[image: image37.wmf](


)


exp


-


M


.





[image: image38.wmf](


)


(


)


(


)


(


)


(


)


1


expexpexpexpexp


-


×=×-=-=


éù


ëû


MMMMMMI




· Let x be an real number, then
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· The exponential of a diagonal matrix is a diagonal matrix whose entries are the exponential of the entries of the matrix (we will use this fundamental property to compute 
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whose two roots are the two eigenvalues of 
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 Assuming 
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Finally, equation (8)

 can be written as the following matrix product:
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or equivalently as the following one:
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In this framework, the body reflectance 
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 of a layer is given by the ratio 
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Therefore the following holds for a free standing medium:
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i.e., by dividing both members of this equation with 
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A substrate of reflectance 
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 in optical contact with the layer of thickness h at the lower side (

[image: image65.wmf]0


=


z


) would impose a condition on the boundary 

[image: image66.wmf](


)


(


)


00


=r


g


ji


:





[image: image67.wmf](


)


(


)


(


)


(


)


1


2


1


0


0


0


0


-


æö


rr


æöæö


=×××


ç÷


ç÷ç÷


ç÷


èøèø


èø


vh


g


vh


e


ihi


ihi


e


VV



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (18)


Developing equation (26)

. 
(18)

 leads to the hyperbolic solution of the Kubelka-Munk model, see equation 

2.2. The classic formulae of the Kubelka-Munk theory


All classic formulae from the literature (e.g. Ref. [9]), can be derived from equation (14)

. Let us introduce 
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under the assumption 
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with
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Developing equation (21)

 yields:
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Note that in the particular case of absence of scattering ( 
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), equation (13)

, which simplifies as follows:
(22)

 does not apply. We need to go back to equation 




[image: image81.wmf](


)


(


)


(


)


(


)


0


0


0


0


-


æö


æöæö


=×


ç÷


ç÷ç÷


ç÷


èøèø


èø


Kh


Kh


e


jhj


ihi


e



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (23)


2.3. Layer in optical contact with a background


Many practical cases, for example inks or paints deposited on a substrate, can be seen as layers in optical contact with a background with given reflectance 
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 (Figure 2). 
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Figure 2: Upwards and downwards fluxes in a layer in optical contact with a background.
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Substituting equation (22)

 yields:(24)

 in equation 
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In the case where 
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, equation (25)

 can be written:
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Equation 
(26)

 is the hyperbolic solution of the Kubelka-Munk equations. In absence of scattering ( GOTOBUTTON ZEqnNum589049  \* MERGEFORMAT ), equation (23)

 yields:
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Two special cases of interest are the reflectances  
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and in the case of the white background, it becomes:
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Note that equation (28)

 can also be written




[image: image97.wmf](


)


0


1


coth


×=-


r


bbSha


.
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (30)


and equation (29)

 can thus be written
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or, using the defining expression (19)

 for a, 
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This equation 
(32)

 which by definition relates  GOTOBUTTON ZEqnNum814267  \* MERGEFORMAT  and 
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Another important result is obtained by substituting relations (26)

: 
(32)

 in equation (30)

 and 
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This equation 
(33)

 allows for predicting the reflectance ρ of the layer on a substrate of reflectance  GOTOBUTTON ZEqnNum911830  \* MERGEFORMAT , knowing 
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In the case of paints, 

[image: image108.wmf]r


g


, 

[image: image109.wmf]0


r


 and 

[image: image110.wmf]r


 are easily determined by experimental means. The paint is applied to a contrast card as shown in Figure 3, made of a light area of reflectance 
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[image: image117.jpg]





Figure 3: Contrast card with white and black areas used to determine 
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Note that the reflectances 
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2.4. Intrinsic transmittance of a layer with defined thickness 

The intrinsic transmittance of the layer of thickness h, defined by equation (22)

:(16)

, can be expanded as follows, according to equation 
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2.5. Infinitely thick layer


A layer of thickness h can be considered as “infinitely thick” when adding another layer of the same medium with finite thickness X does not modify its body reflectance, denoted as 
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Furthermore, one has:
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which therefore means, by identification of equations (37)

(36)

 and 
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In linear algebra, equation 
(38)

 means that the column vector  GOTOBUTTON ZEqnNum291610  \* MERGEFORMAT  is an eigenvector of 
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which yields the following expression for 
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Following equation 
(39)

, the ratio of K to S can be expressed as a function of  GOTOBUTTON ZEqnNum162601  \* MERGEFORMAT :
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Equation (40)

 is the most famous result from the Kubelka-Munk theory, widely used in the paper and textile industry. Other important results introduced above are listed in the next section. 

2.6. Most important formulas


The Table below summarizes the most important formulas issued form the Kubelka-Munk theory. 

Table 1: Remarkable results from Kubelka-Munk theory


		Parameter a as a function of the absorption coefficient K and the scattering coefficient S
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		Hyperbolic solution of the Kubelka-Munk equations, for a layer on a background with reflectance 
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		Reflectance of a layer on an ideal black background (
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		Reflectance of a layer on an ideal white background (
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		Parameter 
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		Reflectance of a layer on a background with reflectance 
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		Reflectance of a layer on an ideal white background as a function of the reflectance ρ of this layer on some background with reflectance 
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		Intrinsic transmittance 
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		Reflectance 
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2.7. Matrix formulation of the Saunderson correction


Section 7.5 in [HDI062] introduced the Saunderson correction that accounts for the multiple internal reflections that occur at the interface located at the altitude h between air (medium 0) and the layer (medium 1), assumed to be flat. The equations (120) in [HDI062] written at altitude 

[image: image167.wmf]h


 can also be turned into a matrix form, by recalling that the reflectance for diffuse light of the interface at the air side is 

[image: image168.wmf]01


r


 defined by equation (37) in [HDI062] as a function of the index of the medium; the transmittance from medium 0 to medium 1 is 
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where n is the relative refractive index of the media, and the reflectance at the side of medium 1 is 
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Figure 4: Reflection and transmission of diffuse fluxes at the air-layer interface.

Let us denote as 
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which may written in a matrix form:
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This vector equation yields:




[image: image179.wmf](


)


(


)


(


)


(


)


01


¢


æöæö


=


ç÷ç÷


¢


èøèø


jhjh


ihih


f



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (44)


with
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or equivalently, according to the relations between reflectances and transmittances of the interface:
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When considering the layer and its interface with air, the combination of the equations (8)

 yields: (44)

 and 
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We see through this equation (47)

 that the matrix model enables expressing the superposition of two reflecting-transmitting components (here a flat interface and a diffusing layer) by the product of matrices attached to each of them. This interesting property will be developed and generalized in Section 3, where the matrices are given the name of “transfer matrices”. 

Note that the reflectances and transmittances of a rough interface are numerically very close to those of a flat interface, tabulated in Appendix B of [HDI062] for various refractive indices.  Note also that equation (47)

 applies to diffuse fluxes only. Most measuring devices use at least one collimated beam of light. This needs to be accounted for when considering a particular measuring geometry.

2.8. Limitations of the Kubelka-Munk model


In order to illustrate the limits imposed by the assumptions made in the Kubelka-Munk framework, let us consider two extreme cases where reflectance 
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A dark piece of film has a high absorption (
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) and no scattering 
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. Its high absorption makes it almost opaque. However, it can be used to observe very bright objects, as for instance, the filament of a light bulb. The absence of scattering yields a sharp picture. A piece of black cardboard has a high absorption 
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 and a high scattering 
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. An observer will not be able to distinguish a sharp picture while observing a bright object behind the piece of cardboard.


The Kubelka-Munk theory successfully predicts the reflectance and transmittance of a material assuming the light fluxes remain Lambertian through the medium. If this assumption does not hold, the absorption and scattering coefficients computed from the reflectance and the transmittance does not correspond to the properties of the medium [10]. The Kubelka-Munk equations predict large absorption and scattering coefficients in both cases described above. 


This limitation makes the Kubelka-Munk theory inapplicable to media where light fluxes are not always lambertian. The theory can be applied to paint where scattering is strong and guarantees the lambertian distribution, but not to inks where transparency favors collimated light fluxes.


Let us consider another special case where non-absorbing transparent film (
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) contains small scattering particles that induce forward scattering. Such a film looks blurry. An observer would not be able to distinguish a sharp picture when putting this film in front of him. Surprisingly, the scattering coefficient S would be zero since it represents back-scattering only. Actually, this scattering coefficient is not exactly zero but very small. As the thickness of the layer tends to infinity, backscattered flux produced by multiple scattering may become well perceptible.  

3. Matrix model for stacks of diffusing layers 


In 1954, Kubelka published an extension of the Kubelka-Munk model in case of non-homogeneous layers [6]. When several layers are stacked together, Kubelka derived expressions for the reflectance and transmittance of the stack as functions of the individual reflectances and transmittances of the layers. These expressions were first derived for two layers according to a simple method based on geometrical series. However, this method becomes rapidly tedious when the number of layer increases. Pursuing the matrix formulation introduced in Section 2 in the context of the Kubelka-Munk model, we propose here to generalize the concept of transfer matrices relating the upward and downward fluxes entering and exiting the layers, which appeared through the definition of matrix  
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 in equation (8)

. In this section, we also consider, like Kubelka in his paper, non-homogenous layers, i.e. layers having different reflectance at their front and back sides, which is not allowed in the original Kubelka-Munk model. 

Throughout this section, the following notations are used: the layers are labeled with a number 
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 incremented in the order of superposition. The reflectances of their front face (“front reflectance”) and back face (“back reflectance”) are denoted respectively as 
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. These two reflectances are a priori different due for example to a gradient of absorption coefficient across the thickness of the layer. Their transmittances are denoted as τk and 
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 when light transits from front to back (“forward transmittance”), and respectively from back to front (“backward transmittance”). In practice, the transmittances τk and 
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 are identical according to Kubelka’s nonpolarity principle for transmittance. However, we propose to maintain a distinction between the two notations. Downward and upward fluxes are respectively denoted using letters i and j. Subscripts 
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 correspond to their position in the stack: 0 when the flux is in the surrounding medium at the front side, 1 when it is between layers 1 and 2, and so on. Figure 5 shows an example for two layers. 
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Figure 5: Kubelka’s model described the reflections and transmissions (dashed arrows) of Lambertian fluxes (white arrows) between nonsymmetric diffusing layers.

3.1. Transfer matrices

Let us consider one layer, for example Layer 1 in Figure 5. By describing how each flux contributes to each other flux, we obtain the following relations:
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which may also be written 
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or 
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The matrix in equation (51)

, denoted as M1, is the transfer matrix attached to layer 1
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This line of reasoning  stands for any layer (or interface, see Section 2.7). It also stands for a group of layers (or of layers and interfaces), for example for the two layers described in Figure 5. Let us denote as 
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The matrix in equation (53)

, denoted M12, is the transfer matrix attached to the two layers. We can also write the equalities:
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which show that the transfer matrix of two layers is the product of the individual transfer matrices of the layers. This was already noticed in Section 2.7, equation (47)

. Note that the left-to-right position of the matrices in the product reproduces the forward position of the corresponding layers. This also holds for many layers, i.e. for any integer k
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This matrix product for successive layers extends the product of the transmittances of successive nonscattering layers according to Beer’s law. 

Every transfer matrix, even when obtained by a product of transfer matrices, has the same structure of the form:
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From a given transfer matrix 
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where the symbol ‘det’ denotes the determinant of the matrix.  

Note that similar transfer matrices are used in wave optics to model the propagation of electric fields [12] or incoherent light beams [13, 14] in thin multilayers. Compared to the geometrical series, the matrix method becomes very advantageous as soon as more than two layers are superposed. 

3.2. Examples

Let us come back to the example of two layers and expand the transfer matrix M12
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By applying formulas (58)

, we retrieve the Kubelka’s formulas expressing the reflectances and transmittances of two layers as a function of the individual reflectances and transmittances of the layers. 
(57)

 on the matrix M12 expanded in equation 
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and
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These formulas are generally derived by reducing the geometrical series [6]. The individual reflectances and transmittances of layers, if they are homogenous, may be computed using the Kubelka-Munk mode and in any case, they can also be measured. Most of the time, they depend on wavelength. In this case, the matrix model, as well as Kubelka’s formulas, applies for each waveband. 

In a diffusing multilayer, the interfaces between layers have no optical effect if the layers have the same refractive index. Otherwise, light reflections and refractions occur at the interfaces and modify the flux transfers between the layers. We thus proceed as in Section 2.7, by using the transfer matrices attached to the interfaces between media with refractive indices 
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 (on the back face), similarly defined as in equation (45)

:
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Let us consider for example a symmetric layer (medium 1 with reflectance ρ and transmittance τ) bordered on its two faces by air (medium 0). The incoming lights at front and back sides are Lambertian. The transfer matrix attached to the layer with interfaces is 
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where 
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 denotes the matrix attached to the layer defined by equation 
(56)

, and  GOTOBUTTON ZEqnNum910279  \* MERGEFORMAT  and 
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 denote the matrices attached to the front, respectively back interfaces, defined by equation (63)

. After computation, we obtain: 
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According to equations 15(57)

, we retrieve the well known formulas for the reflectance R and the transmittance T of the layer with its interfaces with air [ GOTOBUTTON ZEqnNum817170  \* MERGEFORMAT ]




[image: image229.wmf](


)


(


)


0110


2


22


1010


1


1


t


==


¢¢¢


-r+r-tt-rr


tt


T


m


rr







[image: image230.wmf](


)


(


)


(


)


10


12


010110


2


22


1010


1


¢¢


r+tt-rr


==+


¢¢¢


-r+r-tt-rr


r


m


Rrtt


m


rr




We may generalize the method for two layers with different refractive indices, as represented in Figure 6. Once again, light sources are Lambertian at both sides. Transfer matrices 
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 defined in equation 
(52)

 are attached to the layers and transfer matrices  GOTOBUTTON ZEqnNum438754  \* MERGEFORMAT , 
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 defined in equation (63)

 are attached to the front, middle and back interfaces reflectively. The transfer matrix of the stack is thus given by:
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The reflectances and transmittances of the multilayer are then deduced from the entries of M according to the formulas (57)

. 
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Figure 6: Flux transfers between diffusing layers (dashed blued arrows) and by interfaces (solid red arrows).

4. Matrix model for stacks of films

Although nonscattering media are not reflective by themselves, their surface reflects light. When several layers with distinct indices are stacked together, light is thus reflected multiple times. We will see that transfer matrices can also be defined in this context. Layer thicknesses are assumed much thicker than the coherence length of light, which thus avoid interference effects and enable using laws of geometrical optics. The main difference between nonscattering and scattering media is the fact that light propagates along straight lines, or broken straight lines due to refraction at the interfaces, with orientations well determined according to Snell’s law (Figure 7). These orientations determine the reflectance and transmittance at the interfaces, as well as their attenuation while crossing the layers. This is the reason why nonscattering layers, multilayers and flat interfaces will be first characterized by an angular transfer matrix, based on angular reflectance and transmittance functions. When the incident light is diffuse, we can integrate these functions over the set of incident angles. 
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Figure 7. In a nonscattering multilayer, the direction of the light rays in each layer is fixed. It depends only on the direction of the incident light, θ0, and on the refractive index of the layer.  

The reflectance of nonscattering multilayers also depends on polarization of light due to the polarization-dependant Fresnel formulae. If the incident light is linearly polarized in the incidence plane or perpendicularly to it, this polarization is maintained in the whole multiple reflection process and determines which Fresnel formula must be used for the reflectances contained within the reflectance and transmittance expressions. In the case of natural light, which is the type of light emitted by most light sources, we assume that the two linearly polarized components flow in parallel, independently of each other and with equal initial power (see [HDI062], Section 2.2). The multilayer's reflectance and transmittance is the average of the reflectances and transmittances attached to the parallel (p) and perpendicular (s) polarizations. This may be written by the following equation
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where X denotes a multilayer reflectance (or transmittance) for natural light, f the analytical reflectance (or transmittance) expression being a function of Fresnel reflectance 
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 for the parallel polarization or 
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 for the perpendicular polarization. 


Nevertheless, many nonscattering materials such as polymers have a strong optical anisotropy which decreases the degree of polarization of light. In practice, it is more exact to consider that light remains unpolarized along the whole multiple reflection process and to insert the Fresnel reflectance or transmittance for unpolarized light, the average of the reflectances or transmittances for p- and s-polarized lights, in the multilayers' reflectance and transmittance expressions which thus becomes
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We will consider hereinafter this latter case. In addition to being simpler because it prevents having to expand expressions for each polarization and to average them, this choice is justified by the fact that polymers are used in our experimental applications. Nevertheless, it is not an issue to follow one approach or to the other: the model in itself provides only the f function. 


4.1. Single film at normal incidence

Let us first consider the simple case of a nonscattering film illuminated by collimated light at normal incidence. The film is made of nonscattering medium with index n1. Its transmittance at normal incidence is denoted as T1. It is bordered by a clear medium with index n0 at front side, e.g. air, and by a possibly different medium with index n2 at back side, e.g. water. Regarding the Fresnel reflectances of the interfaces, similar notations are used as in [HDI062], Section 3. Since light is normal to the interfaces, we have:
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and 




[image: image244.wmf](


)


(


)


(


)


0010


==-


kjjkjk


TTR


. 
 MACROBUTTON MTPlaceRef \* MERGEFORMAT (69)


In this section, the short notation 
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Figure 8 shows the flux transfers between the different media. As for a diffusing layer [equations 
(51)

], we may write the following matrix equation for an interface between media j and (48)

 to  GOTOBUTTON ZEqnNum191169  \* MERGEFORMAT 
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or, since 
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The matrix in equation 
(70)

, denoted  GOTOBUTTON ZEqnNum255975  \* MERGEFORMAT , is the transfer matrix attached to the interface:
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[image: image253.wmf]

Figure 8. Flux transfers through the interfaces and nonscattering layer of a film of index n1 bordered by media of index n0 at the front side, and of index n2 at the back side.  


Note that using the relations (71)

 into
(69)

, we can transform equation (68)

 and 
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Regarding the film bulk layer 2, denoting  
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i.e., 
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where 
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 is the transfer matrix attached to the layer, which depends upon orientation but not on polarization of light: 
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Combining equations (73)

(70)

 and 
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shows that the matrix product 
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 is the transfer matrix of the film:
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We can retrieve the front and back reflectances and the forward and backward transmittances of the film using similar equations as (57)

. For example, the front reflectance of the film is 
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and its forward transmittance is
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4.2. Single film at oblique incidence


At oblique incidence, the same line of reasoning applies, except that the orientation of light is different in the three media. However, in a given medium, all light components form the same angle with the normal, as shown in Figure 7. The orientation of fluxes 
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. Writing Snell’s sine law at the successive interfaces yields the following equality
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from which we deduce that the angle 

[image: image280.wmf]q


k


 in medium k = 1 or 2 depends only on θ0, n0 and nk, not on the indices of the other medium:
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Equation 
(70)

 remains valid but with different definition for the transfer matrix of the interface,  GOTOBUTTON ZEqnNum255975  \* MERGEFORMAT , whose entries are now function of the angles 
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The properties of the Fresnel reflectance and transmittance formulas enable transforming the above equation into:
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Note that there is a computational problem in case of total reflection, i.e. when 
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. The way to work around this problem is to use an alternative definition of transfer matrices, presented in appendix, which avoids the division by the term 
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Regarding the layer, equation 
(73)

 also remains valid but, once again, the transfer matrix attached to the layer is modified in order to account for the orientation of light in the layer. Note that rays oriented by an angle  GOTOBUTTON ZEqnNum972238  \* MERGEFORMAT  from the normal are attenuated by the factor 
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 where t, as previsouly, denotes the transmittance of rays perpendicular to the layer. The transfer matrix attached to the layer is therefore:
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Equation (76)

 becomes 
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and the transfer matrix of the film is given by the matrix product 
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. It seems not necessary to expand the full expression of this matrix, but it is easy to verify that the front reflectance, obtained by dividing the top-right entry by the bottom-right entry, is
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and that the forward transmittance, inverse of the bottom-right entry, is
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We can also verify that equations 
(87)

 when (86)

 and (79)

 are special cases of these expressions (78)

 and  GOTOBUTTON ZEqnNum574122  \* MERGEFORMAT , and that equations (61) and (62) of [HDI062], obtained from geometrical series, are also special cases of (87)

 when media 1 and 3 are air.
(86)

 and 

4.3. Nonscattering multilayers

The line of reasoning presented for the case of one film extends in a straightforward manner to the case of nonscattering multilayers where the layers have distinct indices. By way of illustration, the flux transfers in the case of two layers are represented in the Figure 9. 
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Figure 9. Flux transfers in two nonscattering layers with different indices.  


The orientation of light in media k = 1, 2 and 3 are functions of the incident angle 
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If we want to consider illumination from the back side, the orientation of light in media j = 0, 1 and 2 can be expressed as functions of the incident angle 
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The matrix model directly enables writing the transfer matrix M of the bilayer as
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where the matrices 
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 are the transfer matrices attached to the interfaces defined by equation 
(83)

 and the matrices  GOTOBUTTON ZEqnNum906907  \* MERGEFORMAT  are the transfer matrices attached to the layers defined by equation (84)

. 


The matrix method applies with any stack of nonscattering layers, for any incident angle, provided each layer is thicker than the coherence length of light. Various examples are proposed in the next sections. The orientation of light in the different layers is automatically embodied in the transfer matrices provided they are defined and multiplied correctly. Since total reflections may occur, it is recommended that one adopts the alternative matrix formalism proposed in appendix. 

The reflectance and transmittance expressions given above are relative to collimated fluxes. If we rather consider radiances, we must consider the changes of solid angle due to the refractions at the interfaces, which modifies the density of flux per unit solid angle. We follow the reasoning developed in HDI062, Sections 3.5 and 3.6 for one interface: the incident, reflected and transmitted radiances, respectively denoted as 
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 where N denotes the labeling number of the surrounding medium at the back side. Since reflected and incident radiances fulfill equal solid angles, we have
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where 
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 is the front reflectance of the stack of nonscattering layers at the angle 
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The transmitted radiance fulfills a different solid angle in medium N. This introduces a factor 
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, which depends only on the refractive indices of the surrounding media 0 and N:
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where 
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 is the forward transmittance of the stack of nonscattering layers at the angle 
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When the sample is illuminated with Lambertian light from medium 0, the reflectance 
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 accounts for all the rays in the hemisphere by integrating the angular reflectance 
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 in a similar way as in equation (46) in [HDI062]:
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This integral holds for transmittance, by replacing 
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4.4. Stacks of identical nonscattering films


Let us now consider stacks of identical films illuminated at normal incidence. We first assume that there is no optical contact between the films, i.e. a thin air slice remains between them. Since a layer of air transmits all light and does not reflect it, the corresponding transfer matrix is simply the identity matrix. The reflectance Rf and transmittance Tf of one film at normal incidence (including multiple reflections between their interfaces with air and transmissions through the film bulk) are given by equations (77)

, may also be written  
(79)

. The corresponding transfer matrix, given by (78)

 and 
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Since light is not scattered in the stack, it remains perpendicular to all films. Matrix M can therefore be attached to each of them. The transfer matrix for the stack of films is therefore




[image: image324.wmf]=


N


N


MM



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (95)


whose computation can be performed through the diagonalization of M [16]:
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where 
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with
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and
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Note that the relationship between α and β [equation 
(20)

]. We thus have (99)

] is similar to the one between a and b in the Kubelka-Munk model [equation  GOTOBUTTON ZEqnNum370274  \* MERGEFORMAT , and
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The reflectance RN is given by the ratio of entries 
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After replacing 
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 with their respective expressions and rearranging, equation (101)

 becomes:
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The transmittance of the stack of films is the inverse of entry 
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As N increases, the stack contains more interfaces and thus becomes more reflecting. It also contains more layers and becomes more absorbing. The reflectance varies until a limit value corresponding to the reflectance of an infinite stack, denoted as 
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. Since the term raised at the power N in equation (102)

 is smaller than 1, it tends to zero. The infinite stack reflectance is therefore
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This variation is illustrated by the top-left graph in Figure 10 showing the spectral reflectances of stacks of blue acetate films (
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), studied in depth in Ref [17]. In this case, the reflectance increases with the number of films for all wavelengths, despite reaching rapidly a limit value in the spectral domain where the acetate is the more absorbing (570 – 680 nm). Outside this waveband, the reflectance increases more regularly according to the number of added film-air interfaces. In contrast, since the photons have less chance to cross the multilayer without being absorbed or back-reflected by interfaces, the transmittance decreases. It strives rapidly towards zero in the absorption waveband 570 – 680 nm and decreases more regularly and slowly outside the absorption waveband. 

In order to change the relative index of the film surfaces, we can fill the interstices between films with a clear liquid, e.g. oil or water, with index denoted as 
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 (Figure 11). In this case, the interfaces in contact with the liquid are less reflecting than the front and back interfaces of the stack which are in contact with air. The global reflectance and transmittance of the stack are thus modified, as shown by comparing the top and middle graphs in Figure 10, corresponding respectively to interstices filled with air and alcohol-based liquid (
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Figure 10. Predicted spectral reflectances and transmittances at normal incidence of stacks of blue acetate films (1, 2, 3, 4, 5, 6 and 10 films as well as, for reflectance, infinity) separated with different media (index 
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Figure 11. Stack of two acetate films pasted with liquid.

The transfer matrices of the interfaces are denoted 
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 according to the indices of the media j and k being respectively at the front and back side of the interface. They are defined in equation 
(71)

. The transfer matrix of a film layer,  GOTOBUTTON ZEqnNum103945  \* MERGEFORMAT , is given by equation (75)

. Recall that all these transfer matrices are defined for normal incidence of light. For a stack of two films, the transfer matrix is given by
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and for a stack of N films, it becomes:
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The reflectances and transmittances of the stacks of films are deduced from the entries of the transfer matrices as indicated by equations (57)

. Their analytical expressions are too long to be shown here, but their numerical computation  is not difficult. 

It is interesting to observe in the middle graphs of Figure 10 that incrementing the number of films increases the reflectance in the waveband 440 – 510 nm where the films are less absorbing and decreases outside this domain. At 440 nm and 510 nm, the reflectance does not vary because there is a perfect compensation between the gain due to back-reflection of light by the interfaces and the loss due to absorption. The transmittance follows a similar evolution when the films are separated by air, despite a slower decrease due to the higher transmittance of the interfaces.

In the special case where the liquid has the same refractive index as the films (oil with index 1.54), the interfaces in contact with it do not have optical effect any more. The transfer matrix can be written
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The stack becomes equivalent to one thicker film with normal transmittance 
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, N being the number of films. The reflectance and transmittance of this layer are similarly expressed as those of a single film, with 
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 in place of t. The reflectance comes only from the reflection of light by the front and back interfaces which are in contact with air. As the number of films goes to infinity, the light entering the stack is entirely absorbed and only the light reflected by the front interface is observed. The spectral reflectance is 0.04 for all wavelengths, thus yielding an achromatic color. 

4.5. Stacks of printed films

As an extension of the previous example, we propose to study stacks of films printed with inks, illuminated at normal incidence. Assuming that the refractive index of the films and the inks are equal, from an optical point of view, the printed film is very similar to a colored film: it is bounded by similar interfaces and the film substrate layer is replaced with two layers in optical contact with same index. The transfer matrix of the printed film, 
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, is thus the product of those of the film substrate, 
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which indicates that the normal transmittance of the printed film is simply the product of the normal transmittances of the film and the ink layer, respectively ts and ti. In theory, the printed film should have the same reflectance and transmittance on its two faces: flipping it without changing the illumination and observation conditions should not modify its visual aspect. However, optical phenomena sometimes generate a colored sheen only visible on the face with ink. Figure 12 shows the different spectral reflectances of inked and non-inked faces of a film printed with a Canon inkjet printer. The inked face displays a purplish aspect which is not observed on the other face. The higher reflectance measured on the inked face below 350 nm and beyond 550 nm is at the origin of the purplish sheen, while the opposite face has a bluish color characteristic of cyan ink deposited on a weakly reflecting support. In transmittance, the difference between front and back sides is much smaller. We can consider with inkjet prints that the relative difference between the two transmittances, generally inferior to 1%, is independent of wavelength. 
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Figure 12. Spectral reflectance measured at normal incidence on the inked and non-inked faces of a film printed with cyan and yellow ink halftones at nominal surface coverages 0.57, respectively 0.12. 


Let us denote as 
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 the reflectances of the printed film at the front side, and respectively the back side, and as 
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 its front-to-back, and respectively back-to-front transmittances. These reflectances and transmittances embody the multiple reflections and transmissions of light by the interfaces, the film layer and the ink layers. The transfer matrix attached to the printed film is 
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When N identical films printed with the same color are superposed, matrix M is raised to the power N. We may follow similar reasoning as in Section 4.4 by diagonalizing matrix M. Equations 
(103)

 remain valid, except the expressions for α, β and (96)

 to  GOTOBUTTON ZEqnNum729729  \* MERGEFORMAT :
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and
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Since each film has different reflectances on their two sides, stacks also have different reflectances on their two faces. The front and back reflectances are related according to:
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and the forward and backward transmittance are related according to:
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The model is not only valid with films coated with uniform ink layer but also with films printed with halftone colors [18]. This is shown in the following experiment based on CG3460 films from 3M printed in inkjet. The halftones were generated by stochastic screening according to the algorithm proposed by Ostromoukhov [19]. Four colors were selected called "green", "blue", "magenta" and "yellow" samples. They were generated by error diffusion halftoning and produced by printing cyan, magenta, yellow and green inks at the respective surfaces coverages {c, m, y, g} = {0, 0, 0, 0.5} for green, {0.35, 0.15, 0, 0} for blue, {0, 0.70, 0, 0} for magenta and {0.10, 0.10, 0.80, 0} for yellow. For each color, R, R' and T were measured on one film, then the number N of films was incremented and 
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 where measured until 16 films (15 film stacks were therefore measured for each of the three geometries). In this experiment, 
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 was assumed, where γ is a constant independent of wavelength specified in Table 2 for each type of film. Lower γ coincides with higher scattering: the yellow ink is more scattering than the other inks. 


For each color, the front reflectances, back reflectances and forward transmittances of the 15 stacks were predicted and compared to the corresponding measured spectra in terms of equivalent color distance expressed by CIELAB ΔE94 values. For each series of 15 measurements-predictions, the average (and maximal in bracket) ΔE94 values are given in Table 2. Figure 13 shows the front reflectance and the forward transmittance of a single film of each color (measured, green solid lines), those of stacks of 2 to 15 films (measured, black solid line; predicted, red dashed line) and the reflectance of an infinite stack of films (predicted according to formula (112)

, blue dotted line). 


Table 2: Average and maximum E94 values obtained for the different films and geometries. 


		Film color

		γ value

		RN

		R'N

		TN



		

		

		av. (max)

		av. (max)

		av. (max)



		Green 

		0.994

		0.12 (0.23)

		0.45 (0.64)

		0.49 (0.96)



		Blue 

		0.993

		0.24 (0.30)

		0.50 (0.63)

		0.35 (0.74)



		Magenta 

		0.993

		0.39 (0.43)

		0.20 (0.24)

		1.21 (1.68)



		Yellow 

		0.990

		0.55 (0.68)

		0.97 (1.17)

		2.41 (3.94)





For the green and blue colors, the prediction accuracy is excellent in both reflection and transmission modes. For the other two colors, the accuracy is good in reflectance mode and poorer in transmission mode. This is certainly due to scattering: in this experiment, the yellow ink was more scattering than the other inks. By looking at far objects through different films, blurring was more pronounced with films with much yellow. This is consistent with the fact that the γ value is lower for the yellow films. 
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Figure 13. Front reflectances (left) and forward transmittances (right) at normal incidence of single film (measured, green lines) and of stacks of 2 to 16 green films (measured, solid black lines, and predicted, red dashed lines). The numbers at the right of the curves indicate the number of films in the stack and the symbol 
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 designates the predicted infinite stack reflectance (dashed blue line). 


4.6. Stacks of printed films on top of a specular reflector


Mirrors are also nonscattering reflectors and can be treated, despite zero transmittance, by the matrix model. The transfer matrix attached to a mirror with reflectance at normal incidence 
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When nonscattering elements, e.g. films, are placed on it, only the front reflectance can be defined, the back reflectance and the transmittance making no sense in this case. 


Let us place a stack of N identical printed films in front of the mirror. As previously, we denote as 
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 the front reflectance, back reflectance, forward transmittance and backward transmittance of one film at normal incidence. The transfer matrix attached to the specimen is
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where 
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 denote the front reflectance, back reflectance, forward transmittance  and backward transmittance of the stack of N films at normal incidence, respectively given by Eqs. (111)

. 
(110)

 and (114)

, with a and b given by equations (103)

 and (113)

, (102)

, 

Finally, the reflectance of the stack with mirror, ratio of entry m12 to entry m22, is
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valid for all wavelengths and for any 
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Measured spectral reflectances 
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 are plotted in Figure 14 for stacks of the blue and green printed films previously studied, respectively placed in front of a red reflector (copper mirror covered by a film coated with red ink) and a magenta reflector (achromatic mirror covered by a film coated with magenta ink). In both cases, the number of films was incremented from 1 to 13. The predictions given by Eq. (117)

 satisfyingly match the measurements: the average ΔE94 value assessing the deviations between predicted and measured spectra was 0.42 units (maximum 0.66 units) for the green films on the magenta background, and 0.64 units (maximum 0.75 units) for the blue films on the red background. 


Through these examples, we observe that as the number of films in front of the mirror increases, the spectral reflectance of the samples varies differently with the wavelength, or more precisely according to the relative values of the mirror reflectance and the infinite stack reflectance. Hence, 
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 either increases or decreases and may even be constant for wavelengths where the spectral reflectances of background and infinite stack meet.  
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Figure 14. Spectral reflectances of (a) blue films in front of a red reflector and (b) green films in front of a magenta reflector. The numbers denote the numbers of films and line colors roughly reproduce the colors associated to the plotted spectra. Spectral reflectances of the mirror alone (label 0) and of an infinite stack of films (label ∞) are in dotted and dashed lines respectively. 


5. Stacks of diffusing and nonscattering layers

The two-flux models presented in the previous sections for strongly diffusing layers and for non-scattering layers can be extended to mixed stacks of strongly diffusing and nonscattering layers. The transfer matrices attached to the diffusing layers are similarly defined as in equation 4(52)

. Those attached to the nonscattering layers and flat interfaces, however, must be adapted to the angular distribution of the light they receive. We saw in Section  GOTOBUTTON ZEqnNum438754  \* MERGEFORMAT  that the trajectories and the attenuation of collimated light within a nonscattering multilayer are fully determined by the incident angle. Hence, every sequence of consecutive nonscattering layers and flat interfaces in the multilayer is considered as one nonscattering component. The angular transfer matrix model developed in Section 3 will help to get the analytical expressions for their front reflectance R(θ), back reflectance R’(θ), forward transmittance T(θ) and backward transmittance T’(θ). When the incident light is diffuse, we integrate these angular functions  with respect to the angular distribution of light, which is in practice either collimated when it comes from a directional light source or Lambertian when it comes from a Lambertian light source or a diffusing layer. In this latter case, the angular function X(θ) is integrated over the hemisphere, thus yielding an integral similar to the one of equation (93)

:
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This is the case when the nonscattering component is located between two diffusing layers (Figure 15.a). The transfer matrix is therefore
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where symbol  ~ denotes the integration defined by equation (118)

. 
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Figure 15. Flux transfers through a nonscattering element located (a) between two diffusing layers, (b) at the front edge position. 

When the nonscattering component is in an external position, for example at the front side, its global front reflectance, back reflectance, forward transmittance and backward transmittance, respectively denoted Rs, Ri, Tin and Tout, account for the angular geometry of the light source and detection system (see Figure 15.b). Their expressions in terms of the angular functions R(θ), R’(θ), T(θ) and T’(θ), are given in Table 3 for typical configurations: collimated (e.g. 0° or 45°) or Lambertian incident light and observation over the hemisphere or in one direction. The forward transmittance depends only on the illumination geometry and the back transmittance only on the observation geometry. If light is collected over the hemisphere, and since the light coming from the diffusing layer is also Lambertian, the back transmittance is 
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. In the case of a directional observation, only the radiance directed toward the observer is considered. It corresponds to a fraction 1/π of the Lambertian irradiance issued from the diffusing layer, attenuated by the angular reflectance of the nonscattering component, and divided by the term n2 in order to take into account the change of solid angle due to the refractions, where n is the refractive index of the diffusing medium (see equation 
(92)

, the index of air being 1 in the present case). The front reflectance Rs depends on both illumination and observation geometries. When the incident light is collimated, it is the angular reflectance R(θ) evaluated at the incidence angle provided the reflected light is collected by the detection system; otherwise it is zero. When the incident light is Lambertian, Rs is the diffuse reflectance  GOTOBUTTON ZEqnNum687275  \* MERGEFORMAT  if all the reflected light is collected by an integrating sphere; it is the angular reflectance R(θ) evaluated at the observation angle if the detection device is collimated, knowing that only a fraction 1/π of the Lambertian irradiance is in the concerned direction. Lastly, the back reflectance Ri is independent of the measuring geometry: it accounts for the reflection of the Lambertian light issued from the diffusing layer:
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The transfer matrix attached to the nonscattering component is 
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Table 3: Expressions for Rs, Tin, and Tout according to the illumination and observation geometry 

		

		Rs

		Tin

		Tout



		Collimated incident light at angle α and observation over the hemisphere
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		Collimated incident light at angle α and observation in one direction ψ
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		Lambertian incident light and observation over the hemisphere

		

[image: image408.wmf]R


%




		

[image: image409.wmf]T


%




		

[image: image410.wmf]¢


T


%






		Lambertian incident light and observation in one direction ψ
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Once all the transfer matrices attached to the nonscattering components (i.e. the sequences of nonscattering layers and interfaces) are determined, they can be multiplied with those attached to the diffusing layers. For example, a nonscattering component on top of a symmetric diffusing layer with reflectance ρ and transmittance τ has the transfer matrix given by
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We can deduce from it the front reflectance (ratio of entries 
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or the back transmittance (
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), corresponding to the same observation conditions as the front reflectance, with the light coming from beside the diffusing layer: 
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We may imagine specimens consisting of several alternations of diffusing and nonscattering components. The examples which are proposed in the next sections will be based on this configuration, the simplest being a nonscattering component is on top of a diffusing layer. 


5.1. Paper coated with gelatin (Extended Williams-Clapper model)


In 1953, Williams and Clapper proposed a prediction model for the spectral reflectance of glossy photographs, made of paper coated with photochromic gelatin [20]. The original Williams-Clapper reflectance formula, derived from a description of the multiple reflections between the paper and the surface yielding a geometrical series, is based on the 45°:0° bi-directional geometry. A formula based on the diffuse-directional geometry was later derived by Shore and Spoonhower [21] and has been recently extended to the transmittance [15]. All these formulas can be obtained with the matrix method, for which the interest is rather limited in such a simple case but offers a good example of application. The interest of the method will be more striking when increasing the number of layers. 

The photographic paper is composed of the air-gelatin interface, the gelatin layer with spectral normal transmittance 
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, and the paper support with spectral reflectance 
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 and spectral transmittance 
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. Paper and gelatin are assumed to have the same refractive index n. Since, they are in optical contact, the interface between them has no optical effect. 

The air-gelatin interface and the gelatin layer are two consecutive nonscattering elements located at the front position. They are considered as one nonscattering component whose transfer matrix is similar to equation 
(123)

. In this reflectance expression, Rs, Tin, Tout and (122)

 and its reflectance has an expression similar to equation (121)

. The transfer matrix attached to the photographic paper is therefore similar to equation  GOTOBUTTON ZEqnNum259692  \* MERGEFORMAT  are functions of the normal transmittance 
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 of the gelatin and depend on the measuring geometry. They are obtained in two steps.  

The first step is to compute the angular transfer matrix 
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 of this nonscattering component. It is the product of the angular transfer matrix attached to the air-gelatin interface, given by equation (84)

:
(82)

 with labels j = 0 for air and k = 1 for the gelatin, and the angular transfer matrix attached to the gelatin layer given by equation 
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where 
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 denotes the orientation of light in air, 
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 the corresponding orientation in the gelatin and 
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 the Fresnel angular reflectance of the interface at the air side. 

We deduce from 
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 the front angular reflectance, 

[image: image431.wmf](


)


010


q


R


, the back angular reflectance, 

[image: image432.wmf](


)


(


)


1


2/cos


101


q


éù


ql


ëû


g


RT


, and the upward and downward transmittances, 

[image: image433.wmf](


)


(


)


1


1/cos


010


q


éù


ql


ëû


g


TT


. The exponents can be expressed as functions of 

[image: image434.wmf]0


q


 thanks to the following transformation:


 


[image: image435.wmf](


)


(


)


(


)


2


100


coscosarcsinsin/1sin/


q=q=-q


nn



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (126)


In a second step, we consider the orientations of light in the nonscattering component, assuming a 45°:0° measuring geometry as Williams and Clapper in their original paper. According to the formulas given in Table 3, we obtain:
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where 
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 is the diffuse reflectance of the surface at the gelatin-side (also denoted as 

[image: image442.wmf]10


r


 in [HDI062], Section 3.6) and γ a coefficient minimizing the difference between the integral and the approximation function for the considered refractive index (
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 = 1.53, see Table 4). 

Finally, the reflectance formula (123)

, multiplied by π, gives the spectral reflectance factor of the photographic paper which would be measured with a commercial instrument calibrated with  respect to the reflectance of a perfectly white diffuser (equal to 1/π):
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Since the spectral reflectance ρ(λ) of the paper substrate cannot be measured directly due to the presence of the paper-air interface, we want to deduce it from measurement. We thus take the paper in an area where the gelatin is uncolored (normal transmittance 1) or, if available, the paper without gelatin provided its surface is flat. The reflectance factor given by equation (127)

 thus becomes
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Assuming n is known, we can compute the Fresnel functions and only the background reflectance ρ remains unknown. We obtain it by reversing the equation (128)

:
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In the case of a d:0° geometry, according to the formulas of Table 3, we obtain:
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where 
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 is the diffuse transmittance of the surface from air to gelatin (also denoted as 
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 in [HDI062], Section 4.6) and µ is again a coefficient minimizing the difference between the integral and the approximation function for a given refractive index (µ = 1.13 for 
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The spectral reflectance factor in respect to the perfect diffuser is [21]
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Equation (124)

 gives the transmittance of the photographic paper observed in the same way as in reflectance and illuminated from behind. For a d:0° geometry, the spectral transmittance factor is  
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This method can be easily adapted to different measuring geometries. It automatically takes into account the flux transfers between the diffusing layer and the nonscattering component by respecting the orientation-dependent attenuation of each ray in the nonscattering layer.  

Table 4. Values for parameters γ and μ as a function of the refractive index
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		γ

		μ



		1.45

		3.03

		1.15



		1.47

		2.99

		1.14



		1.50

		2.95

		1.13



		1.53

		2.91

		1.13



		1.55

		2.88

		1.12





5.2. Diffusing support protected with colored films

After the photographic paper, a book cover protected by a plastic film is a second example where a nonscattering component is on top of a diffusing background. Since the film and the cover are generally not in optical contact, there is an interstice between them filled by air. We may generalize this example by considering several films identical to each other. The structure of the specimens is represented in Figure 16 for two films. Since there is a nonscattering component on top of a diffusing layer, the reflectance and transmittance have similar expressions as 
(124)

. We just have to compute the parameters Rs, Tin, Tout, and Ri in terms of the different refractive indices, the spectral reflectance (123)

, and respectively  GOTOBUTTON ZEqnNum949179  \* MERGEFORMAT  and transmittance 
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where n1 is the refractive index of the film. 
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Figure 16. Nonscattering films on top of a diffusing background.

Regarding the nonscattering component, we can use the matrix model to determine its angular reflectances and transmittances, which will then be integrated with respect to the measuring geometry. We denote as 
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 the incident angle in air, 
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 the subsequent angles in the media of index 
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. The angular transfer matrix attached to it is the product of the transfer matrices attached to the different components, i.e. the interfaces and the layers, respectively, defined by equations 
(84)

.  The air layers are optically neutral and the transfer matrices attached to them are unit matrices, and therefore omitted in the calculation. For N films, the angular transfer matrix (82)

 and  GOTOBUTTON ZEqnNum528528  \* MERGEFORMAT  of the nonscattering component is given by





[image: image467.wmf](


)


(


)


(


)


(


)


(


)


001011101010


q=qqqq


éù


ëû


N


Nfilms


MFLFF



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (133)


From this angular transfer matrix, using equations 
(57)

, we obtain analytical expressions for the front reflectance  GOTOBUTTON ZEqnNum817170  \* MERGEFORMAT , back reflectance 
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. It would take too much place to show them here, but there is no difficulty obtaining them using symbolic or numerical computation software. 

Then we consider the orientations of light in the nonscattering component with respect to the measuring geometry. For the d:0° geometry that we have selected, the formulas of Table 3 give
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where symbol ~ has the same meaning as in equation 
(118)

. Note that since these four terms embody the film’s normal transmittance  GOTOBUTTON ZEqnNum734415  \* MERGEFORMAT , all of them depend of wavelength. 


In order to obtain the spectral reflectance ρ(λ) and transmittance τ(λ) of the diffusing layer, we measure the spectral reflectance and transmittance factors of the diffusing support with an instrument base on the d:0° geometry. Their respective expressions are, for each wavelength,
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and
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where 
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 is the Fresnel reflectance of the interface at normal incidence, 
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 is its diffuse reflectance of the interface at the paper side [see HDI062, equation (46)] and 
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 is its transmittance for Lambertian light coming from air. Since these terms, independent of wavelength, can be computed as soon as n2 is known, we can deduce 
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. After some rearrangements, we get:
(135)

 and 
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and
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Finally, the spectral reflectance and the transmittance of the specimen have similar expressions as equations (124)

 respectively. By multiplying them by π, we obtain the following expressions for the reflectance and transmittance factors, for each wavelength: 
(123)

 and  
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and
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Be aware of that all terms in these equations 
(140)

, except (139)

 and  GOTOBUTTON ZEqnNum202422  \* MERGEFORMAT , depend on wavelength. 


As a first application of the model, we selected glossy papers printed in inkjet with various fulltone colors (cyan, magenta, red, green, blue and black) and halftone colors (cyan and magenta inks at 50%). Figure 17 shows the normal transmittance of the blue acetate film as well as the changing of reflectance spectrum due to the presence of the film for the fulltone magenta sample. The reflectance and the transmittance of each paper covered by one film were predicted by the model above, with k = 1 in this case. The differences between predictions and measurement were calculated in terms of color distances by computing the CIELAB E94 values in respect to the D65 standard illuminant. In reflectance mode, we obtained an average E94 value of 0.46 for the 12 samples, which proves the excellent accuracy of the model. In transmittance mode, satisfying predictions are also obtained, even though slightly less accurate than in reflectance model with an average E94 value of 1.15. 
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Figure 17. Spectral reflectance of (solid line:) a magenta printed paper and of (dashed line:) this paper covered by a blue acetate film of normal transmittance 
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A second application of the model was carried out from 125 printed CMY halftones printed by a  Canon Pixma Pro9500 inkjet printer on  Canon MP101 papers, and covered them by a standard transparent film for electrophotographic printing. Predictions were performed in reflectance mode and compared to the measured spectra. Good prediction accuracy is also proved by obtaining an average E94 value of 0.50. This experiment is representative of the model's capacity to predict the change in spectral reflectance of prints when they are placed under glass or under protection film. This change in reflectance, and therefore of color, is not only due to the wavelength-dependent absorption of light by the protection film, but also on the direct reflection of light by the film and the multiple reflections of light between the film and the print. 
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Figure 18. Measured (solid lines) and predicted (dashed lines) spectral reflectances of 1 to 5 acetate films on top of (a) white PVC and (b) green paper with respective reflectance Rp plotted in dotted line. R∞ denotes the reflectance of an infinite stack of films. 


A third application of the model was based on stacks of blue acetate films deposited on top of green glossy paper and white glossy PVC. One to five films were deposited in each case. The spectral reflectances measured with a d:8° geometry (or equivalently with a d:0° geometry) as well as the predicted ones are plotted in Figure 18. The E94 values computed between predicted and measured spectra are all below 0.25 unit in the case of the white PVC and 0.49 unit in the case of the green paper, thus showing the high accuracy of the model. In the case of the green paper, we observe similar phenomenon as for film in front of a specular background: the different spectra have same value at a given wavelength, presently 500 nm. This invariance occurs precisely at the wavelength where the reflectance of the paper, 
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 of the infinite stack of films. This is well-known in the case of oil paintings, particularly regarding the art-glaze technique where a white diffusing board is coated with several weakly pigmented, almost nonscattering layers [1, 2].  

6. Multiflux models


The shortcomings of the two-flux model regarding collimated light and forward light scattering can be addressed by taking additional fluxes into account, corresponding to various angular distributions. This is especially needed when the medium is sufficiently scattering to not be considered as non-scattering, and not sufficiently scattering to be considered as strongly diffusing, i.e. Lambertian. We thus come back to the Kubelka-Munk formalism where the propagation of light in uniform layers is expressed in terms of absorption and scattering coefficients. Here, we present two classical configurations based on both collimated and diffuse fluxes: the four-flux model [22, 23], and the three-flux model [24]. 


6.1. The four-flux model


Let us consider an upward collimated flux, denoted 
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, and a downward collimated flux denoted 

[image: image492.wmf]q


I


, where 
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 is the angle of incidence of the collimated beam. Looking at a slice of thickness 
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, the upward oriented flux is attenuated by 
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 due to scattering. The same process applies also to the downward oriented flux. For the collimated fluxes, there is no gain from any other flux. The variation of intensity is summarized in the following equation system:
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Applying the same matrix form as for the Kubelka-Munk model yields:
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Note that the amounts of light lost by scattering by 
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 contributes to the diffuse fluxes 
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 leads to 
(142)

 and 
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where 
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 matrix defined as follows:





[image: image506.wmf]4,,


1


000


cos2


1


000


cos2


exp(0)


()


2cos2cos


()


2cos2cos


éù


-


æö


æö


+


ç÷


êú


ç÷


q


èø


êú


ç÷


êú


ç÷


æö


+


ç÷


êú


ç÷


q


èø


=-


êú


ç÷


êú


ç÷


-+


êú


ç÷


qq


êú


ç÷


êú


ç÷


---+


ç÷


êú


qq


èø


ëû


KSh


K


S


K


S


h


SS


KSS


SS


SKS


M



 MACROBUTTON MTPlaceRef \* MERGEFORMAT (144)


The same calculation methods apply to this 
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 matrix denoted 
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 as for the Kubelka-Munk matrix 
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 introduced in Section 2.2, equation 
(7)

, can be calculated by diagonalization of (9)

. The matrix exponential, as defined by equation  GOTOBUTTON ZEqnNum368722  \* MERGEFORMAT , i.e. the matrix inside the exponential function in equation (144)

.


The Saunderson correction applies to 
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 the same way as described in Section 2.7 for the Kubelka-Munk model. However, another transfer matrix must be defined for the collimated fluxes  
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(82)

. Assuming  GOTOBUTTON ZEqnNum528528  \* MERGEFORMAT , the external collimated fluxes, denoted 
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 where ψ denotes the orientation of light in air, are related to the collimated fluxes in the medium, denoted 
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Combining equations 
(44)

 yields a (145)

 and  GOTOBUTTON ZEqnNum473979  \* MERGEFORMAT  Saunderson correction matrix:
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Combining equation (143)

 yields a new relation that relates the fluxes in the external medium with the fluxes at the bottom of the layer:
(146)

 and equation 
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where ψ and θ denote the orientations of light in air, and respectively in the medium. 

6.2. The three-flux model


In most experimental set-ups a Lambertian reflector is used as background for the medium to be analyzed. As a consequence the incident collimated light beam is turned into a Lambertian light flux after the first reflection on the background: 
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. The four-flux model can be simplified accordingly:
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For decades, the three-flux model was the most effective model to be implemented in color formulation packages. It offered a good compromise between precision and computation effort [11].


In the special case of a non-scattering material 
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 simplifies as follows:
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7. Conclusions

The main interest of the two-flux models, i.e. the Kubelka-Munk model and Kubelka’s layering model, lies in the analytical expressions they provide for reflectance and the transmittance of layers and stacks of layers. This is probably the reason of their amazing success. In these analytical expressions, the parameters attached to the layers can be directly or indirectly related to reflectances and transmittances measured using a spectrophotometer, and those attached to the interfaces can be computed from the Fresnel formulas when the optical indices are known. Thanks to the extensions presented here based on transfer matrices, the Kubelka-Munk model, Kubelka’s model and Saunderson’s correction can be easily transposed to more complex configurations, for example the case of many layers with distinct optical indices. They thus enable the prediction of the visual rendering of many common colored surfaces such as inked papers, paintings, photographs, protection films… Fairly good prediction accuracy can be achieved provided the implicit assumptions of the two-flux approach are well satisfied. The Kubelka-Munk model assumes homogeneous, significantly scattering layers and Lambertian illumination. In Kubelka’s model, layers are not necessarily homogenous: their scattering and absorption coefficients can vary as a function of the depth, and in a stack, they can have distinct optical indices. The model applies with stacks of strongly scattering layers illuminated with Lambertian flux, and with stacks of nonscattering layers illuminated with collimated flux. By extension, the model also applies to stacks of nonscattering layers illuminated with diffuse flux by considering this diffuse flux as a collection of collimated rays: the angular reflectances and transmittances yielded by the model are summed up over the range of orientations of the rays. Thanks to this, stacks of strongly scattering and nonscattering layers can also be addressed provided the geometry of illumination for each layer is specified. 

When these assumptions are not satisfied, the two-flux approach may fail and more complex models must be used. The three-flux and four-flux models extending the Kubelka-Munk model, presented in Section 6, apply for example in the case of scattering layers illuminated by collimated light. There exist other approaches, for example a numerical solving of the radiative transfer equation (see [HDI062], Section 6, as well as reference [24] for the relationship between the radiative transfer theory and the three- and four-flux approximations), but they generally need modeling the optical properties of the media at small scale as well as more important computational effort, while no analytical expression can be expected. This is the reason why in most applications the two-flux approach is tested at first and, when it is not accurate enough, simple extensions are often developed hoping to reach the expected prediction accuracy. 

8. Appendix – Alternative definition of transfer matrices


The transfer matrix of a flat interface as defined in Section 4.2 by equation (82)

 becomes indefinite when the orientation of light exceeds the critical angle because the reflectance Rjk is 1, therefore the transmittance Tjk is 0. In order to prevent computational problems, we recommend using an alternative general definition for the transfer matrices where the downward transmittance is incorporated into the matrix in a third row and third column: 
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where ρ, ρ’, τ, τ’ respectively denote the upper reflectance, the back reflectance, the downward reflectance and the upward transmittance. 


These 3×3 matrices can be multiplied in the same way as the 2×2 transfer matrices without any chance of division by zero. Reflectances and transmittances are deduced from the entries 
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Let us examine what happens in the matrix product of equation 
(90)

 when a total reflection occurs at the middle interface. The transfer matrix of the middle interface,  GOTOBUTTON ZEqnNum371275  \* MERGEFORMAT , is given by 
(82)

 with the Fresnel reflectance  GOTOBUTTON ZEqnNum528528  \* MERGEFORMAT  equal to 1. After conversion into the 3×3 matrix format, we have
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With this matrix 
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, the product of matrices in equation (90)

 provides the following front reflectance for the multilayer, which contains no terms relative to the second layer or the back interface:
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The fact that no light enters the second layer is therefore automatically taken into account by the model. The downward transmittance is zero. The back reflectance and the upward transmittance, in this case, make no sense anymore. 
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