Mohamed Hatem Allouche 
  
Séverine Millet 
  
Valéry Botton 
  
Hamda Daniel Henry 
  
Ben Hadid 
  
François Rousset 
  
H Ben Hadid 
  
  
  
Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances for Newtonian and non-Newtonian fluids

de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The hydrodynamics of film flows driven by gravity down an inclined plane have been studied for a long time. Such flows, which can be encountered in many industrial and geophysical situations as well as in the everyday life, very often present intriguing wavy patterns which can become complex, depending on the slope, the flow speed and the physical properties of the fluid. The waves that are triggered in such flows are initially quasi-plane waves with a large wavelength compared to the flow depth, and they are known as surface waves. Farther downstream, the waves grow in amplitude and quickly evolve towards a non linear regime. These waves appear for non-zero Reynolds number, and have then a convective characteristic. The onset of such waves in Newtonian fluids is well understood since the early linear stability studies by Benjamin [START_REF] Benjamin | Wave formation in laminar flow down an inclined plane[END_REF] and Yih [START_REF] Yih | Stability of liquid flow down an inclined plane[END_REF]. A longwave approximation was adopted in these analytical approaches. They showed that the critical Reynolds number for the onset of the instabilities only depends on the inclination of the plate γ and is proportional to cotγ. They also pointed out that inertia is required to trigger these free surface instabilities. The experimental works of Liu [START_REF] Liu | Measurements of the primary instabilities of film flows[END_REF] have confirmed this dependence with the inclination angle for the linear stability thresholds.

Most of the studies in the literature on this topic are based on a Newtonian fluid model. The rheological behavior of many fluids cannot, however, be properly described by a Newtonian model and more sophisticated rheological models involving a nonlinear relationship between stress and strain would be more appropriate. Far less studies have been carried out in the case of generalized Newtonian film flows. Ng and Mei [START_REF] Ng | Roll Waves on a Shallow Layer of Mud Modeled as a Power-Law Fluid[END_REF] showed that a linear stability study with a power-law fluid is not sufficient to suggest a preferred wavelength for the roll wave because the predicted growth rate of the unstable disturbances increases monotonically with the wavenumber. Then, using a long-wave approximation, they demonstrated a linear evolution of the critical Reynolds number as a function of both cotγ and the power-law exponent n. This study, however, is limited by the singularity introduced by the viscosity law in the model: a power-law describes an infinite viscosity at the free surface, which is not physically consistent. To remove this singularity, some authors considered a regularized power-law model: Ruyer-Quil et al. [START_REF] Ruyer-Quil | Wavy Regime of a Power-Law Film Flow[END_REF] by introducing a Newtonian plateau at small strain rate and Noble and Vila [START_REF] Noble | Thin power-law film flow down an inclined plane: consistent shallow-water models and stability under large-scale perturbations[END_REF] by introducing a weaker formulation of the Cauchy momentum equations. They have shown the relevant influence of shear-thinning properties on the primary instability. Rousset et al. [START_REF] Rousset | Temporal stability of Carreau fluid flow down an incline[END_REF] studied the temporal stability of a Carreau fluid flow down an inclined plane. They performed an asymptotic approach considering a weakly non-Newtonian behavior in the limit of very long waves and compared it with a more general numerical approach. It was found that the critical Reynolds number is lower for shear-thinning fluids than for Newtonian fluids, while the wave celerity is larger. A particular attention was paid to the situations with small angles of inclination. Indeed, in these cases, besides the long-wave free surface mode, another instability identified by Floryan [START_REF] Floryan | Instabilities of a liquid film flowing down a slightly inclined plane[END_REF] as a shear mode can occur. It is characterized by a wavelength on the order of the layer thickness and a wave celerity lower than the free surface velocity. It was shown that taking into account the shear-dependence of the viscosity can change the nature of the instability. Superposed film layers flowing down an inclined plane can be subjected to interfacial instabilities even in the limit of zero Reynolds number according to the direction of viscosity stratification. This situation was first observed with Newtonian fluids by Kao [START_REF] Kao | Role of viscosity stratification in the stability of two-layer flow down an incline[END_REF]. Other studies led to the same observations for non-Newtonian viscosities, such as Balmforth et al. for power-law shear-thinning fluids [START_REF] Balmforth | Interfacial instability in non-Newtonian fluid layers[END_REF] and Herschel-Bulkley viscoplastic fluids [START_REF] Balmforth | Roll waves in mud[END_REF] and Millet et al. [START_REF] Millet | Stability of two-layer shear-thinning film flows[END_REF] for Carreau shear-thinning fluids.

Most of the theoretical studies concerning flows down an incline make the assumption that the waves propagate in the same direction as the flow (waves denoted as twodimensional). Since the work of Squire [START_REF] Squire | On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls[END_REF], many people justify this simplification by saying that the two-dimensional waves are more dangerous than any oblique waves. This was in fact shown by Squire [START_REF] Squire | On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls[END_REF] for a Newtonian unidirectional forced flow between rigid boundaries. He showed that there was a relationship between the Reynolds numbers for an oblique wave and a two-dimensional wave, associated with a relationship between the wave numbers, so that the critical Reynolds number for a two-dimensional wave could be shown to be the smallest. Pearlstein [START_REF] Pearlstein | On the two-dimensionality of the critical disturbances for stratified viscous plane parallel shear flows[END_REF] and Hesla et al. [START_REF] Hesla | Squire's theorem for two stratified fluids[END_REF] reached the same conclusion for parallel flow of stratified Newtonian fluids. Yih [START_REF] Yih | Stability of two-dimensional parallel flows for three-dimensional disturbances[END_REF], and, more clearly, Chang and Demekhin [START_REF] Chang | Complex wave dynamics on thin films[END_REF] extended these results to Newtonian flows with free-surfaces, interfaces, or density stratification. For free-surface flows down an incline, Yih [START_REF] Yih | Stability of two-dimensional parallel flows for three-dimensional disturbances[END_REF] showed that there were also relationships between the two-dimensional and oblique wave characteristics, allowing to deduce the stability results for oblique waves from the results obtained for two-dimensional waves. These relationships, however, were more numerous and in particular included a relationship between the slopes of the inclines. This means that the Reynolds number associated with a two-dimensional wave can be shown to be smaller than that for an oblique wave, but this oblique wave being obtained for a larger slope. This prevents the possibility to compare directly the thresholds at a given slope. Despite this, some studies as that of Benjamin [START_REF] Benjamin | Wave formation in laminar flow down an inclined plane[END_REF] use the argument of Squire [START_REF] Squire | On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls[END_REF] to justify the focus on two-dimensional instabilities. Moreover, in the case of non-Newtonian liquid film flows down an incline, Gupta and Rai [START_REF] Gupta | Note on the stability of a visco-elastic liquid film flowing down an inclined plane[END_REF] for visco-elastic fluids and Sahu and Matar [START_REF] Sahu | Three-dimensional linear instability in pressure-driven two-layer channel flow of a Newtonian and a Herschel-Bulkley fluid[END_REF] for viscoplastic fluids found that, under certain circumstances, oblique wave instabilities may be the dominant instabilities, contrary to Squire's theorem. In contrast, Nouar et al. [START_REF] Nouar | Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids[END_REF] studied the three-dimensional temporal linear stability of shear-thinning fluid plane Poiseuille flows and indicated that the two-dimensional instabilities seem dominant. They, however, remark that they cannot make use of Squire relationships, which only exist for a reduced problem neglecting some terms connected with the perturbation of the viscosity and not for the general eigenvalue problem.

In this study, we focus on the flows down an incline and want to compare the thresholds of oblique waves to those of two-dimensional waves. We will consider both Newtonian and generalized Newtonian fluids (in particular Carreau fluids), with a particular distinction between the shear-thinning (0 < n < 1) and the shear-thickening cases (n > 1), n being the power-law index. We will also look for the existence or not of Squire relationships, and see whether they can be used in the comparison between the thresholds associated with the different waves.

Model and equations

We want to model a film flow developing down a plate inclined by an angle γ. We will consider both Newtonian fluids with a constant viscosity η 0 and generalized Newtonian fluids with a viscosity η following the four-parameter Carreau inelastic model:

η -η ∞ η 0 -η ∞ = 1 + (δ γ) 2 (n-1)/2 , (1) 
with η 0 and η ∞ the limit Newtonian viscosities at low and high shear rate, respectively, δ a characteristic time, n a dimensionless parameter and γ the local shear rate. With 0 < n < 1

(n > 1) and η ∞ < η 0 (η ∞ > η 0 ), this law suitably describes the rheological behaviour of shear-thinning (shear-thickening) fluids. Note that the Carreau model predicts a powerlaw behaviour at moderate shear rate. However, unlike the power-law model, it predicts a viscosity that remains finite and tends to η 0 as the shear rate approaches zero. This feature makes the Carreau law particularly suitable for free surface flow issues. For a given flow rate Q, the layer thickness d cannot be explicitly calculated and will depend on the different Carreau law parameters: therefore, it cannot be taken as a length scale as often done. Using the dimensionless variables proposed by Weinstein [START_REF] Weinstein | Wave propagation in the flow of shear-thinning fluids down an incline[END_REF] (length scale

d s = η 0 Q ρgsinγ 1 /3
, velocity scale Q/d s , time scale d 2 s /Q, viscosity scale η 0 ), the Carreau law for the dimensionless viscosity η becomes:

η = I + (1 -I) 1 + L du b dy 2 (n-1)/2 , (2) 
where

I = η 0 /η ∞ , L = δQ ρg sin γ η 0 Q 2/3
and u b is the dimensionless basic flow velocity.

The dimensionless equations governing the flow are

                     ∂u ∂x + ∂v ∂y + ∂w ∂z = 0 Re( ∂u ∂t + u ∂u ∂x + v ∂u ∂y + w ∂u ∂z ) = -Re ∂p ∂x + ( ∂σxx ∂x + ∂σxy ∂y + ∂σxz ∂z ) + 1 Re( ∂v ∂t + u ∂v ∂x + v ∂v ∂y + w ∂v ∂z ) = -Re ∂p ∂y + ( ∂σyx ∂x + ∂σyy ∂y + ∂σyz ∂z ) + cotγ Re( ∂w ∂t + u ∂w ∂x + v ∂w ∂y + w ∂w ∂z ) = -Re ∂p ∂z + ( ∂σzx ∂x + ∂σzy ∂y + ∂σzz ∂z ) , (3) 
where u, v, and w are the dimensionless velocities along the x, y, and z directions, respectively, p is the dimensionless pressure (dimensionalized by ρQ 2 /d 2 s ), σ ij is the dimensionless viscous strain tensor, and Re is the Reynolds number defined by Re = ρQ/η 0 . This system has to be solved with the associated boundary conditions at the bottom y = d and at the free surface y = 0.

The system (3) has a steady solution u b featuring a uniform longitudinal flow only depending on the normal direction y. For this basic solution, the equations are reduced to

     dσ b xy dy = d dy η du b dy = -1 dp b dy = cotγ Re , (4) 
and the boundary conditions correspond to no slip at the bottom and no friction stress at the flat free surface:

     u b (y = d) = 0 σ b xy (y = 0) = 0 , (5) 
where σ b xy = η du b dy is the only non-zero component of the viscous strain tensor for the basic flow. In the general case where η is given by the Carreau law (2), there is no analytical solution to these equations and u b has to be obtained numerically.

We perform a temporal linear stability study on this problem. The basic flow is perturbed by fluctuations of the velocity, u ′ , v ′ and w ′ and of the pressure, p ′ and by the fluctuation

of the interface, ζ ′ . We obtain u = u b (y) + u ′ (x, y, z, t), v = v ′ (x, y, z, t), w = w ′ (x, y, z, t), p = p b (y) + p ′ (x, y, z, t), ζ = ζ ′ (x, z, t) and σ xy = σ b xy (y) + σ ′ xy (x, y, z, t
). These expressions are introduced in the system (3) and after linearization, we get:

                     ∂u ′ ∂x + ∂v ′ ∂y + ∂w ′ ∂z = 0 Re( ∂u ′ ∂t + u b ∂u ′ ∂x + v ′ du b dy ) = -Re ∂p ′ ∂x + ( ∂σ ′ xx ∂x + ∂σ ′ xy ∂y + ∂σ ′ xz ∂z ) Re( ∂v ′ ∂t + u b ∂v ′ ∂x ) = -Re ∂p ′ ∂y + ( ∂σ ′ yx ∂x + ∂σ ′ yy ∂y + ∂σ ′ yz ∂z ) Re( ∂w ′ ∂t + u b ∂w ′ ∂x ) = -Re ∂p ′ ∂z + ( ∂σ ′ zx ∂x + ∂σ ′ zy ∂y + ∂σ ′ zz ∂z ) , (6) 
where the strain perturbations are:

     σ ′ xx = 2η ∂u ′ ∂x ; σ ′ yy = 2η ∂v ′ ∂y ; σ ′ zz = 2η ∂w ′ ∂z σ ′ xz = η( ∂u ′ ∂z + ∂w ′ ∂x ) ; σ ′ yz = η( ∂v ′ ∂z + ∂w ′ ∂y ) ; σ ′ xy = θ( ∂u ′ ∂y + ∂v ′ ∂x ) . (7) 
Note that in the expression of the perturbed viscous strain in the (x,y) plane, a new viscosity θ appears [START_REF] Rousset | Temporal stability of Carreau fluid flow down an incline[END_REF][START_REF] Nouar | Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids[END_REF]. This is due to the fact that, in this plane, the velocity perturbations induce viscosity perturbations. θ is given by:

θ = I + (1 -I) 1 + n L du b dy 2 1 + L du b dy 2 n-3 /2 . ( 8 
)
The boundary conditions associated to this perturbation problem are the no-slip condition at the bottom:

u ′ = v ′ = w ′ = 0 at y = d, (9) 
the kinematic condition at the free surface:

v ′ = ∂ζ ′ ∂t + U b ∂ζ ′ ∂x = 0 at y = 0, (10) 
the zero viscous strain at the perturbed free surface, which gives:

             σ ′ xy -ζ ′ = 0 σ ′ yz = 0 σ ′ xz = 0 at y = 0, (11) 
and the normal strain balance at the perturbed free surface, which gives:

ζ ′ cotγ + Re p ′ -2η ∂v ′ ∂y + 1 Ca ∂ 2 ζ ′ ∂x 2 + ∂ 2 ζ ′ ∂z 2 = 0 at y = 0, (12) 
where Ca = η 0 Q σds is the capillary number and σ is the surface tension. The perturbations of velocity, u ′ , v ′ and w ′ and of pressure, p ′ and the fluctuation of the interface ζ ′ are developped as three-dimensional normal modes:

     [u ′ , v ′ , w ′ , p ′ ] (x, y, z, t) = [û, v, ŵ, p] (y) e i(αx+βz-αct) ζ ′ (x, z, t) = ζe i(αx+βz-αct) , (13) 
where (û, v, ŵ, p, ζ) are complex variables, (α, 0, β) is the real wave vector (with α 2 +

β 2 = k 2
) and c is the dimensionless complex celerity of the wave. Its real part c r gives the dimensionless phase velocity and its imaginary part c i gives the time amplification rate. A stable (unstable) flow will correspond to negative (positive) values of c i and the perturbations will be called three-dimensional if β = 0 and two-dimensional if β = 0.

Introducing this formulation in the governing equations for the perturbations (6) and combining these equations adequately, we obtain a system of two coupled equations for the unknowns (v, ŵ):

iαRe (u b -c)(D 2 -k 2 ) -D 2 (u b ) v = -4k 2 D(ηDv) + (14) 
D 2 θ + 2DθD + θ(D 2 + k 2 ) D 2 + k 2 v + iβ(D 2 + k 2 ) [(θ -η)(D ŵ + iβv)], iαRe(u b -c)(iβv -D ŵ) -iαReDu b ŵ = β 2 θD ŵ + k 2 D(η ŵ) -iβθ(D 2 + α 2 )v + 3iβD(ηDv) -iβ(D 2 + β 2 )(ηv) -(D 2 + β 2 )(ηD ŵ), (15) 
where D = d dy is the derivative with respect to the normal direction y. The first equation is a generalized Orr-Sommerfeld equation for the normal velocity perturbation v, which, however, cannot be solved alone in the general case due to the presence of the underlined term involving the perturbation ŵ. To obtain the boundary conditions, we must note that, at the free surface, the basic flow shear is zero (Du b = 0), so that η = θ = 1 and Dη = Dθ = 0. These boundary conditions are:

v = Dv = ŵ = 0 at y = d, ( 16 
) 1 + (u b -c)(D 2 + k 2 ) v = 0 at y = 0, ( 17 
)
iβv + D ŵ = 0 at y = 0, ( 18 
)
-βDv + i(α 2 -β 2 ) ŵ = 0 at y = 0, (19) 
-ik 2 (D 2 + k 2 ) 1 α tan γ + k 2 αCa v + 4k 2 Dv + iαRe(u b -c)Dv -D (D 2 + k 2 )v = 0 at y = 0. ( 20 
)
In the case of two-dimensional perturbations (β = 0, k = α), the system ( 14)-( 15) for generalized Newtonian fluids is reduced to the equation ( 14) without the underlined term, i.e. a generalized Orr-Sommerfeld equation given in [START_REF] Rousset | Temporal stability of Carreau fluid flow down an incline[END_REF]:

iαRe (u b -c)(D 2 -k 2 ) -D 2 (u b ) v = -4k 2 D(ηDv) (21) 
+ D 2 θ + 2DθD + θ(D 2 + k 2 ) D 2 + k 2 v,
which, for two-dimensional perturbations, is solved with α = k. Conversely, the threedimensional perturbations for a Newtonian fluid (θ = η = 1) verify the usual Orr-Sommerfeld equation deduced from [START_REF] Pearlstein | On the two-dimensionality of the critical disturbances for stratified viscous plane parallel shear flows[END_REF]:

iαRe (u b -c)(D 2 -k 2 ) -D 2 (u b ) v = D 2 -k 2 2 v. ( 22 
)
4 Numerical procedure

A spectral Tau collocation method based on Chebyshev polynomials is used for the discretization of the generalized eigenvalue problem ( 14)-( 20). The resulting system of algebraic equations, solved on the Gauss-Lobatto collocation points (y j = cos(jπ/N ) for j = 0, N ) in the layer, can be written in the abbreviated form

[A] X = ω [B] X, ( 23 
)
where X is the vector containing the algebraic values of v and ŵ at each collocation point.

The dimension of the square matrices [A] and [B] is twice the number of modes N + 1.

The eigenvalues obtained when solving (23) are the complex angular frequencies ω = α c, and the imaginary part of ω is the growth rate ω I .

From the spectra obtained by solving (23), we will compute neutral curves (values of Re for which an eigenmode has a zero growth rate whereas all the other eigenmodes have a negative growth rate) depending on the wave numbers α and β, from which critical Reynolds number Re c can be obtained by minimization along α and β. The numerical procedure has been validated in previous studies [START_REF] Rousset | Temporal stability of Carreau fluid flow down an incline[END_REF][START_REF] Millet | Stability of two-layer shear-thinning film flows[END_REF].

In the case of a Newtonian fluid, the three-dimensional stability problem is governed by the Orr-Sommerfeld equation ( 22) and the associated boundary conditions (those on v deduced from ( 16), ( 17) and ( 20)). As already shown by Yih [START_REF] Yih | Stability of two-dimensional parallel flows for three-dimensional disturbances[END_REF] and Chang and Demekhin [START_REF] Chang | Complex wave dynamics on thin films[END_REF],

we have different relationships between the characteristics of the oblique waves and of the two-dimensional waves, which we will denote with the subscripts 3D and 2D, respectively.

If the wave number for the two-dimensional waves, α 2D , is directly denoted as k (α 2D = k in this case) and the wave numbers for the oblique waves simply as α and β, the different relationships are:

α 2 + β 2 = k 2 , ( 24 
) α Re 3D = k Re 2D , (25) 
α tan γ 3D = k tan γ 2D , (26) 
α Ca 3D = k Ca 2D . (27) 
Equations ( 24) and (25) come from the Orr-Sommerfeld equation (as for rigid boundaries), and (26) and (27) from the boundary conditions. These relationships indicate that the stability results for the oblique waves can be obtained from those for the twodimensional waves, but for different involved wall inclinations. Then we cannot easily conclude for the comparison at a given wall inclination.

It is then interesting to compare numerically the three-dimensional and the twodimensional instability thresholds. This comparison is given in figure 1 for a wall inclination γ = 2 • and 1/Ca = 0. The neutral curves, Re versus α, have been obtained first for given values of the wave number β (figure 1a) and then for given values of the wave obliquity angle i ob defined as tan(i ob ) = β/α (figure 1b). The two-dimensional neutral curve decreases regularly when decreasing α and tends towards a minimum value when α becomes small. In contrast, when decreasing α, the three-dimensional neutral curves obtained at given values of β decrease towards a minimum reached for a finite value of α and then increase strongly when α becomes small. A decrease of β induces a drift of the minimum towards lower values of both α and Re; the increase at small α is thus observed to be steeper. In any case, these neutral curves appear to be above the two-dimensional neutral curve. When obtained at given obliquity angle (figure 1b), the neutral curves look more similar to the two-dimensional curve, with a monotonous variation and a minimum reached asymptotically for small α. These curves, still above the two-dimensional curve, continuously tend to this curve when the obliquity angle i ob is decreased to 0 • . It is interesting to see that some properties of these three-dimensional neutral curves can be infered from the Squire relationships (24)-( 27).

We will still assume for simplicity that 1/Ca = 0. If we first consider that β = 0 and α = 0 (i.e. k = β), the relation (26) gives γ 2D = 0. As there is no instability in the horizontal situation, Re 2D → ∞. Finally, the relation (25) gives Re 3D >> Re 2D , so that Re 3D → ∞. We then obtain that for any non-zero wave vector β, the neutral curve obtained for a given inclination γ 3D tends towards infinity when α decreases to zero, what is observed in figure 1a. Conversely, if we now consider that the waves have a given obliquity i ob (i ob = 90 • ), relation (26) gives tan(γ 2D ) = tan(γ 3D ) cos(i ob ), so that γ 2D is non zero and Re 2D is finite. Relation (25) then gives Re 3D = Re 2D / cos(i ob ), indicating that Re 3D also remains finite. We then obtain that for a given obliquity i ob = 90 • , the neutral curve obtained for a given inclination γ 3D remains finite when α decreases to zero, what is observed in figure 1b. showing Re c versus γ (figure 2b) is then a continuously decreasing curve. Returning to the Squire relationships used for 1/Ca = 0, we can write:

Re 3D (γ 3D ) > Re 2D (γ 2D ), (28) 
from ( 25) and γ 3D > γ 2D from (26). The decrease of the curves in figure 2 then indicates that Re 2D (γ 2D ) > Re 2D (γ 3D ), and the combination with (28) finally gives that

Re 3D (γ 3D ) > Re 2D (γ 3D ). ( 29 
)
Using the Squire relationships together with the results obtained for two-dimensional waves, it is thus possible to show that, for a Newtonian fluid flowing down an incline, the two-dimensional waves are the more dangerous. Note that this proof uses a property of the two-dimensional stability study result, namely that Re 2D (γ 2D ) monotonously decreases. In this case the Squire conjecture is thus validated a posteriori rather than stated prior to the two-dimensional study.

The general system we have to solve for a generalized Newtonian fluid flowing down an incline is given by equations ( 14)-( 15) with associated boundary conditions. As already shown, for two-dimensional waves, the system is reduced to equation ( 21) with α = k.

The two-dimensional wave results obtained in the shear-thinning case for L = 0.5, n = 0.5 and I = 0 and in the shear-thickening case for L = 0.5, n = 1.5 and I = 0 are also given in figure 2 with solid lines and dashed-dotted lines, respectively. These stability results obtained for generalized Newtonian fluids look similar to those obtained for Newtonian fluids, with similar neutral curves decreasing as a whole when γ is increased (figure 2a)

and a stability curve decreasing as well (figure 2b). All these values, however, are smaller (larger) for the shear-thinning fluid (shear-thickening fluid) than for the Newtonian fluid.

The influence of L on the critical Reynolds number for these generalized Newtonian fluids is shown in figure 3 for a fixed inclination angle γ = 2 • . As expected, we observe a decrease of the critical Reynolds number with L for the shear-thinning fluids (0 < n < 1)

and an increase for the shear-thickening fluids (n > 1). Note also the symmetry around the Newtonian case (n = 1) in the neutral curves between the shear-thickening (n = 1.2, 1.5 and 1.65) and the shear-thinning (n = 0.8, 0.5 and 0.35) cases.

Following the same assumptions as Nouar et al. [START_REF] Nouar | Delaying transition to turbulence in channel flow: revisiting the stability of shear-thinning fluids[END_REF], a simplification of the threedimensional wave problem can be obtained if we consider that θ = η in the underlined term in equation ( 14). This assumes that the perturbations of viscosity are neglected in this term, which could be thought as a weak assumption as the instability is driven by the shear at the free surface, where θ = η = 1. With this assumption, the system to solve is reduced to a single equation given by [START_REF] Weinstein | Wave propagation in the flow of shear-thinning fluids down an incline[END_REF]. For this equation and the associated boundary conditions, the same Squire relationships as in ( 24)-( 27) can be derived, indicating that the same type of neutral curves as in figure 1 can be obtained for this three-dimensional wave reduced problem. Moreover, the Squire relationships and the decrease of the twodimensional wave stability curves (figure 2b) also indicate that, for shear-thinning fluids as well as for shear-thickening fluids, the two-dimensional wave thresholds are smaller than the three-dimensional wave thresholds obtained for this reduced problem.

It is now useful to solve the general system ( 14)- [START_REF] Hesla | Squire's theorem for two stratified fluids[END_REF] to check if the indications obtained with the reduced problem can be confirmed or not. The neutral curves obtained for an inclination γ = 2 • , n = 0.5, I = 0 and different obliquities of the three-dimensional waves are shown in figure 4, both for the general problem (denoted as 3D 2 ) and the reduced problem (denoted as 3D 1 ). The two-dimensional results (i ob = 0 • ) are also given for comparison. Each graph corresponds to a different value of the parameter L, L = 0.5, 0.7, 0.8, and 1. As expected, the neutral Reynolds number values obtained with the reduced problem are above those obtained in the two-dimensional case. The values for the general problem, however, are below those for the reduced problem, sometimes much below, indicating that the assumption used to reduce the three-dimensional problem is not so weak in the shear-thinning case. For small values of L as L ≤ 0.7, the two-dimensional neutral values seem to remain the smallest. In contrast, for larger values of L, the neutral curves of the general problem can be below the two-dimensional neutral curves, particularly for large values of the obliquity angle i ob . The critical curves, Re c versus L, obtained in the different approximations of the problem are also shown in figure 5 for different obliquity angles. In any case, the curves decrease when L is increased. The critical curves for the general problem, however, decrease more rapidly than those obtained for the reduced problem. This effect is particularly important for the large obliquity angles, where the departure between the two curves corresponding to the different approximations strongly increases with L. As a result, the critical curves for the general problem can decrease below the two-dimensional wave curves when L is increased, and this effect seems to occur at smaller L values when the obliquity angle i ob is increased. These results thus indicate that three-dimensional wave instabilities can be the more dangerous in shearthinning fluids, particularly those with a large obliquity angle, and for sufficient values of L. Another conclusion is that the perturbations of viscosity cannot be neglected in this three-dimensional wave instability problem for shear-thinning fluids.

The three-dimensional wave instability curves obtained by solving either the general problem or the reduced problem in the shear-thickening case are also given in figure 6.

For the shear-thickening case, both types of critical curves increase when L is increased, but the curves obtained for the general problem increase more rapidly than those obtained for the reduced problem. As it was previously shown that the instability thresholds for the reduced problem are higher than the two-dimensional thresholds, the critical curves for the general problem in the shear-thickening case will remain above the corresponding two-dimensional critical curve for all values of the obliquity angle i ob . These results thus indicate that, in the shear-thickening case, the oblique wave instabilities are never the dominant instabilities for any value of L, even if the Squire relationships cannot be derived for the general problem in this case.

Conclusion

This study has been focused on the possible occurence of three-dimensional wave instabilities as the dominant instability in flows down an incline. The two cases of Newtonian fluids and generalized Newtonian fluids have been considered. For Newtonian fluids, it was possible to show that the three-dimensional wave instabilities are never the dominant instabilities, so that the well known long wavelength free-surface two-dimensional waves remain the more dangerous. This result cannot be obtained from the Squire relationships alone, but need to make use of the particular variation of the two-dimensional critical curve with regard to the inclination angle. The result was further confirmed by some three-dimensional wave stability results. In contrast, for generalized Newtonian fluids, Squire relationships only exist for a reduced problem neglecting some terms connected with the perturbation of the viscosity and not for the general problem. For this reduced problem, we can still conclude that the long wavelength free-surface two-dimensional waves are the more dangerous. For the general problem, however, no conclusion can be obtained from Squire considerations as Squire relationships cannot be derived for these generalized Newtonian fluids. Nevertheless, some numerical stability calculations have shown that the thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves, particularly for large obliquity angles and strong shear-thinning properties, whereas the thresholds for oblique waves are always higher than the two-dimensional thresholds for shear-thickening fluids.

In conclusion, the Squire conjecture, which says that the two-dimensional instabilities are the more dangerous and is known to be valid in a channel flow of Newtonian fluid, has been shown to remain valid for a flow down an incline for a Newtonian fluid. It seems to be also valid for shear-thickening fluids. In contrast, for shear-thinning fluids, this conjecture is no more valid, as cases have been found where the oblique waves are the more dangerous instabilities. For each value of L, the two-dimensional wave neutral curve is given as a red heavy solid line for comparison. The results are obtained for different obliquities of the waves (from i ob = 0 to 30 • ), for the general problem (3D 2 , dashed lines) and for the reduced model (3D 1 , solid lines). The two-dimensional wave stability results are given as a red heavy solid line for comparison.

  The comparison shown above seems to indicate that the three-dimensional thresholds are larger than the two-dimensional thresholds. To justify this, it is interesting to consider the two-dimensional wave stability results which are shown in figure2as heavy dashed lines. When the inclination of the plate γ increases, the neutral curves (figure2a) globally decrease, as well as the minimum value Re c reached for small α. The stability curve
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 1 Figure 1: Three-dimensional wave stability results for the flow down an incline in the case of a Newtonian fluid and for a fixed inclination of the plate γ = 2 • (1/Ca = 0). The neutral curves, expressed as the Reynolds number Re versus the streamwise wave number α, are given for different values of the transverse wave number β (a), or for different obliquities of the waves i ob (b). In (a), for each value of β, the points corresponding to α = β are indicated. These points correspond to those shown in (b) for i ob = 45 • , showing the correspondence between the two plots. The two-dimensional wave neutral curve is given as a red heavy solid line for comparison.
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 2 Figure 2: Two-dimensional wave stability results for the flow down an incline in the case of generalized Newtonian fluids (1/Ca = 0): (a) neutral curves expressed as the Reynolds number Re versus the streamwise wave number α for different inclinations γ of the plate; (b) stability curve showing the critical Reynolds number Re c as a function of the inclination γ. In (a) and (b), the cases corresponding to a Newtonian fluid (heavy dashed lines) are compared to those corresponding to a shear-thinning fluid (L = 0.5, n = 0.5, I = 0) (solid lines) and those corresponding to a shear-thickening fluid (L = 0.5, n = 1.5, I = 0) (dotted-dashed lines).
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 3 Figure 3: Two-dimensional wave stability results for the flow down an incline for a fixed inclination of the plate, γ = 2 • (I = 0, 1/Ca = 0): stability curves showing the critical Reynolds number Re c as a function of L. The results are obtained for different values of the power-law index for shear-thinning (solid lines) and shear-thickening (dotted-dashed lines) fluids. The constant value obtained in the Newtonian case is given as a red heavy dashed line for comparison.
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 4 Figure 4: Three-dimensional wave stability results for the flow down an incline in the case of a shear-thinning fluid and for a fixed inclination of the plate, γ = 2 • (n = 0.5, I = 0, 1/Ca = 0). The neutral curves, expressed as the Reynolds number Re versus the streamwise wave number α, are given for different obliquities of the wave i ob and for different values of L, L = 0.5 (a), L = 0.7 (b), L = 0.8 (c) and L = 1 (d). The results obtained in the general case (3D 2 , dashed lines) are compared with those obtained with the reduced model (3D 1 , solid lines). The curve for i ob = 26.565 • corresponds to β = α/2.
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 56 Three-dimensional wave stability results for the flow down an incline in the case of a shear-thinning fluid and for a fixed inclination of the plate, γ = 2 • (n = 0.5, I = 0, 1/Ca = 0): stability curves showing the critical Reynolds number Re c as a function of L. The results are obtained for different obliquities of the waves (from i ob = 0 to 30 • ), for the general problem (3D 2 , dashed lines) and for the reduced model (3D 1 , solid lines). The two-dimensional wave stability results are given as a red heavy solid line for comparison. Three-dimensional wave stability results for the flow down an incline in the case of a shear-thickening fluid and for a fixed inclination of the plate, γ = 2 • (n = 1.5, I = 0, 1/Ca = 0): stability curves showing the critical Reynolds number Re c as a function of L.