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ABSTRACT

Visual appearance of objects comes from the interpretation by the human visual system of a light
signal issued from the objects. Describing or predicting appearance is therefore a question of light
and requires notions about light propagation and measurement. In this paper, we introduce basic
laws of optics, the science of light, and radiometry, the science of light measurement, in the
context of colored surfaces. We address light spectrum and illuminants, polarization, notions of
reflectance and transmittance based on radiometric definitions, gloss, absorption, scattering,
fluorescence and models for light reflection and transmission by flat and rough surfaces, by slabs
of nonscattering media and diffusing layers. Throughout the paper, we present the most current
methods to assess the different physical quantities by measurement.

Key words

Optics, Radiometry, Reflectance, Transmittance, BRDF, Polarization, Illuminants, Refractive
index, Reflection, Refraction, Fresnel’s formulas, Scattering, Kubelka-Munk model, Gloss,
Spectral measurement, Fluorescence.

1. INTRODUCTION

Coloring a surface to form an image is a very ancient activity which is based on a simple
principle: the deposition of coloring layers on a reflecting support. In painting or analog
photography, these coloring layers are continuous. They cover the entire surface and more or less
absorb light depending on their thickness and dye concentration. The obtained colors are called
‘continuous tone’ or ‘contone’. In printing, the coloring layers are discontinuous. The inks have



fixed thickness and colorant concentration; the different tones are obtained by varying their
surface coverage ratio yielding the “halftones’ colors. Historically, the color rendering of images
was controlled by the painter, the photographer or the printer, i.e. by a specialist who somehow
acquired his expertise in the selection of the materials and the control of the coloration process.
The new printing technologies have increased the image reproduction quality and the ubiquity of
color images in everyday’s life. They have also provided the possibility for non-expert consumers
to print themselves at home thanks to fully automated printing processes. In the absence of a color
expert, the printer needs to be calibrated by the constructor. This requires to relate color rendering
to technical parameters (dye concentration, ink thickness, etc.) according to a scientific approach
relying on physical measurements. The task of scientists in this domain is double: understanding
the physical phenomena being at the origin of the color rendering, and predicting the color
rendering for given printing specifications. These two topics are the subject of the following
papers.

Before entering into the physical characterization of the printed colors, it should be recalled that
color is not a physical quantity but a physiological sensation. This sensation is the response of our
visual system to a light signal striking the retina. During the 20th Century, scientists managed to
elaborate a mathematical description of the color sensation, and to connect it with the spectrum of
the light received by the retina. However, the study of color and the study of light are two
scientific domains based on very different concepts, called respectively colorimetry and optics.
Light can be characterized by its energy, its speed, its wavelength, its direction, its polarization,
but it would be erroneous to say that it "has a color". Likewise, it is simplistic to say that a surface
"has a color". We should rather say that it has the aptitude to reflect a fraction of the ambient light
depending on its spectrum attenuation capacities, which creates a luminous signal that human
brain perceives as a color. A complete description of the print color rendering should therefore
rely on physical as well as perceptual analysis. However, we generally assume that these two
analyses can be treated separately, i.e. the luminous signal issued from the surface is fully
characterized by the physics, and the interpretation of this luminous signal in terms of color is
described by colorimetry. In this paper, we will focus on the physical analysis.

Optics is the scientific study of light and its interaction with matter. It covers a wide range of
phenomena and applications. We focus here on the basic notions necessary to understand surface
color prediction models. We first recall briefly what is light and what kind of light is considered in
color reproduction. Then, we introduce radiometry, the branch of optics that deals with light
measurement, as well as models for absorption, reflection and refraction by a surface, scattering
and special effects like fluorescence.



2. LIGHT

According to the Commission Internationale de I’Eclairage (CIE), light is the generic name for the
electromagnetic radiations visible to the human eye [1]. As every electromagnetic radiation, it can
be considered as a wave phenomenon as well as a collection of particles called photons,
propagating at a speed ¢ = 2.998x10* m.s™ in vacuum [2]. The simplest emission mechanism of
light is due to isolated atoms which emit a photon when transiting from a high energy level to a
lower energy level. Since the energy of atoms is quantized, only a finite number of possible
energies can be given to the emitted photon. To each photon energy there corresponds a
monochromatic wave characterized by its oscillation frequency v or its wavelength A =c/v. The
vibration frequency is proportional to the photon energy e according to the relation e = hv, where
h = 6.626x10°* J.s is the Planck constant. The sensibility of the human eye to light is significant
for wavelengths between 400 and 700 nanometers (nm), with a maximum around 555 nm
(photopic vision) or around 501 nanometers in dark context (scotopic vision). However, the
notion of light can be extended to infrared (IR) and ultraviolet (UV) radiations, having
respectively longer and shorter wavelengths but similar physical properties.

2.1. Wave optics and polarization

According to the wave model, light is composed of an electric field and a magnetic field
oscillating in phase, perpendicular to each other and both perpendicular to the propagation
direction. The two fields are modeled as three-dimensional vectors, respectively E and B, being
functions of time and position. Maxwell’s equations describe their variation in time and space
according to the electrical properties of the propagation medium. When the medium is not
vacuum, the propagation speed v is slower than c. The ratio c/v, called refractive index,
characterizes the optical properties of the medium.

The electric and magnetic fields oscillate in the plane orthogonal to the propagation direction.
Polarization denotes the time-dependent orientation of the electric field E (thereby of the
magnetic field which is perpendicular to it) in this plane [3]. A convenient way to describe
polarization is to project vector E on two orthogonal axes of the plane. One obtains two
components E, and E, being periodical functions of time with identical period, whose phase
difference indicates the polarization. If Ex and E, oscillate in phase, E oscillates according to a
straight line and polarization is said to be linear (see Figure 1). If the phase difference between E
and E, is +n/2, E draws a circle and polarization is said to be circular. Elliptic polarization
corresponds to the other phase differences. Polarization is generally modified when light interacts
with matter, for example when it is reflected or refracted at the interface between media with
different refractive indices.



Figure 1. Propagation of the electric field for linear and circular polarizations of light.

2.2. Natural light

The light emitted by the sun and most common light sources is composed of many short wave
packets independent of each other and having different polarizations. Polarization therefore varies
rapidly in a random and irregular manner. Such light is called natural light. It is modelled as the
sum of two linearly polarized lights independent of each other, whose respective electric fields
oscillate in perpendicular directions. These two polarized lights are generally denoted by the
symbols p and s, whose meaning will appear clearly in Section 4.2. Their respective powers ®@,
and @ determine the degree of polarization (DOP) defined as [4,5]

~ max(®, @ )—min(®,, D)

POP= max(CDp,CDS)+min(ch,cDS)

@)

The DOP is 0 when the two components have equal power and 1 when one of the two
components is zero, which corresponds respectively to unpolarized and totally polarized natural
light. A DOP value between 0 and 1 indicates that the light is partially polarized.

2.3. Light ray and geometrical optics

The light ray concept is evident for everyone. It comes from the observation that light propagates
along straight lines in homogenous media, e.g. air or clear water. However, it has no physical
existence. It is only an approximated model describing the propagation of light when its wave
property can be ignored. In practice, the ray concept is sufficient to describe reflections and
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refractions as well as the trajectory of light beams through optical systems, provided the large
distance compared to the wavelength separates successive variations of refractive index. Light
rays are the basis of a domain of optics called geometrical optics.

Light rays are independent of each other. This means that there is no spatial coherence between
them. When two rays are superposed, their energies are simply added without any interference or
diffraction phenomenon. According to Huygens’ principle [37], the condition for this
independence property is that the cross section of the ray (also called extent) is much larger than
the wavelength. The principle of Fermat, also known as the least time principle, asserts that light
follows the quickest optical path between two given points. In a medium of constant refractive
index, light propagates at constant speed and the quickest path is a straight line. If the refractive
index varies, the quickest path may follow a bended or curved line. The set of points being at the
same optical length from a point source is called the wave surface. Malus’ law asserts that the
wave surface is always perpendicular to the ray, even after various reflection or refraction events
[37]. In a light pencil, the optical length between two wave surfaces is the same for all rays.

2.4. Interaction between light and colored surfaces

The materials used in printing, i.e. papers, plastics and inks, have very complex structures. The
refractive index of the materials, which determines how light propagates in them, varies locally in
an irregular manner. The paper fibers and the ink pigments provoke multiple diffraction events
which would be impossible to describe all rigorously. However, since heterogeneities are
randomly distributed in the media, these diffraction events yield no perceptible colored effect.
They simply contribute to a global light diffusion process. Instead of describing the complex,
random paths followed by waves in the colored materials, one rather considers average photon
transfers such as the transfer from a source to a detector or the transfer from one layer to another.
This assumption considerably simplifies light-print interaction models and allows staying in the
geometrical optics domain. The measurement of these light quantities and the study of their
distribution in space are the aim of radiometry.

3. RADIOMETRY

Radiometry is the science of the measurement of radiations. It comprises the study of radiation
emission by sources, detection, reflection or transmission through optical systems, etc. It thus
gives rise to a profuse literature (see for example references [5, 6, 7, 8, 9, 10, 11, 12]). Radiometry
differs from optics in the sense that it focuses on energy measurement, without having to consider
specifically any type of material. However, it is crucial to know the properties of light to perform
appropriate measurements and interpret them correctly. Most of the radiometry is based on
incoherent radiations and on the geometrical optics of rays. Most of the time, wave phenomena
such as diffraction and interferences are ignored. Radiations are measured in terms of absolute
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power and the measurements are expressed in energy units. The considered type of radiation
depends on the source and the detector. The perception of light by a human observer is studied in
a separate discipline called photometry. The radiant power at each wavelength is weighted by a
visual sensitivity function that models human brightness sensitivity. The measured quantities are
expressed in luminous units called lumen, candela and lux, especially used for the characterization
of light sources. The distinction between optical radiometry and photometry is linked to the
history of radiation measurement, but they use similar concepts and are almost synonymous
today.

The interest of radiometry in appearance assessment is the possibility to quantify the amounts of
light being in interaction with the object and their transfer from a source to a detector. The
fundamental radiometric quantities describe the geometrical distribution of energy in space and
the reflection or transmission properties of objects can be defined as ratios of them, called
accordingly reflectance or transmittance. In this section, we introduce the radiometric definitions
leading to the reflectance and transmittance concepts and address the main tools for their
measurement.

3.1. Geometrical concepts

Describing the transport of light from a source to an object, then from the object to an observer is
first a question of geometry. If one defines a light ray as the photons passing through two points
P; and P,, the ray would contain no photon because the probability for a photon to meet precisely
one point or to follow one direction is zero. One should rather consider a small area around each
point and a small set of directions. The set of directions is called solid angle, and its coupling with
a small area is called geometrical extent.

Figure 2. Differential solid angle in the direction (0,).



An infinitesimally small solid angle points at one direction which is generally specified by its
polar and azimuth angles (6, ¢) in spherical coordinates. Figure 2 shows that it intercepts an area
x2sin@d0d¢ on the sphere of radius x. The infinitesimal solid angle is therefore

do=sin6dbdo )

The geometrical extent denotes the geometry of a light pencil propagating between two small
surface elements, ds; and ds, (Figure 3). By assuming that the distance x between them is
sufficiently large, one may consider that the rays received by ds, come from one point P; on ds;.
Similarly, one may consider that the rays emitted by ds; reach one point P, on ds,. The line (P1P>)
gives the direction of the light ray. It forms an angle 6, with the normal of ds; and an angle 6, with
the normal of ds,. The solid angle based in P, subtended by ds, intercepts an area dA; on the
sphere of radius x centered in P;. It is therefore

do, = dA, / x? = ds, cos0, / X2 3)
Likewise, the solid angle based in P, subtended by ds; is
do, =dA / x* = ds, cos8, / x* (4)

The geometrical extent of the light pencil [5], expressed in m2.st, is defined as

d?G = dAdw, = dAdo, = dAiozlAQ = iz(ds1 cos6, )(ds, cos0,) (5)
X X

Figure 3. Elementary pencil of light between two small surface elements ds; and ds,.



3.2. Radiometric quantities

Radiometric rules are based on four fundamental quantities: radiant flux, radiant intensity,
irradiance and radiance. Radiant flux @ (or simply flux) is the energy radiated per unit time
expressed in watts (W).

Radiant intensity | is the density of flux per unit solid angle that is emerging from a point in space
and propagating in a specified direction do (expressed in W.sr™)
do

| = ——
do

(6)

Intensity is rather used for point sources that cannot be given a well defined area, such as stars in
astronomy.

Irradiance E is the density of flux per unit area that is incident on a specified point in a specified
surface, expressed in W.m™. If one considers a flux do relatively to a surface element ds, the
corresponding irradiance is

_do

E=——
ds

()

Irradiance is a function of position on the surface. Exitance M is the equivalent of irradiance when
light emerges from the surface instead of being incident.

Radiance L is the flux per unit extent that is incident on, passing through or emerging from a
specified point in a specified surface in a specified direction, in W. m?2.sr*
2
=42 ®)
dG
Radiance is the most suitable radiometric quantity to describe thin light pencils. Its relationship
with the geometrical extent provides interesting geometrical properties: if we consider a flux
propagating between two small surface elements, we can be certain that the radiance emitted by
the one is equal to the radiance received by the other one. This principle, called the radiance
invariance, is a direct consequence of equation (5). If one considers a surface element ds and a
differential solid angle dw=sin0d0d¢ oriented at 0 to the normal of ds, the differential extent is
dG =dscos6dw . The radiance is thus expressed as

L(6.9)

In equation (9), the ratio d?®/ds corresponds to the elemental irradiance dE attached to the light
pencil. It is related to the radiance by

dE (6,¢9)=L(6,¢)cos6dm (10)

d’d

- - = 9
dscos0dm ©)



3.3. Photometric units

Photometry differs from radiometry by the fact the energy is weighted by the spectral sensibility
of the human eye [14], usually denoted as V(1A), plotted in Figure 4.

Figure 4. Spectral sensitivity of the human eye in photopic vision.

The flux is called luminous flux and is expressed in lumen (Im). The equivalent for irradiance is
illuminance in the case of an illuminated surfaces or luminous exitance in the case of an emitting
surface (expressed in lux). The luminous intensity is expressed in candela (cd) and the radiance,
called luminance, is expressed in candela per square meter (cd.m2).

3.4. Lambert’'s law

Although the notion of diffuse light is intuitive, it can be given a rigorous meaning thanks to the
radiance concept. According to Lambert’s law, a perfectly diffusing surface emits or reflects the
same radiance in every direction. It is thus called a Lambertian surface or reflector.

According to relation (10), the elemental exitance issued from the surface in some direction
(6,9) is

dM (8,¢) = Lcosbdw (11)
where dw=sin0d6d¢ is the infinitesimal solid angle and L is a constant. By summing up the

elemental exitance elements over the hemisphere, one obtains the following relation between
radiance L and total exitance M:

2n pmwl2 )
M= (p=oje:o LcosOsin6dode = L (12)

In practice, many sources are Lambertian and strongly scattering materials such as paper bulk,
cotton furniture or milk are Lambertian reflectors.



3.5. Bi-directional Reflectance Distribution Function

According to Nicodemus [17], the reflection process of light by a surface is embodied in the
fundamental equation relating the elemental irradiance dE; coming from each direction (Gi,(pi)
and the radiance dL, (6,,¢, ) reflected into each direction (8,,¢, )

dl—r(er’q)r): fR(ei’(Pi;er’(Pr)dEi(ei'(pi) (13)

Function fg is called bidirectional reflectance distribution function (BRDF). Thanks to the relation
(10), it can be defined in terms of the incident radiance L; (6;,;):

dLr (erv(pr) = fR (eiicpi;er!(pr) I-i (ei 1 O )COS eid(*)i (14)

In the case of a nonabsorbing Lambertian reflector, the total outgoing exitance E; is equal to the
incident irradiance. Since the reflected radiance is E,/z in every direction, the BRDF is a constant
equal to 1/z . Thus, the spectral BRDF depends only on wavelength and is easier to measure. In
the case of a perfect mirror, the BRDF cannot be defined. A setup for mirror reflectance
measurement is described in Ref. [18, p. 54]. Figure 5 shows BRDF sections in the incidence
plane of a Lambertian reflector, a smooth surface, roughened aluminium surface [19] and a glossy
paint.

BRDF is a function of many parameters: the four angles denoting the incidence and observation
directions, and possibly wavelength of light, polarization, position on the surface... It is therefore
impossible to plot a full BRDF on 2D graphic. 3D visualization by software is often preferred.
However, planar mapping is good alternative for BRDF display [21].

Figure 5. Sections of BRDF in the incidence plane (¢; = ¢, = 0), plotted in polar coordinates
as a function of 0, of (a) a Lambertian reflector, (b) a smooth surface, (c) a roughened
aluminium surface and (d) a glossy paper [20].
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The Lambert azimuthal equal-area projection [22] is especially convenient as it conserves areas: a
portion of hemisphere with area A is mapped into a portion of disk with same area A. Every point
P on the hemisphere of radius 1, specified by its spherical coordinates (G,q)), is mapped to a point
P' of polar coordinates (r,q)) contained within a disk of radius /2 tangent to the hemisphere at
the North pole N (Figure 6).

The azimuth coordinate ¢ is the same in the two coordinate systems. Coordinate r corresponds
the distance NP:

r=2sin(6/2)

Figure 6: Mapping of the hemisphere onto a disk of radius V2 according to Lambert
azimuthal equal-area projection applied at the North pole N.

Point P' is also specified by the following Cartesian coordinates
u = 2sin(6/2)cos¢

: . (15)
v =2sin(6/2)sing

Applying this mapping to the BRDF yields a multispectral image containing as many channels as
wavelengths. Each pixel of the image corresponds to a same solid angle. Square pixels with size d
represent solid angles of d? steradians.

Spectral BRDF is measured with a gonio-spectrophotometer. The incident light, generally brought
by an optical fiber, is collimated with an optical system in such manner as to illuminate the
sample with well parallel rays. In classical configurations, a rotating arm enables choosing the
incidence direction. The reflected light is captured through a very thin solid angle by an optical
system located on a second rotating arm. Light is then transferred to a spectrophotometer. Spectral
measurements are performed at different detector positions. Although gonio-spectrophotometers
can now be found at reasonable prices on the marketplace, their volume and fragility restrict their
use for specific applications in laboratory.

11



3.6. Reflectance

The term reflectance denotes any ratio of reflected flux to incident flux being relative to a same
surface element. Reflectance is therefore a ratio of exitance to irradiance. It is a dimensionless
quantity depending on wavelength, direction, polarization and position on the surface. In this
paper, we consider isotropic surfaces whose reflection properties are independent of position on
average over areas of a few squared millimeters. We also consider natural light in the visible
spectral domain. Thus, all radiometric quantities are spectral quantities defined for each of the two
polarized components. However, as for the BRDF, dependence on wavelength and polarization
are made implicit.

Many different reflectances can be defined in regard to the cone I'i through which light incomes
and the cone T, through which reflected light is observed. In the general case, the incident
radiance L; (6;,¢;) is a function of direction (8;,¢;) and creates, according to equation (10), the
elemental irradiance dE (6;,¢;)=L; (8;,¢;)cos6;dw;. The total irradiance originating from I’ is
given by the following integral:

Er =

i J.(ei o)eT, L; (6;,9; ) cos6;d o, (16)

The contribution of some incident radiance L; (6;,¢;) to one radiance L, (6,,9,) is specified by
the BRDF according to equation (14). The corresponding elemental exitance is

dM (6;,9;;0,, ¢, ) = Tr (6;,¢;;0,,9) L (6;,¢; ) cos;d ; cos 6, d oy A7)

By summing up the contributions of all radiances contained within T, one obtains the elemental
exitance in the direction (8,,¢, )

dMm (Fi;er1(Pr):J

(61,0; el fr (ei’(Pi;el”(Pr) L (ei’(Pi )COS 6;dw; cos6,do, (18)

Then, by summing up all the elemental exitances through the observation solid angle T';, one
obtains the total exitance

Mr, :I(ermpr)err j(ei‘(pi)eri fr (6;,0::0,, ¢, )L (6;,9;)cos6;de; cos 6 do, (19)

The ratio of the exitance to the irradiance is the reflectance defined by the cones Iy and Iy,
denoted as R

fr (6.9;0,,0, )L (8;,9; ) cos6,dw; cos 6, dw,

'[(ei i )<l Li (ei  Pi )COS eidmi

. I(er,@r)eFr I(@i ;)T

Rl"i:l"r -

(20)

Judd [23] then Nicodemus [17] defined nine geometries where each of I'; and I, is either
directional, conical or hemispherical. By considering an isotropic reflector (BRDF independent of
the incident azimuth angle ¢;) and a Lambertian illumination (constant radiance L;), expression
(20) noticeably simplifies. For example, the directional-hemispherical reflectance R(Oi), or
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simply “directional reflectance”, is defined for directional illumination at (6;,¢;) and a
hemispherical observation:

n /2 .
oJo o fr(65;6,,9,)cos6,sin6,d6 do, (21)

2
R(6;)= L,r,
The bi-hemispherical reflectance r, or simply “Lambertian reflectance” is defined for Lambertian
illumination through the hemisphere and hemispherical observation. It can be directly related to
the directional reflectance [24]:
/2 )
r=| ~ R(8;)sin26,d6, (22)

3.7. Reflectance factor

The reflectance measurement relies on two flux measurements: the reflected flux and the incident
flux. As most instruments contain one detector which is used to capture the reflected flux, the
incident flux cannot be measured directly. It is measured indirectly by using a perfect white
diffuser able to reflect the incident light uniformly over the hemisphere without absorbing it. The
flux captured by the detector is therefore proportional to the incident flux. The ideal white
standard is a perfectly Lambertian, nonabsorbing and diffusing sample [26]. Its reflectance is
equal to 1 and its BRDF is 1/n for every couple of incidence and reflection directions. In practice,
white standards approaching these properties are made of pressed barium sulfate or PTFE (known
as Algoflon, Halon or Spectralon). They must be calibrated in terms of the perfectly reflecting
diffuser [27]. The object to assess and the perfect diffuser are illuminated and observed with the
same geometry. The ratio R of the flux ® measured from the object to the flux @ measured
from the white diffuser is called reflectance factor [25]:

~ O
R=—— (23)

cI)ref
A alternative definition is sometimes used when radiance measurements are performed: the ratio
of radiance L measured from the object to radiance L measured from the white diffuser is thus

called radiance factor [18].

The reflectance and radiance factors are not rigorously reflectances. They coincide with
reflectance in the case of Lambertian reflectors and provide a good approximation for matte
papers and other nearly Lambertian reflectors. It is less relevant however for non-Lambertian
reflectors such as glossy papers, mirrors or satine paintings. In some cases, the sample reflects
more light towards the detector than the perfect diffuser and the reflectance factor overpasses one
[28]. This occurs for example with a mirror illuminated by directional flux ®; at angle 6; and
observed by a radiance detector in the specular direction. The detector captures the flux @ = R®;
from the mirror, where R denotes the mirror's angular reflectance at the considered incidence, and
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the flux @ = ®; /= from the perfect diffuser. In this configuration, the reflectance factor of the
mirror is higher than one at every wavelength where R (ei ) >1/m.

3.8. Transmittance

All the definitions presented above regarding the reflectance of objects can be transposed to the
transmittance. The equivalents for BRDF, reflectance and reflectance factor are respectively
BTDF (bi-directional transmittance distribution function), transmittance and transmittance
factor. This latter is defined in respect to the perfectly nonabsorbing transmitter, which in practice
is air.

3.9. Spectral radiometry

The previous radiometric quantities have been defined without consideration of wavelength. The
spectral distribution of the radiation is described by a spectral flux @, defined as flux per unit
wavelength (in W.m™):

_do

S (24)

Spectral flux is measured with a spectrophotometer, generally in successive spectral bands. If the
wavelength bandwidths AL are small, the measured flux in each bandwidth is @, AA . Over a
larger band [A,,%, ], the measured flux is

Ay
O 5= Jxl @, dn (25)

The spectral resolution of spectrophotometers varies according to the application and the method
used to decompose the light spectrum. For color reproduction applications, usual commercial
instruments have a resolution comprised between 1 and 10 nanometers. In order to select narrow
wavelength bandwidths, the light is decomposed according to a dispersing prism or a diffraction
grating [13]. The location of the photodetector determines the measured wavelength domain. For
faster measurements, the different wavelengths may be captured simultaneously by using an array
of sensors (diode linear array, CCD linear array, etc.)

One similarly defines spectral intensity I,, spectral irradiance E;, spectral radiance L.

The spectral reflectance is the ratio of reflected to incident spectral fluxes, both defined in the
same small bandwidth AX around the considered wavelength A:

R(1) = Dt

- 26
@, AL 9)

Spectral BRDF f, (%), and spectral reflectance factor R, (1), as well as spectral BTDF f, (1),
spectral transmittance T (A) and spectral transmittance factor T, (%) are similarly defined. In the
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following sections, all the radiometric quantities are spectral quantities but in order to simplify the

notations, the term “spectral” and the index A will be omitted.

3.10. Light sources and illuminants

The light source is a crucial element for the optical characterization of reflecting objects. Reliable
characterization is possible only if the spectrum of the incoming light is non-zero for each
wavelength band. The luminous power of the source should also be adapted to the sensitivity of
the photosensor. A too weak flux at a given wavelength may decrease the signal-to-noise ratio of
the detection system and induce a significant error in the measurement. Oppositely, a too strong
flux saturates the photosensors. In the adequate power range, for each spectral band, one can
assume that the reflected flux varies linearly with the incident flux (except in the special case of
fluorescing objects which are treated in the last section of this paper). The ratio of these fluxes is
therefore a constant, independent of the source power, which will be defined as being the
reflectance of the object. However, although the source has no direct impact on optical properties
of the object, its spectral power distribution (SPD) influences the perception of color. In
colorimetry, relative SPD is called illuminant. Classical color spaces such as the CIELAB color
space take it into account in the computation of the tri-chromatic coordinates of the colors. It is
possible that two objects with different spectral reflectance R, (L) and R,(X) have the same
color under the illuminant | (%) and different colors under the illuminant J(X), because the
spectral radiances R;(A)1(A) and R, (1) 1(X) correspond to metameric spectra whereas the
spectral radiances R, (1) J () and R, (A)J (1) do not.

The ideal illuminant for reflectance measurement would be the equal energy illuminant E whose
relative SPD is uniform over the visible spectrum. However, no natural or artificial lighting has a
uniform SPD. In order to assess color rendering for most common lightings, the CIE defined
various illuminants [14] inspired of the SPDs of incandescent light (illuminant A), of daylight
(iluminants D) and of fluorescent lightings (illuminants F). Some of them are plotted in Figure 7.
The relative SPD of illuminant A is issued from the spectral radiance of a black body at the
temperature T, = 2848 K given by Planck’s law, normalized to the value 100 at the wavelength
Ao =560 nm:

A \S €Xp (%)
5, (%) :100(70) WK:S—l @)

where ¢ =2.998x10% m.s? is the speed of light in vacuum, h = 6.626x10~>* J.s is the Planck
constant and k =1.380x 1072 J.K is the Boltzmann constant.

The D series of illuminants were constructed by Judd, MacAdam, and Wyszecki to represent
natural daylight [15]. The D50 and D65 illuminants are especially used in graphical industry and
paper industry. Their spectra, plotted in Figure 7, are known to correspond to horizon daylight and
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noon daylight spectra. They are easy to characterize mathematically since they may be derived
from the linear combination of three spectra. However, they are difficult to produce artificially.
Figure 8 shows two examples of light sources considered as D65 illuminants with noticeably
different spectra: the light source in the SpectroEye spectrophotometer from X-rite and the *Color
Control Classic Line’ light table from Just Normlicht. The F series of illuminants represent
various types of fluorescent lighting. The ability of real light sources to reproduce the D65
illuminant can be assessed with the CIE metamerism index [16]. The F11 illuminant, plotted in
Figure 7, is a narrow triband illuminant consisting of three narrowband emissions in the red, green
and blue regions of the visible spectrum, obtained by a composition of rare-earth phosphors.

Figure 7. Spectral distribution power of CIE standard illuminants A, D65, D50 and F11.

Figure 8. Spectrum of various light sources reproducing the D65 illuminant.
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3.11. Measurement geometries

The reflectance measurement devices designed for color reproduction applications contain either
directional or Lambertian white light source and capture the reflected light either in one direction
(radiance measurement) or over the hemisphere thanks to an integrating sphere (irradiance
measurement). The spectrum of the source generally tends to reproduce the color of a standard
illuminant [29], typically the D65 illuminant, despite the difficulty to reproduce reliably the
illuminant spectra defined by the CIE with artificial lightings (see Figure 8). Once captured, light
is transferred to a spectrophotometer which measures the flux in the different wavelength bands 1,
5 or 10 nm wide. Table 1 presents some geometries recommended by the CIE for reflectance
measurement [14].

Table 1. Some of the geometries recommended by the CIE for reflectance measurements

Appellation Illumination Capture
Diffuse / 8° geometry, specular component included (di:8°) Diffuse Radiance detector (8°)
Diffuse / 8° geometry, specular component excluded (de:8°) Diffuse Radiance detector (8°)
Diffuse / diffuse geometry (d:d) Diffuse Integrating sphere
Alternative diffuse geometry (d:0°) Diffuse Radiance detector (0°)
45° annular / normal geometry (45°a:0°) Directional Radiance detector (0°)
45° directional / normal geometry (45°x:0°) Directional Radiance detector (0°)

Integrating spheres are spherical cavities internally coated with a powder of nonabsorbing
material, e.g. barium sulfate (BaSO,), behaving as a perfect diffuser [30, 31]. They can be used
either to produce a Lambertian illumination or to collect reflected light over the hemisphere.
Figure 9 illustrates these two possibilities.

Figure 9. Integrating spheres used in a 0°:d geometry (left) and a d:0° geometry (right).

In the d:0°, the integrating sphere plays the role of diffuser for the illuminating flux. The reflected
light is captured at 0° or 8° in respect to the normal of the sample. In the case of diffusing samples
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having a flat surface, one may want to discard the specular reflection component from the
measurement. A hole located in the regular direction in respect to the detector position ensures
that the specular reflection component is not captured [18]. A hemispherical-directional
reflectance is measured. In the 0°:d geometry, the integrating sphere collects the whole flux
reflected by the sample, which is illuminated by a collimated beam. The corresponding
reflectance is a “directional reflectance”, given by equation (21).

In contrast with integrating spheres, radiance detectors capture only a fraction of the flux issued
from the specimen. This fraction depends on both area and solid angle of the detector, which are
generally unknown. The so-called 45°:0° geometry, widely used in the printing industry, is a
bidirectional geometry where light is incident at 45° and a radiance detector captures light at 0°
[31]. The sample is illuminated from one or all azimuth directions, yielding respectively the
directional and annular variants of the 45°:0° geometry. The annular geometry, illustrated by
Figure 10, minimizes texture and directionality whereas the directional geometry tends to enhance
them.

Figure 10. 45° annular / normal geometry (45°a:0°) for reflectance measurements.

Several companies such as X-rite, Datacolor and Konica Minolta have developed
spectrophotometers able to measure both reflectance and transmittance. They are typically based
on the di:8° and de:8° geometry in reflectance mode, and on the d°:0° geometry in transmittance
mode. Note that all these measurement geometries make sense when the sample is diffusing.
Using them with nonscattering sample, either in reflectance or transmittance mode, needs some
precaution. For example, when measuring the transmittance of a nonscattering filter with a d:0
geometry, only the radiance normal to the sample is captured by the detector (Figure 11). The
effective measurement geometry is therefore the 0:0 geometry. The incident radiance at 0° is
obtained by measurement without the sample. Thus, ratio of measurements with the sample and
without it provides the directional transmittance at 0°. We have similar configuration with a
mirror using a d:8 geometry in reflectance mode, where the effective geometry is the 8:8
geometry. The incident radiance is obtained by performing a measurement on a reference mirror
whose spectral reflectance is perfectly known. As an alternative, it can be obtained from a
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measurement of a perfect non-absorbing diffuser: the radiance reflected at 8° coincides with the
radiance incident at 8° on the mirror (E/z in both cases, where E is the total incident irradiance).
In the case of weakly scattering samples, however, the amount of incident light being able to
reach the detector cannot be certainly known since it depends on the scattering diagram of the
medium. The reflectance and reflectance factor concepts have no pertinence any more. Only
BRDF and BTDF measurement can provide reliable information on the reflecting and transmitting
properties of the sample.

Figure 11. Transmittance measurement of a nonscattering filter with a d:0 geometry. Only the
radiance incident at 0° is captured and the light coming from other directions is ignored by
the detector. The effective measurement geometry is the 0:0 geometry.

4. REFLECTION AND REFRACTION

Two media of different refractive indices have in common a planar boundary called interface. The
optical properties of the interface depend on its relative refractive index, i.e. the ratio of the
refractive indices of the two media. When the interface is flat, each of its faces reflects and
transmits unidirectional light into one couple of directions, called regular or specular directions,
attached to the reflected and refracted components. Reflection and refraction play an important
role in the interaction of light with printed supports. Everyone has observed the reflection of light
by the surface of a glossy photograph. At the other side of the surface, the diffuse light coming
from the paper and the inks is also reflected. Thus, light travels several times in average between
the paper substrate and the inks before exiting the print definitively.

4.1. Refractive index

The refractive index of a medium is a measure of the propagation properties of light in that
medium. It is generally a complex number depending on wavelength:

A(A) =n(2)+ix(2) (28)
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The real part n(k), called real refractive index, is related with the light propagation speed. The
imaginary part K(k), called extinction index, characterizes absorption by the medium. Table 2
gives the refractive indices of a few common materials.

Table 2. Refractive indices of materials measured at A = 589 nm (Sodium D
line)

Air? 1.0003
Water (at 20°C)? 1.333
Ethanol ® 1.36

Fused quartz Si0, 1.45
Cellulose 1.47
Polypropylene 1.49
Acrylic® 1.49
Polyvinyl alcohol 1.50
Plexiglass 1.51

Crown glass? 1.52
Sodium Chloride (NaCl)? 1.544
Amber ? 1.55
Polycarbonate ” 1.58
Polystyrene® 1.59

Zircon (ZrO, -Si0, )* 1.923
Diamond ? 2.417

Rutile (TiO,)? 2.907

Gold 0.27+2095i
Silver® 0.20+3.44i
Copper° 0.62 +2.57 i
Platinum ¢ 2.63+3.54i
Aluminium 1.44 +523i

2 Reference [37], p. 95. ® Reference [35], p. 828. ¢ Reference [2], p. 747.

Ellipsometry is the favourite technique for refractive index measurements. It is based on
polarization analysis. The constraint is that the sample must be homogenous, nonscattering and
very flat, which makes this technique almost impossible to use with printing materials such as
inks and paper. Note that the real and imaginary functions of wavelength are related to each other
by the Kramers-Kronig relations [32, 33, 34]. Thus, knowing either the real index or the
extinction index over the whole spectrum enables obtaining the other one for any wavelength.

For dielectric materials such as glass, plastic or paper fibres, the attenuation index is low
compared to the real index. The refractive index may be considered as being real and absorption is
modelled independently by an attenuation factor applied to the ray (see the section on Beer’s law).
The dependence of the real index on wavelength, being at the origin of the dispersion
phenomenon [33] as well as the chromatic aberrations in optical systems [35], is empirically
modelled in the visible wavelength domain by Cauchy’s law [2, 36]:
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n(A)=a, + % (29)
where the dimensionless factor a, and the coefficient a, (in m™) are to be determined for each
medium. As the real index varies with respect to wavelength, rays are refracted at different angles
and split white light pencils into diverging pencils, commonly called rainbows in the case of rain
drops. However, dispersion has no significant effect when the incident light is diffuse or when the
medium is diffusing, because the different spectral components superpose to each other and yield
again white light in all directions. This is the reason why dispersion is ignored in the case of
papers or white paints and a constant real refractive index is attached to them.

4.2. Snell's laws

When a light ray propagating into a given medium 1 encounters a medium 2 with different
refractive index, its orientation is modified: a component is reflected back into medium 1, and a
second component is refracted into medium 2. The directions of reflection and refraction satisfy
Snell’s laws: 1) the incident, reflected and refracted light rays belong to a same plane, called the
incidence plane, which also contains the normal of the interface; 2) the angles formed by the
incident ray and the reflected ray with respect to the normal of the interface are equal; 3) the angle
of refraction is related to the angle of incidence according to the “sine law”

n,sin®, =n,sino, (30)

where n, and n, denote the refractive indices of the two media and 6, and 0, the respective
orientations of light in them (Figure 12).

Figure 12. Reflection and refraction in the incidence plane, when n; <n, .

Note that the wavelength of light is modified when entering the second medium. The wavelength
concept is therefore dependent upon the propagation medium, being shorter in the medium with
higher index. However, as light sources and detectors are generally in air, all detected rays have

21



their original wavelength even after having traversed different media. Wavelength variation in
matter is therefore ignored and only the wavelength in air is considered.

4.3. Total reflection

Let us assume n; <n,. When light comes from medium 1, the refraction angle is always smaller
than the incidence angle. At grazing incidence, i.e. 6, =m/2, the refraction angle reaches a limit
value 6, =arcsin(n,/n, ), called the critical angle. No light can be refracted into medium 2 with
higher angle. When light comes from medium 2, it is refracted into medium 1 provided the
incident angle 0, is lower than the critical angle 6. Otherwise, Snell’s sine law (30) provides no
real solution for angle 0, refraction does not occur and the ray is totally reflected.

4.4. Fresnel's formulae

The fraction of light that is reflected by the interface between media 1 and 2 is called angular
reflectance. It is given by Fresnel’s formulae, established by writing the transition equation of
electromagnetic waves at the interface. It depends on the incident angle ©,, on the relative
refractive index of the interface n=n,/n; and on the polarization of the incident light. Most of
the time, we consider unpolarized incident light which is modelled as the sum of two linearly
polarized lights (see Section 1.2). Since the angular reflectance depends on the orientation of the
electric field in respect to the incidence plane, we consider the cases where the electric field
oscillates parallely and perpendicularly to the incidence plane. These two polarizations are
respectively called "parallel" and "perpendicular” polarizations and denoted by symbols p and s.

Let us consider a light pencil coming from medium 1 with incident angle ©,. For p-polarized
light, the angular reflectance is

2 2
Rplz(el):(tan(el—ez)J :[ncosel—cosezj 1)

tan (0, +6,) ncos0, +cos0,

where 6, =arcsin(n,sin®,/n,) is the angle of refraction into medium 2 defined by Snell’s law.
For s-polarized light, the angular reflectance is

Rm(el)=(sin(el—62)J2 :[cosel—ncosez jz 32)

sin(6, +6,) c0s0, +ncoso,

The variation of angular reflectance for the p- and s-polarized components are plotted in Figure 13
as a function of the incident angle 0; for an interface with relative refractive index n=1.5.

At normal incidence, p-polarized, s-polarized and unpolarized lights have the same angular
reflectance:

Rp12(0) =Ry, (0) =Ry, (0) = (h) (33)
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Figure 13. Angular reflectance for p- and s-polarized lights when n=n, /n; =1.5. The
Brewster angle is 6, = arctan (1.5) = 56.3°.

For oblique incidence, angular reflectances may expressed as functions of angle 6, only, by
inserting 6, =arcsin(sin®, /n) into equations (31) and (32):

2
2 _n2 in2
Rp12(91)= n“cos6, —4/n“ —sin“ 0, (34)

n?cos®, +/n” —sinZ 6,

2
c0sf, —y/n? —sin’6
R12 (61) = L L (35)

cos0, ++/n? —sin® 6,

Unpolarized light contains same quantity of p- and s-polarizations. Therefore, the angular
reflectance for unpolarized light is the average of the two angular reflectances:

1
Ri2(6,) =§[Rp12(91)+ Rle(el)} (36)

Except at normal incidence, the p- and s-polarized lights are reflected in different proportions. The
reflected and transmitted lights are therefore partially polarized. At the angle 6, = arctan(nlz),
called the Brewster angle, p-polarized light is not reflected at all. The corresponding angular
reflectance is zero. The reflected light is therefore totally polarized (s-polarization). Reflection at
the Brewster angle is one possible method to produce linearly polarized light.

Independently of polarization, the angular reflectance is the same if light comes from medium 1 at
the angle 6, or comes from medium 2 at the corresponding regular angle
0, =arcsin(n;sin6,/n,):

Ru2(0;) = R (67) (37)

where symbol * means either s-polarized, p-polarized or unpolarized light. Figure 14 shows the
variation of angular reflectances and transmittances from normal to grazing incidence in both
medium 1 and 2 for an interface with relative index n=1.5.
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Figure 14. Angular reflectance and transmittance of an interface with relative index
n=n,/n; =1.5 asa function of the incident angle for natural light from medium 1 (left) or
medium 2 (right).

Regarding the refracted component, since no light is absorbed at the interface, the angular
transmittance is

T.2(0,) =1-R,3,(6;) (38)
and, as a consequence of (37), one has
T2 (0,) =T (6,) 39)

This equality means that for a given path of light, the angular transmittance does not depend
whether light transits from medium 1 to medium 2 or from medium 2 to medium 1. In case of
total reflection, the angular transmittance is zero.

45. Radiance reflection and refraction

In radiometry, light pencils are described by the radiance concept. When a pencil enters a medium
with different index, refraction modifies the ray’s geometrical extent (Figure 15). Radiance is thus
modified. The relationship between incident, reflected and refracted radiances is derived from
geometrical arguments issued from Snell’s laws.

The incident radiance L, is defined as the flux element dZCDl(el,(pl) coming from direction
(6,,¢,) through the infinitesimal solid angle de, =sin6,d6,de,, and illuminating a an
elemental area ds

dzq)l(el'(pl)

= . (40)
dscos6,sin0,d6,do,

1
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Figure 15. Incident, reflected and refracted radiances at the interface between two media of
indices n; and n, >n;.

The denominator in equation (40) denotes the geometrical extent of the incident pencil. Since the
reflected and incident pencils form the same angle with the normal, they have the same
geometrical extent. The reflected radiance Ly is therefore the incident radiance L, attenuated by
the angular reflectance Ry, (6,) of the interface

Lr =R (81) (41)
Regarding the refracted pencil, the refraction and incidence angles satisfy Snell’s sine law (30).
By differentiating equation (30), one obtains
n, cos6,d6, =n, cos0,do, (42)
The incident and refracted azimuthal angles form a fixed angle n, a small variation of the one
implies the same variation of the other one, i.e. do, =d¢, . Hence, one has

nZds cos 0, sin 0,d0,d ¢, = n5ds cos 0, sin0,d0,d ¢, (43)

where dG; and dG, denote the geometrical extent of the pencil in media 1 and 2 respectively.
Equation (44) shows that the geometrical extent is multiplied by a factor (nj /ni)2 each time it
goes from a medium i to a medium j, but the quantity n’dG; remains invariant. This invariance
generalizes the invariance of geometrical extent stated in the previous section in the special case
where the extremities of the pencil where both located in air. Finally, accounting for the changing
of geometrical extent due to the refraction, the refracted radiance is

L, =(n, /0, ) Ty (6:) (45)
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4.6. Lambertian reflectance of an interface

Let us now consider that the interface is illuminated by Lambertian light. We denote as n=n, /n,
the relative index of the interface and assume that n >1. When the light comes from medium 1,
the "Lambertian reflectance”, denoted as 1, , is given by equation (22)

/2 )

I, depends only on the relative index n. It may be computed by discrete summation with a small
sampling step, e.g. A6, =0.001 rad. Alternatively, it is given by the following analytical formula
[38]

I =

(n-D@n+1) 2n°(n2+2n-1) sn*(n*+1)n(n) N 2 (n2 1) ~In(”—‘1

1
5t sne)?  (n—D(n2+D) * (1 (211 (n221)° nil

) @)

The reflected flux fulfills the whole hemisphere but is not Lambertian anymore as the reflected
radiance varies with angle. The transmitted flux is concentrated into the cone delimited by the
critical angle 6, = arcsin(l/ n). The conservation of the energy at the interface implies that the
transmittance is

When the Lambertian light comes from medium 2, the reflectance r; is similarly expressed as ri,
with Ry, (8,) replaced by Ry, (6,)

/2 ]

Even though Ry, (8,) and Ry (0,) are equal [see equation (37)], reflectances ri, and ry; are
different due to total reflection which takes place in medium 2 but not in medium 1. They are
related by the following formula established in Appendix A.1:

1
-y = ?(1_ ) (50)

One deduces from it the relationship of transmittances:

1
1= n_2t12 (51)

For an air-glass interface of typical relative index n = 1.5, one has r, =0.1, t, =09, r,; =0.6
and t,; = 0.4. Their values for other indices are listed in [39] and in Appendix B.3.
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4.7. Absorbing media and metals

The color of a homogenous medium comes from its capacity to absorb radiations of specific
wavelengths in the visible domain, which corresponds to a nonzero extinction index k(A). The
absorption coefficient o is related to the extinction index by the formula [2]

o ()= %K(x) (52)
This relation is valid for any absorbing medium, e.g. colored glass or metal. The particularity of
metals is their high extinction index, which makes them very opaque and reflecting. The angular
reflectance of air-metal interfaces is given by the same Fresnel formulas (31) and (32) as for air-
dielectric interfaces, but the refractive index is a complex number A=n+ik including the
extinction coefficient [2]. The refraction angle 6, is also a complex number. Nevertheless, the

angular reflectance is real and may be expanded as follows:

(Ja?—ﬁcosel)z +a-1z

Rle (91 = 2 (53)
(\/3+W§CQF91) +a-z
(\/a_\/+ Z- \/_Z\gn 0, tan 61)2 +a-z
Rp12 (91) =Ry, (91)' (54)

2
(\/a+z+\/§sineltanel) +a-z

with z=n?—«?—sin?0, and a=+/z*+4r® . For unpolarized incident light, the angular
reflectance is the average of formulas (53) and (54).

Figure 16. Variation of the angular reflectance at normal incidence of an interface with
relative refractive index A =1.5+ ik as a function of «.

Figure 16 illustrates how the angular reflectance increases as the extinction coefficient increases.
From x = 0 to 0.2, the angular reflectance remains close to 0.04, i.e. the value corresponding to a
real index of 1.5. This justifies that for weakly absorbing dielectrics the extinction index is not
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taken into account in the Fresnel formulas. Beyond 0.2, the angular reflectance increases rapidly.
On a spectral point of view, the angular reflectance a surface is higher at the wavelengths where
the medium is the more absorbing (higher absorption coefficient). Reflected and transmitted lights
therefore get complementary colors.

—— s-polarization
Riq5(8y) —— p-polarization
---- unpolarized light

0 15 30 45 60 75 90° 6,
Figure 17. Angular reflectance as a function of the incident angle, for p-polarized, s-polarized

and unpolarized lights, of (a) strongly absorbing glass (W =1.5+1), (b) platinum at 589 nm
(A =2.06 + 4.26i ) and (c) gold at 600 nm (A = 0.37 +2.82i).

The variation of the angular reflectance as a function of the incident angle is noticeably different
between absorbing media and nonabsorbing media. Figure 17 shows three examples based on the
refractive indices of a strongly absorbing glass (A =1.5+1i), gold at 600 nm (A =0.37+2.82i)
and platinum at 589 nm (A =2.06 + 4.26i). In the three cases, the angular reflectance for s-
polarized light is a strictly increasing function of the incident angle, while the one for p-polarized
light decreases to a minimum without reaching zero. The reflected light is therefore partially
polarized but there is no angle at which its polarization is total. In the case of gold and platinum,
the angular reflectance for unpolarized light reaches a minimum, whereas the minimum is at
normal incidence for dielectrics.

5. ABSORPTION

Absorption denotes the attenuation of light due to the conversion of the electromagnetic energy
into another form of energy, typically because its frequencies are resonant with transition
frequencies of the atoms in the medium [36]. The attenuation factor depends on the optical length
traveled in the medium. It is given by the Beer-Lambert law. Absorption may be strongly
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dependent upon wavelength. It is responsible for the colored aspect of most objects, such as
stained glasses, dyes, pigments, and inks.

5.1. Transmittance of an absorbing layer

The absorbing power of a medium is assessed by its absorption coefficient a(A), in m™, which
depends upon wavelength and is related to the extinction coefficient of the medium according to
relation (52). According to Beer’s law, light is exponentially attenuated in this medium as a
function of the path length. When a light beam crosses a layer of this medium with thickness h,
the attenuation, called normal transmittance, is given by

t=e

If the beam crosses the layer at an angle 6 to the normal, the travelled distance in the layer
becomes h/coso (see Figure 18) and the attenuation T(0) becomes:

T (9) — e—ah/cose — tl/cose (55)

T(0) is the "directional transmittance” of the layer, following the definition of "directional
reflectance™ given in Section 3.7. The "Lambertian transmittance” is expressed by an similar
integral as in equation (22)

_ /2 . _ ™2 1/c0s0 ;
T_jeon(e)smzede_je:Ot sin20d0 (56)

Figure 18. Path travelled through a layer with thickness h by directional light oriented by an
angle 6 from the normal.

When different transparent layers with identical refractive indices are superposed, they form again
an absorbing, nonscattering layer whose normal transmittance is the product of their individual
normal transmittances. The oblique transmittance of the layer is also the product of the individual
oblique transmittances considered at the same angle. Regarding the multilayer’s Lambertian
transmittance, it is expressed by the same integral as in equation (56) where T (9) in this case,
represent the directional transmittance of the multilayer at angle 6. It can be expressed in terms of
the normal transmittances t;, t,, t,... of the different layers:

n/2 1/c0s6 .
T =I9=O (tlt2t3) €8 Sln29d9 (57)

but not in terms of the Lambertian transmittances of the individual layers:
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T = [1/°%%5in20d6[ ;" sin 200 ...

5.2. Reflectance and transmittance of an absorbing film

Color filters and stained glasses are examples of absorbing layers in which light is exponentially
attenuated according to Beer’s law. However, since the layer is surrounded by air, its surfaces
refract and reflect light and a multiple reflection process takes place within them. Consequently,
some light is reflected by the film and the global absorption is increased. We want to determine
the film's reflectance and the transmittance for natural incident light being at first collimated, then
Lambertian.

Let us denote as t the normal transmittance of a film considered without interfaces, and n, its
refractive index. The interfaces with air (n, =1) are assumed to be flat and parallel. The film's
thickness is significantly larger than the coherence length of the incident white light, which is
ordinarily a few micrometers [36]. Interferences can therefore be ignored. In the opposite case, the
film would be considered as a thin film and its interaction with light should be described by wave
optics [40].

Figure 19: Multiple reflections of light in an absorbing plate.

When the incoming pencil strikes the front surface, it splits into reflected and refracted pencils.
The refracted pencil reaches the back surface where it splits again into reflected and refracted
components. The reflected component again splits at the front surface into reflected and
transmitted components and so on. We have a multiple reflection process as described by Figure
19. The two polarized components follow the same trajectories in the layer, which all belong to
the incidence plane and form with the normal an angle 6 in air and an angle 0’ in the layer. The
two angles are related by Snell’s sine law

sin6=nsin®’ (58)
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with n=n,/n; =n,. According to the Fresnel formulas, the surfaces’ angular reflectance and
transmittance are different for the p and s-polarized lights. Let us denote as R,;, (6) the angular
reflectance corresponding to reflection at angle 6 in air, where the symbol ““*” means “either p or
s”. Recall from equation (37) that the rays coming from the layer at the angle 6’ have the same
angular reflectance. The corresponding angular transmittance is T,;, (6) =1—R,, ().

Being given the incident angle 6 of the p- or s-polarized flux @,;, we want to determine the
fluxes @,, and @, exiting respectively at the front side and the back side. At the front surface,
®,; splits into a reflected flux R,;,(0)®,; and a transmitted flux T,;, (6)®,;. The transmitted
flux travels a distance h/cos®' in the layer and is attenuated by a factor tY/<°% [see equation
(55)], then splits at the back surface into a reflected flux T, (8)R,,(0)tV* %@, and a
transmitted flux T.2, (e)t“ ¥ . which exits definitely the plate at the back side. The reflected
flux is again attenuated by a factor t1/¢0s" \while crossing the layer, then reaches the upper surface
where it splits into a reflected component T,;,(8)R%,(0)t?“*%®,; and a transmitted
component T3, (8)R.1, (0)t2'*%®,; which exits the plate at the front side. By pursuing the
description of the multiple reflection process, we obtain the different fluxes exiting the plate at the
upper and lower sides, the first ones being given in Figure 19. The total reflected and transmitted

fluxes are expressed by the following infinite sums

D, = T*le (e)tllcose’z[Rflz (e)tZ/cose':'k(D*i ’
k=0

D, =Ry, (0) D, +T4s (8) Ruzo (e)tzmose/ Z [R*le (e)tz/cose']k(b*i (59)
k=0

which are geometrical series. The exponents 1/c0s6’ can be expressed as function of angle 0
using the following relation issued from Snell’s law:

cos®' =1 (sin0/n)’ (60)

Finally, the ratio of reflected (respectively transmitted) flux to incident flux gives the reflectance
(respectively the transmittance) of the plate for the considered polarization:

T2 (e) R.1 (6)1:2/\/1—(Sin6/n)2

(0)=R.12(0)+ 1 RZ, (e)tzl\/l—(sineln)z D
and
2 l/\/l—(SinTn)2

o - 2
1-RZ, (e)tz/ﬁ—(sme/n)

For natural light, the total reflectance and transmittance of the plate at angle 6 are the average of
the reflectances, respectively transmittances attached to the two polarizations, i.e.
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R(@):E[Rp(e)ms(e)] and T(O)z%[Tp(OHTS(O)] (63)

At normal incidence, with the angular reflectance R,;, (9) given by equation (33), the reflectance
and transmittance of the plate become

8n(1—n)?t2
R(0) = 64
O oy e (69
and
2
T(0) 16n7t (65)

B 1+n)*—(1-n)*t?

where n =n,/n;. The transmittance formula is especially used to assess spectral transmission by
colored filters (see Reference [18], p. 30). By inverting it, we can obtain the normal transmittance
t from the transmittance measured at normal incidence:

B \/64n4 +(1-n2)' 12 (0) —8n?
(1-)"T(0)

(66)

As the incident light moves away from the normal, the s-polarized light is more reflected than the
p-polarized light (see Figure 20). Consequently, if the incident light is unpolarized, the reflected
and transmitted lights become partially polarized. According to the formula (1), the degree of
polarization of the reflected light is

0

)|
e)|

pop —|Re(9)-

“R(0)+ 0

Rp (
Rp (
The variation of the DOP as a function of the incident angle is plotted in Figure 17. It is O at
normal incidence, grows to 1 at the Brewster angle then returns to O at grazing incidence. This
means that the reflected light remains unpolarized at normal and grazing incidences and is totally
s-polarized at the Brewster angle.

In color reproduction, polarization is often ignored, which comes to consider that light is
unpolarized at each reflection and refraction (see for example [41]). This yields similar reflectance
and transmittance expressions as in equations (61) and (62), except that R,;, (9) represents in this
case the surfaces’ angular reflectance for natural light:

_ 2-|-122 (9) Ry, (9)t2/\/1—(sin 0/n)

1_ Rl22 (e)tZ/\/l—(Sln O/n)z

-|-122 (9) tl/\/l—(sin 0/n)?

1— R122 (e)tZ/\/l—(sin 0/n)?

R, (6) and T,(0)= (68)

The variation of this reflectance R, (9) for a nonabsorbing plate of refractive index 1.5 is plotted
in Figure 20. We see that it deviates noticeably from the reflectance of an ideal plate given by
equation (63) and is not valid for glass plates. However, it may happen with some kinds of
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plastics that DOP is strongly decreased by loss of light’s coherence during the multiple reflection
process [3], generally due to heterogeneities in the medium or the surfaces.

Figure 20. Directional reflectance of a nonabsorbing plate of refractive index 1.5 for the

parallely polarized light, perpendicularly polarized light and natural light according to the

model accounting for polarization, and directional reflectance ignoring polarization. The
Brewster angle is 6, =arctan(n,/n,) =56.3°.

When the incident irradiance is Lambertian, the plate’s reflectance and transmittance are given by
similar formulas as for a single interface [see equation (46)], i.e.

/2 . g n/2 H
F=IGZOR(e)sm29d9 and t=je=0T(e)sm29d9 (69)

where R(6) and T (6) are given in equation (63) or, if polarization is ignored, in equation (68).
In the case of the nonabsorbing plate of refractive index of 1.5, the difference between the models
with and without account for polarization is 4% for the Lambertian reflectance, and less than 1%
for the Lambertian transmittance. This can justify that polarization is ignored for transmission
filters in applications where no much accuracy is needed, for example in the color assessment of
stained glasses or filtered lightings.

6. SURFACE SCATTERING

Compared to a flat interface, a rough interface reflects and transmits collimated incident light into
an enlarged set of directions. The topography of the rough interface has a random elevation as
featured in Figure 21. The elevation function is modeled by a probability distribution
parameterized by a characteristic vertical length, the root-mean-square (r.m.s.) height o, and by a
characteristic horizontal length, the correlation length t [8]. Another parameter is also commonly
used: the r.m.s. slope m, corresponding to the ratio o/t [42].
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Figure 21. Profile of the elevation function e of a rough interface along the x-axis. The
random pattern has a r.m.s. height ¢ and a correlation length . The r.m.s. slope m of the
interface is the ratio o/t.

Most models assume that the local slope within rough interfaces follows a Gaussian distribution
[43, 8]. In order to ease the application of optical laws, local slope is converted into local normal
vector [44] denoted by the differential solid angle do, =sin0,d6,d¢, (Figure 22). For an
isotropic Gaussian distribution of slopes, the probability distribution function D of the normal
vector orientations is

—tan?6,, /2m?

e

70
2nm? cos®(0,) 7o)

D(dcoh)=

This function is known as the Beckmann function [8,45,46]. It depends only on the polar angle 6y
due to the assumption of roughness azimuthal isotropy.

Figure 22. 2D representation of a rough interface. The directional incident light (direction
denoted by the differential solid angle dew;) hits a small portion of interface having the normal
vector doy,. It is reflected and transmitted into directions dw, and dc, respectively.

6.1. Bi-directional reflectance and transmittance models

The reflectance and transmittance of rough interfaces can be deduced from their BRDF,
respectively their BTDF using equation (21). BRDFs and BTDFs may be determined
34



experimentally [47,48,8] or computed thanks to an optical model. The model is derived from
equations relying on either physical or geometrical optics depending on the size of the roughness
patterns [46].

Physical optics models are directly based on the electromagnetic wave theory and Maxwell’s
equations [2]. They shall be used when the wavelength of light is large or comparable to the r.m.s.
height o and the correlation length <. In such a case, the diffraction of the incident waves by the
corrugations of the interface is dominant. It is assumed that the interface does not have any
discontinuity or sharp arc compared to the wavelength of incident light. It may therefore be
represented locally by its tangent plane, on which light is reflected according to Snell’s law and
diffracted because of the small size of the plane. This tangent plane approximation is the basis of
Beckmann’s model [43], also known as Kirchhoff’s approximation [49].

Models relying on geometrical optics models explain the behavior of light when its wavelength is
small compared to the roughness characteristic lengths. Diffraction becomes negligible. Slope
distribution models, such as the well-known models developed by Torrance and Sparrow [42] and
by Cook and Torrance [45] consider the rough interface as a set of randomly inclined microfacets
reflecting and transmitting light like flat interfaces. According to slope distributions models [42,
45, 46], the BRDF fr of a rough interface is

D(0,)G (6.6, ) Ry (6)

fr (do;,d = 71

R(dondo) 4¢0s0; cos O, 7
When the medium of transmission is non-metallic, the BTDF is [50]
D : T, (6;

fT (d(Di,dO)t)= (eh)G(ewet) lZ(el) (72)

I'(6;)cos6; coso,

In Egs. (71) and (72), differential solid angles dw; =sin0;d0;d¢;, dw, =sin6,d6,d¢, and
do, =sin6,d0,d¢, denote respectively the directions of incidence, of reflection and of
transmission (see Figure 22), angle 6y represents the inclination of the interface’s local normal
vector, which is related to the angles of incidence and reflection by

0, = arccos[(cosei +coser)/\/ 2 (1+c0s6; cos 6, +sin O, sin 6; cos (¢, —¢i))] (73)

angle ©; denotes the local angle of incidence of light, which is related to the angles of incidence
and reflection by

0 = % arccos(cos6, cos6; —sin 6, sin6; cos (¢, — ¢;)). (74)

function D is the probability distribution function of the local normal vector, given by equation
(70), function G is a shadowing function that is presented below, Ry, is the Fresnel angular
reflectance of the interface and 1“(6{) expresses the spreading of the transmitted solid angle due
to the refraction by the interface:
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A rough interface may comprise shadow areas, \Wwhich increase with the roughness and the
incidence angle of light. Interface elements belonging to shadow areas do not contribute to the
reflection nor the transmission. This phenomenon, illustrated by Figure 23, is called shadowing.

()

Figure 23. Shadowing: oblique incident light does not illuminate the whole surface.

Likewise, reflected and transmitted light may be partially blocked by neighboring corrugations.
This phenomenon, sometimes called masking [42], is equivalent to shadowing but depends on the
angle of observation instead of the angle of incidence.

The fraction of facets that really contributes to the reflection of light from direction dw; to
direction dw, is given by function G(6;,0,), product of two similar functions g, one for
shadowing, and the other one for masking

G(6:,6,)=9(6)9(6r) (76)
Using a statistical model, Smith computed the following shadowing function g [51]
1 i
———— (if cos6; >0
9(60.6;) =1 An(6)+1 ( >0) (77
0 (if cos6; <0)

where ©O; is the local angle of incidence given by (74) and A is a function of angle 6 which
depends on the r.m.s. slope m:

An(0)= : [i Jam exp(_COt2 Oj —erfc(wﬂ
2 | Jn coto 2m? J2m
Function g is comprised between 0 (facets completely shadowed or masked) and 1 (facets
completely illuminated). At small and medium incidence angles, the illuminated fraction of the
facet’s area is close to 1. The shadowing effect is thus small enough to be neglected. However,
ignoring the shadowing at high incidence angles may yield an overestimation of the reflected and

transmitted fluxes, and a subsequent violation of the energy conservation principle. According to
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Bruce [52] and Caron [53], shadowing should be taken into account when the incidence angle is

higher than a limit angle 6,4 depending on the r.m.s. slope m of the rough interface

sha

Oghad = g—arctan(ﬁm) (78)
The same considerations apply for masking.

6.2. Gloss

The light component reflected at the surface of the objects is generally well distinguishable from
the component having entered the objects” material. It gives rise to a different perceptual attribute
called glossiness. This surface reflection component is not or little colored in comparison to the
light issued from the matter which is subject to wavelength-dependent absorption. Moreover, the
angular distribution of the two components may be very different, especially when the object is
diffusing and its surface is smooth or polished.

The study of gloss perception is more recent than the study of color [54] and yet there is no
normalized gloss perception space available today. The main approach consists at correlating
gloss perception, surface topology and BRDF measurements [55], but in the case of colored
objects, it is still difficult to assess color and gloss attributes from optical measurement [28]. First
attempts of gloss assessment are due to Hunter, Judd and Wyszecki [56] but according to Wills,
Agarwal, Kriegman and Belongie [57], the modern notion of gloss was formalized by the
American Society for Testing and Materials (ASTM) as “the angular selectivity of reflectance,
involving surface-reflected light, responsible for the degree to which reflected highlights or
images of objects may be seen as superimposed on a surface” [58]. In order to cope with the
variety of materials and gloss effects, several types of glossiness are defined, each one being
assess by measurement with a specific 6;:0, bidirectional geometry [20]: specular gloss is the
perceived brightness associated with the specular reflection from a surface (measurement
geometries: 20°:20°, 45°:45° and 60°:60°), sheen is the perceived shininess from matte surfaces at
grazing angles (85°:85°), Distinctness of image (DOI) is the perceived sharpness of images
reflected in a surface (30°:30.3°). Bloom, also called 2- Haze, is the perceived cloudiness in
reflections near the specular direction (30°:32°), Haze is the shininess measured at 5° to the
specular direction (30°:35°), diffuseness is the perceived brightness for diffusely reflecting areas
(30°:45°) and contrast gloss is the perceived relative brightness of specularly and diffusely
reflecting areas (45°:45° and 45°:0° geometries).

7. VOLUME SCATTERING

As light encounters small fluctuations of refractive index within the medium, a portion of the
incident light is scattered. In the atmosphere, scattering yields the white color of clouds (Mie
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scattering [59]), the blue color of the sky and the redness of sunsets (Rayleigh scattering [60]).
Scattering also occurs in liquids. Milk, for example, is composed of a suspension of almost
transparent fat droplets which scatter light and give milk its white and opaque aspect. In the case
of oceans, scattering is coupled to absorption, which produces the characteristic bluish color.
Light is also scattered in solid heterogeneous media, such as paintings, papers, cotton and human
tissues [61]. Different types of scattering are encountered according to the composition, shape,
size and concentration of the heterogeneities, often considered as particles immerged into a
binder. The polarization and the wavelength of the incident light may have a strong influence on
scattering. We present here some commonly used parameters and models relative to scattering.

7.1. Scattering description parameters

A collimated beam traversing a path of length x into a scattering and absorbing medium
undergoes an exponential attenuation T described by the Beer-Lambert law
T = KX (79)

where Key is the linear extinction coefficient (in m™). The inverse of the extinction coefficient is
the extinction mean-free-path length le, characterizing the distance along which directional flux
is attenuated by a factor 1/e

lext =1/ Kot (80)

The linear extinction coefficient may be decomposed into a component Ky, related to scattering
and a component Kqps related to absorption

Kext = Ksea + Kaps (81)
Mean-free-path lengths are also defined for scattering lsc. and for absorption laps
ISCB. :1/ KSC& and Iabs :1/ Kabs (82)

The scattering and absorbing medium is said to be homogenous when its coefficients Ko and Kgps
are independent of position. These coefficients are generally functions of wavelength. Beer’s law
corresponds to the special case where Kg, = 0.

As an effect of scattering, the trajectory of light is modified. The change of direction in an
elementary volume of medium is specified by a volume angular scattering coefficient (VSF) [7],
defined for every direction (6,¢) as

‘0, (6.9) _ dl, (6,9)
E,dodV E,dVv

B, (6,0)= d (83)

where d?®, denotes the element of spectral flux scattered out of the volume dV into the
elemental solid angle dw, E; the incident collimated spectral irradiance and dl, = d?®, /de the
scattered element of spectral intensity. The VSF integrated over the 4z sr solid angle gives the
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linear scattering coefficient K., (). Hence, dividing the VSF B, (0,¢0) by K, (%) yields a
normalized function called angular scattering distribution function fg(%,0,¢) satisfying the
following normalization condition for each wavelength

Jog1cn Ts (R0 0)d0=1 .

Even though fg is independent of absorption, it remains a function of wavelength as directions of
scattering generally depend upon wavelength especially when scattering is due to diffraction
(Rayleigh scattering, Mie scattering [2]). The rigorous definition for fg is the ratio of scattered
element of intensity dI, =d?®, /do to total scattered element of flux d®,

fs (1.0,0) = %i‘p) (85)
Equation (84) comes from the fact that the total scattered spectral flux d®, is the sum of all
spectral intensities over the 4z sr solid angle. If scattering by the volume element is isotropic,
equal intensity is emitted in every direction and function fg is a constant equal to 1/4zn. The ratio
of the function fg of a given medium to the one of an isotropic diffuser is called the phase
function, denoted as P:

P(1,6,0)=4r fg (1.6,¢) (86)

Figure 24. Example of phase function of a scattering medium in the plane ¢ = 0 for one
wavelength.

Figure 24 shows an example of phase function represented in one plane containing the incident
beam. As a consequence of equations (84) and (86), the normalization equation for the phase
function is

1

2 00)can P(6,0)do=1 (87)

In the case of isotropic scattering, the phase function is 1 in all directions. In the opposite case,
anisotropic scattering may be characterized by an anisotropy parameter g defined as the average
cosine of the scattering angle
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The incident light is mainly scattered backwards when g is close to -1 or forwards when g is close
to 1. For isotropic scatterings, g = 0. Parameter g is used for defining the transport mean-free-path
length lirans, cOrresponding to the distance from which one may consider that light has completely
lost the memory of its original direction of incidence

lyans = —2— (89)

The optical thickness t of a scattering or/and absorbing layer having a thickness h and an
extinction coefficient Key is defined as

T =Kgih (90)

When t > 1, a directional incident light is almost completely attenuated. When t is small, the
layer is translucid, i.e. we can distinguish an object located beneath the layer. After a certain
number of scattering events, light propagates in an isotropic manner, i.e. it becomes Lambertian.

7.2. Types of scattering

The notion of optical thickness defined above allows estimating the number of scattering events
that a light ray undergoes across a given layer of the considered medium. In the particular case of
a weakly absorbing medium (Kaps < Ksa), the optical thickness describes the strength of
scattering. We may distinguish four scattering modes, according to the value of the optical
thickness of the layer:

— ballistic scattering, also called atmospheric absorption [6], in which light is almost not
scattered: t < 1 and h < lga,

— single scattering in which light is scattered once in the medium: t~1 and h ~ ls,. For
particle sizes much smaller than the wavelength such as air molecules, smoke and dust, Rayleigh
scattering [41, 60, 62] is applicable with the following phase function for unpolarized light:

P. (6,0) =§(1+ cos? e) (1)

For larger particles with size comparable to the wavelength, Mie scattering [59, 202] becomes
applicable and is often represented by approximated phase functions such as the famous Henyey-
Greenstein phase function [63] parameterized by the anisotropy parameter g defined in equation
(88)
1-g?
2\3/2
(1—29 cosO+g )

Pac (6,0) = (92)
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When particle sizes are much larger that the wavelength, geometrical optics models may be used
[64, 65].

— multiple scattering in which light is scattered various times [66]: © > 1 and h > |,

— diffusion where scattering events occur so many times that the resulting scattering is isotropic:
t> 1 and h > ls,. According to Eg. (90), since parameter g defined by (88) is equal to O, the
transport length is given by the scattering length. The incident light has therefore completely lost
the memory of its incident direction.

For low concentrations of particles, it is assumed that they do not interact with each other.
Scattering is said to be independent. Describing the scattering by one particle is sufficient to
determine the scattering by the whole medium. For high concentrations of particles, scattering
becomes dependent. In the case of independence, geometrical optics may be used when the size of
the particles are large compared to the wavelength of the incident light. However, when the
particles are small compared to the wavelength, light is diffracted. In this case, scattering may be
modeled by the Rayleigh scattering theory. The Mie scattering theory describes the diffraction of
light by spherical particles of complex refractive index in a dielectric medium (real refractive
index). Note that except for exceptional phenomena such as the Raman effect, scattering does not
modify the wavelength of the incident light and is thus said to be elastic [36].

7.3. The radiative transfer equation

In many applications, a simple phenomenological approach, based on the notion of directed light
ray and conservation of energy, provides a realistic description of the scattering phenomenon.
Considering a sufficiently large portion of the heterogeneous medium, the scattering process is
described by a simple equation: the radiative transfer equation [67]. It is valid only when the
scattering mean-free-path length I, is large compared to the wavelength of the incident light and
to the dimension of the heterogeneities responsible for the scattering, but specific studies have
shown that its domain of validity can be enlarged to other cases.

The radiative transfer equation expresses the conservation of the radiant flux in a given element of
volume and a given direction. This energy balance shall be performed everywhere in the medium
and in every direction. Let us consider a small cylinder of section dS and of length dl oriented
according to the incident direction u. Radiance L(u) decreases along this direction due to
absorption and scattering

dL(u)

oc = (Kgps + Kgea ) L(U) (93)

At the same time, the cylinder receives radiances L(u’) from all directions u’ and scatters them
partially towards direction u, which increases radiance L(u). The portion of radiance L(u’) that
contributes to radiance L(u) is %P(u’,u)L(u’)dm', where P(u’,u) is the phase function of
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the considered cylindrical element of volume. By summing up the contributions of all directions
u’ and adding the resulting global contribution to equation (93), one obtains the radiative transfer
equation

dL (u) Ksca , ' ,
dl =_(Kabs:+Ksca) L(“)"‘KIZP(U,U)L(U)d(D (94)

This equation has no general solution. An exact or approximated solution must be searched for
every particular scattering medium. Various solutions have been developed. Let us mention the
major ones:

— The N-fluxes method [68], which allows converting the integrodifferential equation (94) into a
differential equation system thanks to an angular discretization. Solutions are obtained for
azimuthally isotropic media, the discretization being performed only according t