
HAL Id: hal-01179579
https://hal.science/hal-01179579

Submitted on 22 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stability of a flow down an incline with respect to
two-dimensional and three-dimensional disturbances for

Newtonian and non-Newtonian fluids
Mohamed Hatem Allouche, Séverine Millet, Valéry Botton, Daniel Henry,

Hamda Ben Hadid, François Rousset

To cite this version:
Mohamed Hatem Allouche, Séverine Millet, Valéry Botton, Daniel Henry, Hamda Ben Hadid, et al..
Stability of a flow down an incline with respect to two-dimensional and three-dimensional disturbances
for Newtonian and non-Newtonian fluids. Physical Review E : Statistical, Nonlinear, and Soft Matter
Physics, 2015, 92 (12), pp.063010. �10.1103/PhysRevE.92.063010�. �hal-01179579�

https://hal.science/hal-01179579
https://hal.archives-ouvertes.fr


Stability of a flow down an incline with respect to

three-dimensional disturbances: the question of Squire

conjecture for Newtonian or generalized Newtonian fluids

M.H. Allouche, S. Millet, V. Botton, D. Henry, H. Ben Hadid and F. Rousset1
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Abstract

The Squire conjecture, which states that the two-dimensional instabilities are the

more dangerous, is questioned here for a flow down an incline, making use of numerical

stability analysis and Squire relationships when available. For a Newtonian fluid, it

is shown that oblique wave instabilities are never the dominant instabilities. Both

the Squire relationships and the particular variations of the two-dimensional wave

marginal curve with regard to the inclination angle are needed to obtain this result

validating the Squire conjecture. For a generalized Newtonian fluid, a similar result

has only been obtained for a reduced stability problem where some term connected to

the perturbation of viscosity is neglected. For the general stability problem, however,

no Squire relationship can be derived and the numerical stability results show that the

thresholds for oblique waves can be smaller than the thresholds for two-dimensional

waves, particularly for large obliquity angles and strong non-Newtonian behaviours.

The Squire conjecture is then clearly not valid in this case.



1 Introduction

The hydrodynamics of film flows driven by gravity down an inclined plane have been

studied for a long time. Such flows, which can be encountered in many industrial and

geophysical situations as well as in the everyday life, very often present intriguing wavy

patterns which can become complex, depending on the slope, the flow speed and the

physical properties of the fluid. The waves that are triggered in such flows are initially

quasi-plane waves with a large wavelength compared to the flow depth, and they are known

as surface waves. Farther downstream, the waves grow in amplitude and quickly evolve

towards a non linear regime. These waves appear for non-zero Reynolds number, and

have then a convective characteristic. The onset of such waves in Newtonian fluids is well

understood since the early linear stability studies by Benjamin [1] and Yih [2]. A long-

wave approximation was adopted in these analytical approaches. They showed that the

critical Reynolds number for the onset of the instabilities only depends on the inclination

of the plate γ and is proportional to cotγ. They also pointed out that inertia is required to

trigger these free surface instabilities. The experimental works of Liu [3] have confirmed

this dependence with the inclination angle for the linear stability thresholds.

Most of the studies in the literature on this topic are based on a Newtonian fluid

model. The rheological behavior of many fluids cannot, however, be properly described

by a Newtonian model and more sophisticated rheological models involving a nonlinear

relationship between stress and strain would be more appropriate. Far less studies have

been carried out in the case of generalized Newtonian film flows. Ng and Mei [4] showed

that a linear stability study with a power-law fluid is not sufficient to suggest a preferred

wavelength for the roll wave because the predicted growth rate of the unstable disturbances

increases monotonically with the wavenumber. Then, using a long-wave approximation,

they demonstrated a linear evolution of the critical Reynolds number as a function of both

cotγ and the power-law exponent n. This study, however, is limited by the singularity

introduced by the viscosity law in the model: a power-law describes an infinite viscosity

at the free surface, which is not physically consistent. To remove this singularity, some

authors considered a regularized power-law model: Ruyer-Quil et al. [5] by introducing

a Newtonian plateau at small strain rate and Noble and Vila [6] by introducing a weaker

formulation of the Cauchy momentum equations. They have shown the relevant influence

of shear-thinning properties on the primary instability. Rousset et al. [7] studied the



temporal stability of a Carreau fluid flow down an inclined plane. They performed an

asymptotic approach considering a weakly non-Newtonian behavior in the limit of very

long waves and compared it with a more general numerical approach. It was found that

the critical Reynolds number is lower for shear-thinning fluids than for Newtonian fluids,

while the wave celerity is larger. A particular attention was paid to the situations with

small angles of inclination. Indeed, in these cases, besides the long-wave free surface mode,

another instability identified by Floryan [8] as a shear mode can occur. It is characterized

by a wavelength on the order of the layer thickness and a wave celerity lower than the

free surface velocity. It was shown that taking into account the shear-dependence of the

viscosity can change the nature of the instability.

Superposed film layers flowing down an inclined plane can be subjected to interfacial

instabilities even in the limit of zero Reynolds number according to the direction of viscosity

stratification. This situation was first observed with Newtonian fluids by Kao [9]. Other

studies led to the same observations for non-Newtonian viscosities, such as Balmforth et

al. for power-law shear-thinning fluids [10] and Herschel-Bulkley viscoplastic fluids [11]

and Millet et al. [12] for Carreau shear-thinning fluids.

Most of the theoretical studies concerning flows down an incline make the assump-

tion that the waves propagate in the same direction as the flow (waves denoted as two-

dimensional). Since the work of Squire [13], many people justify this simplification by

saying that the two-dimensional waves are more dangerous than any oblique waves. This

was in fact shown by Squire [13] for a Newtonian unidirectional forced flow between rigid

boundaries. He showed that there was a relationship between the Reynolds numbers for

an oblique wave and a two-dimensional wave, associated with a relationship between the

wave numbers, so that the critical Reynolds number for a two-dimensional wave could be

shown to be the smallest. Pearlstein [14] and Hesla et al. [15] reached the same conclusion

for parallel flow of stratified Newtonian fluids. Yih [16], and, more clearly, Chang and

Demekhin [17] extended these results to Newtonian flows with free-surfaces, interfaces,

or density stratification. For free-surface flows down an incline, Yih [16] showed that

there were also relationships between the two-dimensional and oblique wave characteris-

tics, allowing to deduce the stability results for oblique waves from the results obtained

for two-dimensional waves. These relationships, however, were more numerous and in

particular included a relationship between the slopes of the inclines. This means that

the Reynolds number associated with a two-dimensional wave can be shown to be smaller



than that for an oblique wave, but this oblique wave being obtained for a larger slope.

This prevents the possibility to compare directly the thresholds at a given slope. Despite

this, some studies as that of Benjamin [1] use the argument of Squire [13] to justify the

focus on two-dimensional instabilities. Moreover, in the case of non-Newtonian liquid film

flows down an incline, Gupta and Rai [18] for visco-elastic fluids and Sahu and Matar [19]

for viscoplastic fluids found that, under certain circumstances, oblique wave instabilities

may be the dominant instabilities, contrary to Squire’s theorem. In contrast, Nouar et al.

[20] studied the three-dimensional temporal linear stability of shear-thinning fluid plane

Poiseuille flows and indicated that the two-dimensional instabilities seem dominant. They,

however, remark that they cannot make use of Squire relationships, which only exist for a

reduced problem neglecting some terms connected with the perturbation of the viscosity

and not for the general eigenvalue problem.

In this study, we focus on the flows down an incline and want to compare the thresholds

of oblique waves to those of two-dimensional waves. We will consider both Newtonian and

generalized Newtonian fluids (in particular Carreau fluids), with a particular distinction

between the shear-thinning (0 < n < 1) and the shear-thickening cases (n > 1), n being

the power-law index. We will also look for the existence or not of Squire relationships, and

see whether they can be used in the comparison between the thresholds associated with

the different waves.

2 Model and equations

We want to model a film flow developing down a plate inclined by an angle γ. We will

consider both Newtonian fluids with a constant viscosity η0 and generalized Newtonian

fluids with a viscosity η̄ following the four-parameter Carreau inelastic model:

η̄ − η∞
η0 − η∞

=
[

1 + (δγ̇)2
](n−1)/2

, (1)

with η0 and η∞ the limit Newtonian viscosities at low and high shear rate, respectively, δ a

characteristic time, n a dimensionless parameter and γ̇ the local shear rate. With 0 < n < 1

(n > 1) and η∞ < η0 (η∞ > η0), this law suitably describes the rheological behaviour of

shear-thinning (shear-thickening) fluids. Note that the Carreau model predicts a power-

law behaviour at moderate shear rate. However, unlike the power-law model, it predicts

a viscosity that remains finite and tends to η0 as the shear rate approaches zero. This

feature makes the Carreau law particularly suitable for free surface flow issues. For a



given flow rate Q, the layer thickness d cannot be explicitly calculated and will depend

on the different Carreau law parameters: therefore, it cannot be taken as a length scale

as often done. Using the dimensionless variables proposed by Weinstein [21] (length scale

ds =
(

η0Q
ρgsinγ

)1/3
, velocity scale Q/ds, time scale d2s/Q, viscosity scale η0), the Carreau law

for the dimensionless viscosity η becomes:

η = I + (1− I)

[

1 +

(

L
dub
dy

)2
](n−1)/2

, (2)

where I = η0/η∞, L = δQ
(

ρg sin γ
η0Q

)2/3
and ub is the dimensionless basic flow velocity.

The dimensionless equations governing the flow are











































∂u
∂x + ∂v

∂y + ∂w
∂z = 0

Re(∂u∂t + u∂u
∂x + v ∂u

∂y + w ∂u
∂z ) = −Re ∂p∂x + (∂σxx

∂x +
∂σxy

∂y + ∂σxz

∂z ) + 1

Re(∂v∂t + u∂v
∂x + v ∂v

∂y + w ∂v
∂z ) = −Re∂p∂y + (

∂σyx

∂x +
∂σyy

∂y +
∂σyz

∂z ) + cotγ

Re(∂w∂t + u∂w
∂x + v ∂w

∂y + w ∂w
∂z ) = −Re∂p∂z + (∂σzx

∂x +
∂σzy

∂y + ∂σzz

∂z )

, (3)

where u, v, and w are the dimensionless velocities along the x, y, and z directions, respec-

tively, p is the dimensionless pressure (dimensionalized by ρQ2/d2s), σij is the dimensionless

viscous strain tensor, and Re is the Reynolds number defined by Re = ρQ/η0. This system

has to be solved with the associated boundary conditions at the bottom y = d and at the

free surface y = 0.

The system (3) has a steady solution ub featuring a uniform longitudinal flow only

depending on the normal direction y. For this basic solution, the equations are reduced to











dσb
xy

dy = d
dy

(

η dub

dy

)

= −1

dpb
dy = cotγ

Re

, (4)

and the boundary conditions correspond to no slip at the bottom and no friction stress at

the flat free surface:










ub(y = d) = 0

σb
xy(y = 0) = 0

, (5)

where σb
xy = η dub

dy is the only non-zero component of the viscous strain tensor for the basic

flow. In the general case where η is given by the Carreau law (2), there is no analytical

solution to these equations and ub has to be obtained numerically.



3 Stability analysis

We perform a temporal linear stability study on this problem. The basic flow is perturbed

by fluctuations of the velocity, u′, v′ and w′ and of the pressure, p′ and by the fluctuation

of the interface, ζ ′. We obtain u = ub(y) + u′(x, y, z, t), v = v′(x, y, z, t), w = w′(x, y, z, t),

p = pb(y)+p′(x, y, z, t), ζ = ζ ′(x, z, t) and σxy = σb
xy(y)+σ′

xy(x, y, z, t). These expressions

are introduced in the system (3) and after linearization, we get:











































∂u′

∂x + ∂v′

∂y + ∂w′

∂z = 0

Re(∂u
′

∂t + ub
∂u′

∂x + v′ dub

dy ) = −Re∂p
′

∂x + (∂σ
′

xx

∂x +
∂σ′

xy

∂y + ∂σ′

xz

∂z )

Re(∂v
′

∂t + ub
∂v′

∂x ) = −Re∂p
′

∂y + (
∂σ′

yx

∂x +
∂σ′

yy

∂y +
∂σ′

yz

∂z )

Re(∂w
′

∂t + ub
∂w′

∂x ) = −Re∂p
′

∂z + (∂σ
′

zx

∂x +
∂σ′

zy

∂y + ∂σ′

zz

∂z )

, (6)

where the strain perturbations are:











σ′

xx = 2η ∂u′

∂x ; σ′

yy = 2η ∂v′

∂y ; σ′

zz = 2η ∂w′

∂z

σ′

xz = η(∂u
′

∂z + ∂w′

∂x ) ; σ′

yz = η(∂v
′

∂z + ∂w′

∂y ) ; σ′

xy = θ(∂u
′

∂y + ∂v′

∂x )

. (7)

Note that in the expression of the perturbed viscous strain in the (x,y) plane, a new viscos-

ity θ appears [7, 20]. This is due to the fact that, in this plane, the velocity perturbations

induce viscosity perturbations. θ is given by:

θ = I + (1− I)

[

1 + n

(

L
dub
dy

)2
][

1 +

(

L
dub
dy

)2
]n−3/2

. (8)

The boundary conditions associated to this perturbation problem are the no-slip condition

at the bottom:

u′ = v′ = w′ = 0 at y = d, (9)

the kinematic condition at the free surface:

v′ =
∂ζ ′

∂t
+ Ub

∂ζ ′

∂x
= 0 at y = 0, (10)

the zero viscous strain at the perturbed free surface, which gives:



























σ′

xy − ζ ′ = 0

σ′

yz = 0

σ′

xz = 0

at y = 0, (11)



and the normal strain balance at the perturbed free surface, which gives:

ζ ′cotγ +Re p′ − 2η
∂v′

∂y
+

1

Ca

(

∂2ζ ′

∂x2
+

∂2ζ ′

∂z2

)

= 0 at y = 0, (12)

where Ca = η0Q
σds

is the capillary number and σ is the surface tension.

The perturbations of velocity, u′, v′ and w′ and of pressure, p′ and the fluctuation of

the interface ζ ′ are developped as three-dimensional normal modes:











[u′, v′, w′, p′] (x, y, z, t) = [û, v̂, ŵ, p̂] (y) ei(αx+βz−αct)

ζ ′(x, z, t) = ζ̂ei(αx+βz−αct)

, (13)

where (û, v̂, ŵ, p̂, ζ̂) are complex variables, (α, 0, β) is the real wave vector (with α2 +

β2 = k2) and c is the dimensionless complex celerity of the wave. Its real part cr gives

the dimensionless phase velocity and its imaginary part ci gives the time amplification

rate. A stable (unstable) flow will correspond to negative (positive) values of ci and the

perturbations will be called three-dimensional if β 6= 0 and two-dimensional if β = 0.

Introducing this formulation in the governing equations for the perturbations (6) and

combining these equations adequately, we obtain a system of two coupled equations for

the unknowns (v̂, ŵ):

iαRe
[

(ub − c)(D2 − k2)−D2(ub)
]

v̂ = −4k2D(ηDv̂) + (14)

[

D2θ + 2DθD + θ(D2 + k2)
] (

D2 + k2
)

v̂ + iβ(D2 + k2) [(θ − η)(Dŵ + iβv̂)],

iαRe(ub − c)(iβv̂ −Dŵ)− iαReDubŵ = β2θDŵ + k2D(ηŵ)− iβθ(D2 + α2)v̂ +

3iβD(ηDv̂)− iβ(D2 + β2)(ηv̂)− (D2 + β2)(ηDŵ), (15)

where D = d
dy is the derivative with respect to the normal direction y. The first equation

is a generalized Orr-Sommerfeld equation for the normal velocity perturbation v̂, which,

however, cannot be solved alone in the general case due to the presence of the underlined

term involving the perturbation ŵ. To obtain the boundary conditions, we must note

that, at the free surface, the basic flow shear is zero (Dub = 0), so that η = θ = 1 and

Dη = Dθ = 0. These boundary conditions are:

v̂ = Dv̂ = ŵ = 0 at y = d, (16)

[

1 + (ub − c)(D2 + k2)
]

v̂ = 0 at y = 0, (17)

iβv̂ +Dŵ = 0 at y = 0, (18)



− βDv̂ + i(α2 − β2)ŵ = 0 at y = 0, (19)

− ik2(D2 + k2)

[

1

α tan γ
+

k2

αCa

]

v̂ + 4k2Dv̂ + iαRe(ub − c)Dv̂

− D
[

(D2 + k2)v̂
]

= 0 at y = 0. (20)

In the case of two-dimensional perturbations (β = 0, k = α), the system (14)-(15) for

generalized Newtonian fluids is reduced to the equation (14) without the underlined term,

i.e. a generalized Orr-Sommerfeld equation given in [7]:

iαRe
[

(ub − c)(D2 − k2)−D2(ub)
]

v̂ = −4k2D(ηDv̂) (21)

+
[

D2θ + 2DθD + θ(D2 + k2)
] (

D2 + k2
)

v̂,

which, for two-dimensional perturbations, is solved with α = k. Conversely, the three-

dimensional perturbations for a Newtonian fluid (θ = η = 1) verify the usual Orr-

Sommerfeld equation deduced from (14):

iαRe
[

(ub − c)(D2 − k2)−D2(ub)
]

v̂ =
(

D2 − k2
)2

v̂. (22)

4 Numerical procedure

A spectral Tau collocation method based on Chebyshev polynomials is used for the dis-

cretization of the generalized eigenvalue problem (14)-(20). The resulting system of al-

gebraic equations, solved on the Gauss-Lobatto collocation points (yj = cos(jπ/N) for

j = 0, N) in the layer, can be written in the abbreviated form

[A]X = ω [B]X, (23)

where X is the vector containing the algebraic values of v̂ and ŵ at each collocation point.

The dimension of the square matrices [A] and [B] is twice the number of modes N + 1.

The eigenvalues obtained when solving (23) are the complex angular frequencies ω = α c,

and the imaginary part of ω is the growth rate ωI .

From the spectra obtained by solving (23), we will compute neutral curves (values of

Re for which an eigenmode has a zero growth rate whereas all the other eigenmodes have

a negative growth rate) depending on the wave numbers α and β, from which critical

Reynolds number Rec can be obtained by minimization along α and β. The numerical

procedure has been validated in previous studies [7, 12].



5 Results for a Newtonian fluid

In the case of a Newtonian fluid, the three-dimensional stability problem is governed by the

Orr-Sommerfeld equation (22) and the associated boundary conditions (those on v̂ deduced

from (16), (17) and (20)). As already shown by Yih [16] and Chang and Demekhin [17],

we have different relationships between the characteristics of the oblique waves and of the

two-dimensional waves, which we will denote with the subscripts 3D and 2D, respectively.

If the wave number for the two-dimensional waves, α2D, is directly denoted as k (α2D = k

in this case) and the wave numbers for the oblique waves simply as α and β, the different

relationships are:

α2 + β2 = k2, (24)

αRe3D = kRe2D, (25)

α tan γ3D = k tan γ2D, (26)

αCa3D = kCa2D. (27)

Equations (24) and (25) come from the Orr-Sommerfeld equation (as for rigid bound-

aries), and (26) and (27) from the boundary conditions. These relationships indicate

that the stability results for the oblique waves can be obtained from those for the two-

dimensional waves, but for different involved wall inclinations. Then we cannot easily

conclude for the comparison at a given wall inclination.

It is then interesting to compare numerically the three-dimensional and the two-

dimensional instability thresholds. This comparison is given in figure 1 for a wall in-

clination γ = 2◦ and 1/Ca = 0. The neutral curves, Re versus α, have been obtained first

for given values of the wave number β (figure 1a) and then for given values of the wave

obliquity angle iob defined as tan(iob) = β/α (figure 1b). The two-dimensional neutral

curve decreases regularly when decreasing α and tends towards a minimum value when

α becomes small. In contrast, when decreasing α, the three-dimensional neutral curves

obtained at given values of β decrease towards a minimum reached for a finite value of α

and then increase strongly when α becomes small. A decrease of β induces a drift of the

minimum towards lower values of both α and Re; the increase at small α is thus observed

to be steeper. In any case, these neutral curves appear to be above the two-dimensional

neutral curve. When obtained at given obliquity angle (figure 1b), the neutral curves look

more similar to the two-dimensional curve, with a monotonous variation and a minimum



reached asymptotically for small α. These curves, still above the two-dimensional curve,

continuously tend to this curve when the obliquity angle iob is decreased to 0◦. It is inter-

esting to see that some properties of these three-dimensional neutral curves can be infered

from the Squire relationships (24)-(27).

We will still assume for simplicity that 1/Ca = 0. If we first consider that β 6= 0

and α = 0 (i.e. k = β), the relation (26) gives γ2D = 0. As there is no instability in

the horizontal situation, Re2D → ∞. Finally, the relation (25) gives Re3D >> Re2D,

so that Re3D → ∞. We then obtain that for any non-zero wave vector β, the neutral

curve obtained for a given inclination γ3D tends towards infinity when α decreases to zero,

what is observed in figure 1a. Conversely, if we now consider that the waves have a given

obliquity iob (iob 6= 90◦), relation (26) gives tan(γ2D) = tan(γ3D) cos(iob), so that γ2D is

non zero and Re2D is finite. Relation (25) then gives Re3D = Re2D/ cos(iob), indicating

that Re3D also remains finite. We then obtain that for a given obliquity iob 6= 90◦, the

neutral curve obtained for a given inclination γ3D remains finite when α decreases to zero,

what is observed in figure 1b.

The comparison shown above seems to indicate that the three-dimensional thresholds

are larger than the two-dimensional thresholds. To justify this, it is interesting to consider

the two-dimensional wave stability results which are shown in figure 2 as heavy dashed

lines. When the inclination of the plate γ increases, the neutral curves (figure 2a) globally

decrease, as well as the minimum value Rec reached for small α. The stability curve

showing Rec versus γ (figure 2b) is then a continuously decreasing curve. Returning to

the Squire relationships used for 1/Ca = 0, we can write:

Re3D(γ3D) > Re2D(γ2D), (28)

from (25) and γ3D > γ2D from (26). The decrease of the curves in figure 2 then indicates

that Re2D(γ2D) > Re2D(γ3D), and the combination with (28) finally gives that

Re3D(γ3D) > Re2D(γ3D). (29)

Using the Squire relationships together with the results obtained for two-dimensional

waves, it is thus possible to show that, for a Newtonian fluid flowing down an incline,

the two-dimensional waves are the more dangerous. Note that this proof uses a property

of the two-dimensional stability study result, namely that Re2D(γ2D) monotonously de-

creases. In this case the Squire conjecture is thus validated a posteriori rather than stated

prior to the two-dimensional study.



6 Results for a generalized Newtonian fluid

The general system we have to solve for a generalized Newtonian fluid flowing down an

incline is given by equations (14)-(15) with associated boundary conditions. As already

shown, for two-dimensional waves, the system is reduced to equation (21) with α = k.

The two-dimensional wave results obtained in the shear-thinning case for L = 0.5, n = 0.5

and I = 0 and in the shear-thickening case for L = 0.5, n = 1.5 and I = 0 are also given

in figure 2 with solid lines and dashed-dotted lines, respectively. These stability results

obtained for generalized Newtonian fluids look similar to those obtained for Newtonian

fluids, with similar neutral curves decreasing as a whole when γ is increased (figure 2a)

and a stability curve decreasing as well (figure 2b). All these values, however, are smaller

(larger) for the shear-thinning fluid (shear-thickening fluid) than for the Newtonian fluid.

The influence of L on the critical Reynolds number for these generalized Newtonian fluids

is shown in figure 3 for a fixed inclination angle γ = 2◦. As expected, we observe a

decrease of the critical Reynolds number with L for the shear-thinning fluids (0 < n < 1)

and an increase for the shear-thickening fluids (n > 1). Note also the symmetry around

the Newtonian case (n = 1) in the neutral curves between the shear-thickening (n = 1.2,

1.5 and 1.65) and the shear-thinning (n = 0.8, 0.5 and 0.35) cases.

Following the same assumptions as Nouar et al. [20], a simplification of the three-

dimensional wave problem can be obtained if we consider that θ = η in the underlined

term in equation (14). This assumes that the perturbations of viscosity are neglected in

this term, which could be thought as a weak assumption as the instability is driven by the

shear at the free surface, where θ = η = 1. With this assumption, the system to solve is

reduced to a single equation given by (21). For this equation and the associated boundary

conditions, the same Squire relationships as in (24)-(27) can be derived, indicating that

the same type of neutral curves as in figure 1 can be obtained for this three-dimensional

wave reduced problem. Moreover, the Squire relationships and the decrease of the two-

dimensional wave stability curves (figure 2b) also indicate that, for shear-thinning fluids as

well as for shear-thickening fluids, the two-dimensional wave thresholds are smaller than

the three-dimensional wave thresholds obtained for this reduced problem.

It is now useful to solve the general system (14)-(15) to check if the indications obtained

with the reduced problem can be confirmed or not. The neutral curves obtained for an

inclination γ = 2◦, n = 0.5, I = 0 and different obliquities of the three-dimensional waves



are shown in figure 4, both for the general problem (denoted as 3D2) and the reduced

problem (denoted as 3D1). The two-dimensional results (iob = 0◦) are also given for

comparison. Each graph corresponds to a different value of the parameter L, L = 0.5,

0.7, 0.8, and 1. As expected, the neutral Reynolds number values obtained with the

reduced problem are above those obtained in the two-dimensional case. The values for

the general problem, however, are below those for the reduced problem, sometimes much

below, indicating that the assumption used to reduce the three-dimensional problem is not

so weak in the shear-thinning case. For small values of L as L ≤ 0.7, the two-dimensional

neutral values seem to remain the smallest. In contrast, for larger values of L, the neutral

curves of the general problem can be below the two-dimensional neutral curves, particularly

for large values of the obliquity angle iob. The critical curves, Rec versus L, obtained in the

different approximations of the problem are also shown in figure 5 for different obliquity

angles. In any case, the curves decrease when L is increased. The critical curves for

the general problem, however, decrease more rapidly than those obtained for the reduced

problem. This effect is particularly important for the large obliquity angles, where the

departure between the two curves corresponding to the different approximations strongly

increases with L. As a result, the critical curves for the general problem can decrease

below the two-dimensional wave curves when L is increased, and this effect seems to

occur at smaller L values when the obliquity angle iob is increased. These results thus

indicate that three-dimensional wave instabilities can be the more dangerous in shear-

thinning fluids, particularly those with a large obliquity angle, and for sufficient values of

L. Another conclusion is that the perturbations of viscosity cannot be neglected in this

three-dimensional wave instability problem for shear-thinning fluids.

The three-dimensional wave instability curves obtained by solving either the general

problem or the reduced problem in the shear-thickening case are also given in figure 6.

For the shear-thickening case, both types of critical curves increase when L is increased,

but the curves obtained for the general problem increase more rapidly than those obtained

for the reduced problem. As it was previously shown that the instability thresholds for

the reduced problem are higher than the two-dimensional thresholds, the critical curves

for the general problem in the shear-thickening case will remain above the corresponding

two-dimensional critical curve for all values of the obliquity angle iob. These results thus

indicate that, in the shear-thickening case, the oblique wave instabilities are never the

dominant instabilities for any value of L, even if the Squire relationships cannot be derived



for the general problem in this case.

7 Conclusion

This study has been focused on the possible occurence of three-dimensional wave insta-

bilities as the dominant instability in flows down an incline. The two cases of Newtonian

fluids and generalized Newtonian fluids have been considered. For Newtonian fluids, it

was possible to show that the three-dimensional wave instabilities are never the dominant

instabilities, so that the well known long wavelength free-surface two-dimensional waves

remain the more dangerous. This result cannot be obtained from the Squire relationships

alone, but need to make use of the particular variation of the two-dimensional critical

curve with regard to the inclination angle. The result was further confirmed by some

three-dimensional wave stability results. In contrast, for generalized Newtonian fluids,

Squire relationships only exist for a reduced problem neglecting some terms connected

with the perturbation of the viscosity and not for the general problem. For this reduced

problem, we can still conclude that the long wavelength free-surface two-dimensional waves

are the more dangerous. For the general problem, however, no conclusion can be obtained

from Squire considerations as Squire relationships cannot be derived for these generalized

Newtonian fluids. Nevertheless, some numerical stability calculations have shown that the

thresholds for oblique waves can be smaller than the thresholds for two-dimensional waves,

particularly for large obliquity angles and strong shear-thinning properties, whereas the

thresholds for oblique waves are always higher than the two-dimensional thresholds for

shear-thickening fluids.

In conclusion, the Squire conjecture, which says that the two-dimensional instabilities

are the more dangerous and is known to be valid in a channel flow of Newtonian fluid, has

been shown to remain valid for a flow down an incline for a Newtonian fluid. It seems to be

also valid for shear-thickening fluids. In contrast, for shear-thinning fluids, this conjecture

is no more valid, as cases have been found where the oblique waves are the more dangerous

instabilities.
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Figure 1: Three-dimensional wave stability results for the flow down an incline in the case

of a Newtonian fluid and for a fixed inclination of the plate γ = 2◦ (1/Ca = 0). The

neutral curves, expressed as the Reynolds number Re versus the streamwise wave number

α, are given for different values of the transverse wave number β (a), or for different

obliquities of the waves iob (b). In (a), for each value of β, the points corresponding to

α = β are indicated. These points correspond to those shown in (b) for iob = 45◦, showing

the correspondence between the two plots. The two-dimensional wave neutral curve is

given as a red heavy solid line for comparison.
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Figure 2: Two-dimensional wave stability results for the flow down an incline in the case

of generalized Newtonian fluids (1/Ca = 0): (a) neutral curves expressed as the Reynolds

number Re versus the streamwise wave number α for different inclinations γ of the plate;

(b) stability curve showing the critical Reynolds number Rec as a function of the inclination

γ. In (a) and (b), the cases corresponding to a Newtonian fluid (heavy dashed lines) are

compared to those corresponding to a shear-thinning fluid (L = 0.5, n = 0.5, I = 0)

(solid lines) and those corresponding to a shear-thickening fluid (L = 0.5, n = 1.5, I = 0)

(dotted-dashed lines).
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Figure 3: Two-dimensional wave stability results for the flow down an incline for a fixed

inclination of the plate, γ = 2◦ (I = 0, 1/Ca = 0): stability curves showing the critical

Reynolds number Rec as a function of L. The results are obtained for different values of

the power-law index for shear-thinning (solid lines) and shear-thickening (dotted-dashed

lines) fluids. The constant value obtained in the Newtonian case is given as a red heavy

dashed line for comparison.
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Figure 4: Three-dimensional wave stability results for the flow down an incline in the

case of a shear-thinning fluid and for a fixed inclination of the plate, γ = 2◦ (n = 0.5,

I = 0, 1/Ca = 0). The neutral curves, expressed as the Reynolds number Re versus

the streamwise wave number α, are given for different obliquities of the wave iob and for

different values of L, L = 0.5 (a), L = 0.7 (b), L = 0.8 (c) and L = 1 (d). The results

obtained in the general case (3D2, dashed lines) are compared with those obtained with

the reduced model (3D1, solid lines). The curve for iob = 26.565◦ corresponds to β = α/2.

For each value of L, the two-dimensional wave neutral curve is given as a red heavy solid

line for comparison.
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Figure 5: Three-dimensional wave stability results for the flow down an incline in the case

of a shear-thinning fluid and for a fixed inclination of the plate, γ = 2◦ (n = 0.5, I = 0,

1/Ca = 0): stability curves showing the critical Reynolds number Rec as a function of L.

The results are obtained for different obliquities of the waves (from iob = 0 to 30◦), for

the general problem (3D2, dashed lines) and for the reduced model (3D1, solid lines). The

two-dimensional wave stability results are given as a red heavy solid line for comparison.
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Figure 6: Three-dimensional wave stability results for the flow down an incline in the case

of a shear-thickening fluid and for a fixed inclination of the plate, γ = 2◦ (n = 1.5, I = 0,

1/Ca = 0): stability curves showing the critical Reynolds number Rec as a function of L.

The results are obtained for different obliquities of the waves (from iob = 0 to 30◦), for

the general problem (3D2, dashed lines) and for the reduced model (3D1, solid lines). The

two-dimensional wave stability results are given as a red heavy solid line for comparison.


