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Solution of large deformation contact problems
with friction between Blatz–Ko hyperelastic bodies
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CEMIF, IUP, 40,rue du Pelvoux, 91020 Evry cedex, France
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The present paper is devoted to the analysis of the contact problems with Coulomb friction and large

deformation between two hyperelastic bodies. One approach to separate the material nonlinearity and

contact nonlinearity is presented. The total Lagrangian formulation is adopted to describe the geometri-

cally nonlinear behavior. Nondifferentiable contact potentials are regularized by means of the augmented

Lagrangian method. Numerical examples are carried out in two cases: rigid–deformable contact and de-
formable–deformable contact with large slips. The numerical results prove that the proposed approach is

robust and efficient concerning numerical stability.

Keywords: Contact and friction; Hyperelastic large deformation; Finite element

1. Introduction

The analysis of contact problems with friction is of great importance in many engineering
applications. The numerical treatment of the unilateral contact with dry friction is certainly one of
the nonsmooth mechanics topics for which many efforts have been made in the past. In the lite-
rature, many attempts have been developed to deal with such problems using the finite element
method, these include the penalty function method [1–4], the flexibility method [5,6], the mathe-
matical programming method [7–9], the Lagrangian multiplier method [10,11] and the augmented
*
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Lagrangian method [12–17]. A large literature base is available for a variety of numerical algo-
rithms [18,19]. To the author�s best knowledge, however, numerical modeling of frictional contact
problems between hyperelastic bodies undergoing large deformations remains limited. A con-
tinuum framework for finite element discretization of large displacement contact is presented by
Curnier et al. [20,21] and by Klarbring [22]. Recently, analytical investigations on the contact
problems between two homogeneous and isotropic soft bodies were performed to simulate the
contact of human buttocks and seat cushions [23]. An existence result of frictionless contact
problem between a hyperelastic body and a rigid plane has been obtained by Bretelle et al. [24].
However, no applications were presented. In the present work, the intention is to present nu-
merical investigations on the frictional contact problems between hyperelatic bodies with large
deformations and large slips. Two numerical examples are performed in this study to show the
validity of the developed models.
2. Modeling of contact problems in a reduced system

In this section, the geometric and kinematic quantities found suitable for describing the contact
compatibility of deformable bodies are defined and the local algorithm for contact modeling is
presented.

2.1. Contact kinematics

First of all, some basic definitions and notations are set up. For the sake of simplicity, let us
consider contact between two bodies X1 and X2, one of which may be a rigid foundation. In order
to state the contact constraints, we have to find the minimum distance of a point P of one body
with respect to the other one. The displacements of the particles of X1 and X2 being respectively u1
and u2, the relative displacement is: u ¼ u1 � u2. Let r be the contact traction acting at P from X2

onto X1. Then X2 is subjected to the traction �r, acting from X1. Let n denote the normal unit
vector at the projection point P 0 to the bodies, directed towards X1, and Tðt1; t2Þ denotes the
orthogonal plane to n in R3 (Fig. 1).

Any element u and r may uniquely be decomposed in the form:
u ¼ ut þ unn; ut 2 T; un 2 R

r ¼ rt þ rnn; rt 2 T; rn 2 R
ð1Þ
Classically, a unilateral contact law is characterized by a geometric condition of nonpenetra-
tion, a static condition of no-adhesion and a mechanical complementarity condition. These three
Ω1 
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t1 
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Fig. 1. Projection and gap vector.
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conditions are so-called Signorini conditions written in terms of the signed contact distance xn and
the normal contact force rn:
xn P 0; rn P 0 and rnxn ¼ 0 ð2Þ
where xn denotes the magnitude of the gap between the contact node and the target surface and is
a violation of the contact compatibility.
xn ¼ g þ un ð3Þ
with the initial gap:
g ¼ ðx1 � x2Þ � n ð4Þ
Classically, a rate independent dry friction law is characterized by a kinematic slip rule. Let Kl

denote Coulomb�s cone:
Kl ¼ fr 2 R3 such that jrtj6 lrng ð5Þ
The complete contact law is a complex nonsmooth dissipative law including three statuses: no
contact, contact with sticking and contact with sliding. The resulting analytical transcripts yields
two overlapped ‘‘if. . .then. . .else’’ statements:
if rn ¼ 0 then xn P 0 ! no contact

else if r 2 Kl then u ¼ 0 ! sticking

else ðrn > 0 and r 2 KlÞ; xn

�
¼ 0 and 9k > 0 such that jutj ¼ � k

rt

jrtj

�
! sliding

ð6Þ
An alternative statement is the inverse law:
if xn > 0 then r ¼ 0 ! no contact

else if u ¼ 0 then r 2 Kl ! sticking

else u 2 T; rn > 0 and rt ¼ �lrn
ut

jutj
! sliding

ð7Þ
From convex analysis, the above contact and friction laws are equivalent to the following varia-
tional inequality [25]:

Find ðrt; rnÞ 2 Kl such that
ðxn � ljûutjÞðr�n � rnÞ þ ûut � ðr�t � rtÞ6 0 8ðr�t ; r�nÞ 2 Kl ð8Þ
where
ûut ¼ k
rt

jrtj
for some k ¼ 0
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2.2. Local algorithm

In order to avoid nondifferentiable potentials that occur in nonlinear mechanics, such as in
contact problems, it is convenient to use the Augmented Lagrangian Method [14–17]. This
method, applied to the variational inequality (8), leads to the following implicit equation
r ¼ projððrn þ qnðxn � ljûutjÞ; rt þ qtutÞ;KlÞ ð9Þ
where qn and qt are real positive numbers, which can be automatically determined from the
contact stiffness matrix. For numerical solution of implicit equation (9), Uzawa�s algorithm can be
used, which leads to an iterative process involving one predictor–corrector step:
predictor : siþ1
n ¼ rin þ qi

nðxin � ljûuitjÞ; siþ1
t ¼ rit þ qi

tu
i
t ð10Þ

corrector : riþ1 ¼ projðsiþ1;KlÞ ð11Þ
The gist of the method is that the corrector can be analytically calculated and Eq. (11) can be
explicitly written as
if ljsiþ1
t j < �siþ1

n then riþ1 ¼ 0 ! no contact

else if jsiþ1
t j6 lsiþ1

n then riþ1 ¼ siþ1 ! sticking

else riþ1 ¼ siþ1 � ðjstiþ1 j � lsniþ1Þ
ð1þ l2Þ

siþ1
t

jsiþ1
t j

�
þ ln

�
! sliding

ð12Þ
It is important to emphasis on the fact that this explicit formula is valid for both 2D and 3D
contact problems with Coulomb�s friction and allows us to obtain very stable and accurate results.
3. Hyperelastic bodies undergoing large deformations

Rubber or other polymer materials are said to be hyperelastic. Usually, these kind of materials
undergo large deformations. In order to describe the geometrical transformation problems, the
deformation gradient tensor is introduced by
FijðxÞ ¼ dij þ
oui

oxj
or F ¼ Iþru ð13Þ
where I is the unity tensor, x the position vector and u the displacement vector.
Because of large displacements and rotations, Green–Lagrangian strain is adopted for the

nonlinear relationships between strains and displacements. We note C the stretch tensor or the
right Cauchy–Green deformation tensor (C ¼ FTF). The Green–Lagrangian strain tensor E is
defined by
E ¼ ðC� IÞ=2 ð14Þ
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In the case of hyperelastic law, there exists an elastic potential function W (or strain energy
density function) which is a scale function of one of the strain tensors, whose derivative with
respect to a strain component determines the corresponding stress component. This can be ex-
pressed by
Sij ¼
oW
oEij

¼ 2
oW
oCij

ð15Þ
where S is the second Piola–Kirchoff stress tensor. In the particular case of isotropic hyperelas-
ticity [26], Eq. (15) can be written by
S ¼ 2 I3
oW
oI3

C�1

�
þ oW

oI1

�
þ I1

oW
oI2

�
I � oW

oI2
C
�

ð16Þ
where Ii (i ¼ 1, 2, 3) denote the invariants of the right Cauchy–Green deformation tensor C:
I1 ¼ Cii; I2 ¼ ðI21 � CijCijÞ=2; I3 ¼ detðCÞ ð17Þ
The Blatz–Ko constitutive law is used to model compressible foam-type polyurethane rubbers
[27]. The strain energy density function is given as follows
W ¼ G
2

I2
I3

�
þ 2

ffiffiffiffi
I3

p
� 5

�
ð18Þ
where G is the shear modulus. By deriving the energy density (18) with respect to the three in-
variants, we obtain
oW
oI1

¼ 0;
oW
oI2

¼ G
2

1

I3
;

oW
oI3

¼ G
2

�
� I2
I3
þ 1ffiffiffiffi

I3
p

�
ð19Þ
Reporting the result in Eq. (16) gives
S ¼ GF�1f
ffiffiffiffi
I3

p
I� B�1gF�T ð20Þ
where B ¼ FFT is the left Cauchy–Green deformation tensor associated to F.
Noting J ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2Eþ IÞ

p
, the tensor S can also be written in function of E:
SðEÞ ¼ G Jð2Eþ IÞ�1 � ð2Eþ IÞ�2
n o

ð21Þ
The Cauchy stress (or true stress) tensor r is calculated from the second Piola–Kirchoff stress
tensor S as follows
r ¼ 1

detðFÞFSF
T ð22Þ
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4. Finite element formulation of nonlinear structures

In the linear analysis, a linear relation is assumed between strains and displacements. However,
if there are large displacements and strains, such as in the case of foam applications, the nonlinear
relation between strains and displacements on one hand and between stresses and strains on the
other hand cannot be ignored. Also, the equilibrium equation of internal and external forces
should be considered in the deformed configuration. The geometrically nonlinear analysis may be
described by using the total or the updated Lagrangian formulations. The total Lagrangian
formulation is derived with respect to the initial configuration. The updated Lagrangian formu-
lation is derived with respect to the current configuration. In other words, the total Lagrangian
formulation constructs the tangent stiffness matrix with respect to the initial configuration. On the
other hand, the updated Lagrangian formulation constructs the tangent stiffness matrix with
respect to the current configuration. The updated Lagrangian formulation is computationally
effective [28] because it does not include the initial displacement matrix. In the total Lagrangian
formulation, the initial configuration remains constant. This simplifies the computation [29].
Therefore, the total Lagrangian formulation was selected in this work for the finite element
discretization.

According to Eqs. (13) and (14), the Green–Lagrangian strain includes formally linear and
nonlinear terms in function of nodal displacements:
E ¼ ðBL þ BNLðuÞÞu ð23Þ
where BL is the matrix which relates the linear strain term to the nodal displacements, and BNLðuÞ,
the matrix which relates the nonlinear strain term to the nodal displacements. From Eq. (23), the
incremental form of the strain-displacement relationship is
dE ¼ ðBL þ BNLðuÞÞdu ð24Þ
Using the principle of virtual displacement, the virtual work dW is given as
dW ¼
Z
V0

SdEdV � Fext du� Rdu ð25Þ
where V0 is the volume of the initial configuration, Fext, the vector of external loads and R, the
contact reaction vector.

From Eqs. (15)–(20), we obtain
dS ¼ DdE ¼ DðBL þ BNLðuÞÞdu ð26Þ
where D is the current stress–strain tensor which is obtained from the derivative of S with respect
to E in Eq. (21):
Dijkl ¼ Gf�2Jð2Eþ IÞ�1

ik ð2Eþ IÞ�1

lj þ Jð2Eþ IÞ�1

lk ð2Eþ IÞ�1

ij

þ 2½ð2Eþ IÞ�1

ik ð2Eþ IÞ�2

lj þ ð2Eþ IÞ�2

ik ð2Eþ IÞ�1

lj �g ð27Þ
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Substituting dE from Eq. (24) into Eq. (25) results in
dW ¼
Z
V0

SðBL þ BNLðuÞÞdudV � Fext du� Rdu ¼ ðFint � Fext � RÞdu ð28Þ
where the vector of internal forces is defined by
Fint ¼
Z
V0

SðBL þ BNLðuÞÞdV ð29Þ
Since du is arbitrary, a set of nonlinear equations can be obtained as
Fint � Fext � R ¼ 0 ð30Þ
This equation is strongly nonlinear, because of finite strains and large displacements of solid, as
we can see from above sections. Besides, the constitutive law of contact with friction is usually
represented by inequalities and the contact potential is even nondifferentiable. Instead of solving
Eq. (30) in consideration of all nonlinearities at the same time, we propose a approach to separate
the nonlinearities in order to overcome the complexness of calculation and to improve the nu-
merical stability. A typical solution procedure for this type of nonlinear analysis is obtained by
using the Newton–Raphson iterative procedure [30,31]:
Ki
TDu ¼ Fext þ R� Fi

int

uiþ1 ¼ ui þ Du

�
ð31Þ
where i and iþ 1 are the iteration numbers at which the equations are computed. Ki
T is the tangent

stiffness matrix, u, the vector of nodal displacements, Du, the vector of nodal displacements
correction, and Fi

int, the vector of internal forces. Taking the derivative of Fint with respect to the
nodal displacements u gives the tangent stiffness matrix as
KT ¼ oFint

ou
¼

Z
V0

oS

ou
ðBL

�
þ BNLðuÞÞ þ S

oBNLðuÞ
ou

�
dV ð32Þ
In addition, by using Eq. (26), this expression can be written by
KT ¼
Z
V0

BT
LDBL dV0 þ

Z
V0

S
oBNLðuÞ

ou
dV þ

Z
V0

ðBT
LDBNL þ BT

NLDBL þ BT
NLDBNLÞdV

¼ KE þ Kr þ KU ð33Þ
In Eq. (33), the first term is the elastic stiffness matrix KE, the second term is the geometric stiffness
(or initial stress stiffness) matrix Kr, and the third term is the initial displacement stiffness matrix
KU.

It is noted that Eq. (31) can not be solved directly because Du and R are both unknown. The
key idea is to determine the reaction vector R by Eqs. (10)–(12) in a reduced system which only
concerns the contact nodes. Then the displacement increments Du can be computed in the whole
7



structure, using contact reactions as external loading. The Newton–Raphson iterative solution
procedure involving contact modeling is written as in Box 1.
Box 1. Newton–Raphson iterative solution procedure
1. Read the data: mesh, material properties, boundary conditions, . . .
2. For each load step

2.1. Determine the external force vector Fext

2.2. Detect contact conditions (local frame, gap vector. . .)
2.3. For each Newton–Raphson equilibrium iteration

2.3.1. Compute the tangent stiffness matrix KT and the internal force vector Fint

2.3.2. Modify KT and Fint for essential boundary conditions
2.3.3. Solve KTDu ¼ Fext � Fint

2.3.4. Compute reaction forces R by local algorithm
2.3.5. Solve KTDu ¼ Fext � Fint þ R
2.3.6. Actualize u ¼ uþ Du
2.3.7. Check convergence criteria, if not met, go to 2.3.1

2.4. Gather element nodal displacement
2.5. Compute stresses and strains for each element and output

3. Update step count, if simulation not complete, go to 2
5. Numerical examples

The corresponding algorithms are implemented in the finite element software FER/Contact
[32]. In order to validate the developed numerical models, we propose to study two quite different
plane strain geometries. It is noted that these analyses were performed on a PC (Pentium 4/2.8
GHz). To show the performance of the present approach, we give the CPU time which is re-
spectively 30 s for the first example and 42 for the second one.
Example 1. Contact between a rigid body and a hyperelastic body with small slip

The first example studied concerns the indentation of a circular rigid cylinder into an hyper-
elastic body undergoing large deformations but with relatively small slip, as shown in Fig. 2. The
radius of cylinder is R ¼ 50 mm. The dimension of the deformable body is: a ¼ 280 mm, b ¼ 80
mm. The shear modulus of the material model is G ¼ 10 MPa. The finite element discretization
includes 444 four-node isoparametric plane strain elements and 502 nodes. Fifty load steps are
performed for this problem and a vertical displacement of 1 mm is applied to the cylinder each
step. Fig. 3 shows the computed deformed configuration for a friction coefficient l ¼ 0:4, when
the applied displacement is equal to 50 mm. In order to check the influence of friction effects on
the applied load, a friction coefficient l ¼ 0:0 is also used. Fig. 2 gives the evolution of applied
load with respect to the controlled displacement of the cylinder. The influence of friction effects is
obvious, only after 30 load steps.
8
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Fig. 2. Problem scheme and load–displacement curve.

Fig. 3. Deformed shape (l ¼ 0:4).
Example 2. Contact between two hyperelastic bodies with large slip

The second example simulates the contact between two hyperelastic bodies with large slip. The
problem is displayed in Fig. 4.

The upper surface EF of Body 1 is given a rigid motion described by (a, b). The lower surface
AC comes into contact with the upper surface IJ of Body 2. The characteristics of this example
are:

• Geometric sizes: AC¼CE¼EF¼FA¼ IH¼ JG¼ 500 mm; IJ¼HG¼ 1500 mm
• Shear modulus: G1 ¼ 5000 MPa, G2 ¼ 2500 MPa
• Friction coefficient: l ¼ 0:2
• Boundary conditions: jaj ¼ 60 mm, jbj ¼ 400 mm on EF, Displacements imposed to zero on

GH.

The finite element discretization includes 108 eight-node isoparametric plane strain elements
and 386 nodes. Each element has nine integration points. The number of load steps performed for
9



Fig. 4. Contact between two hyperelastic bodies under displacement control.
this example is respectively 20 and 180 for application of a and b. Figs. 5 and 6 show the deformed
meshes for each deformation scenario. Figs. 7 and 8 show respectively the variation of normal and
Fig. 5. Deformed meshes after application of a.

Fig. 6. Deformed meshes after application of a and b.
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Fig. 7. Variation of normal contact forces vs. load steps.
tangential contact forces on three selected points A, B and C (see Fig. 4). Fig. 9 gives the ratio of
contact forces from which we can observe the evolution of contact states (sticking or sliding) on
different points.
6. Conclusions

The main purpose of this paper is to present a finite element solution of large deformation
contact problems with Coulomb friction between two hyperelastic bodies. This problem includes
multiples nonlinearities: geometrical, material and frictional contact. The above numerical results
demonstrate that the proposed algorithms, for the local analysis of frictional contact problems
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Fig. 9. Evolution of contact states vs. load steps.
and for the global resolution of nonlinear equation, are capable of handling a wide range of
engineering applications. These include frictional contact between deformable or rigid bodies with
small or large tangential slip. The constitutive law of deformable bodies can be linear elastic or
nonlinear hyperelastic in the framework of large deformations and large displacements.
References

[1] S.H. Chan, I.S. Tuba, A finite element method for contact problems of solid bodies, Int. J. Mech. Sci. 13 (1971)

615–639.

[2] B. Fredriksson, Finite element solution of surface non-linearities in structural mechanics with special emphasis to

contact and fracture mechanics problems, Comput. Struct. 6 (1976) 281–290.

[3] N. Kikuchi, J.T. Oden, Contact problems in elastostatics, in: J.T. Oden, G.F. Carey (Eds.), Finite Elements, vol. 5,

Prentice-Hall, Englewood Cliffs, NJ, 1984.

[4] ANSYS Theory Reference, Release 5.6, 1999.

[5] A. Francavilla, O.C. Zienkiewicz, A note on numerical computation of elastic contact problems, Int. J. Numer.

Methods Eng. 9 (1975) 913–924.

[6] T.D. Sachdeva, C.V. Ramarkrishnan, A finite element solution for the two-dimensional elastic contact problems

with friction, Int. J. Numer. Methods Eng. 17 (1981) 1257–1271.

[7] D.H. Nguyen, G. De Saxc�ee, Frictionless contact of elastic bodies by finite element method and mathematical

programming technique, Comput. Struct. 11 (1980) 55–67.

[8] A. Klarbring, G. Bj€oorkman, A mathematical programming approach to contact problems with friction and varying

contact surface, Comput. Struct. 30 (1988) 1185–1198.

[9] W.X. Zhong, S.M. Sun, A parametric quadratic programming approach to elastic contact problems with friction,

Comput. Struct. 32 (1989) 37–43.

[10] K.J. Bathe, A. Chaudhary, A solution method for planar and axisymmetric contact problems, Int. J. Numer.

Methods Eng. 21 (1985) 65–88.

[11] B. Nour-Omid, P. Wriggers, A two-level iteration method for solution of contact problems, Comput. Methods

Appl. Mech. Eng. 54 (1986) 131–144.

[12] M. Jean, G. Touzot, Implementation of unilateral contact and dry friction in computer codes dealing with large

deformation problems, J. Theor. Appl. Mech. 7 (1988) 145–160.
12



[13] P. Alart, A. Curnier, A mixed formulation for frictional contact problems prone to Newton like solution methods,

Comput. Methods Appl. Mech. Eng. 92 (1991) 353–375.

[14] J.C. Simo, T.A. Laursen, An augmented Lagrangian treatment of contact problems involving friction, Comput.

Struct. 42 (1992) 97–116.

[15] A. Klarbring, Mathematical programming and augmented Lagrangian methods for frictional contact problems, in:

A. Curnier (Ed.), Proc. Contact Mechanics Int. Symp., PPUR, 1992, pp. 369–390.

[16] J.H. Heegaard, A. Curnier, An augmented Lagrangian method for discrete large slip problems, Int. J. Numer.

Methods Eng. 36 (1993) 569–593.

[17] G. De Saxc�ee, Z.Q. Feng, New inequality and functional for contact with friction: The implicit standard material

approach, Mech. Struct. Mach. 19 (1991) 301–325.

[18] Z.H. Zhong, Finite Element Procedures for Contact–impact Problems, Oxford University Press, Oxford, 1993.

[19] P. Wriggers, Computational Contact Mechanics, John Wiley & Sons, 2002.

[20] A. Curnier, Q.C. He, A. Klarbring, Continuum mechanics modelling of large deformation contact with friction, in:

M. Raous, M. Jean, J.J. Morau (Eds.), Contact Mechanics, Plenum, New York, 1995, pp. 145–158.

[21] G. Pietrzak, A. Curnier, Large deformation frictional contact mechanics: continuum formulation and augmented

Lagrangian treatment, Comput. Methods Appl. Mech. Eng. 177 (1999) 351–381.

[22] A. Klarbring, Large displacement frictional contact: a continuum framework for finite element discretization, Eur.

J. Mech. A/Solids 14 (1995) 237–253.

[23] Y.C. Wang, R. Lakes, Analytical parametric analysis of the contact problem of human buttocks and negative

Poisson�s ratio foam cushions, Int. J. Solids Struct. 39 (2002) 4825–4838.

[24] A.S. Bretelle, M. Cocou, Y. Monerie, Unilateral contact with adhesion and friction between two hyperelastic

bodies, Int. J. Eng. Sci. 39 (2001) 2015–2032.

[25] G. De Saxc�ee, Z.Q. Feng, The bipotential method: a constructive approach to design the complete contact law with

friction and improved numerical algorithms, in: Recent Advances in Contact Mechanics, Int. J. Math. Comput.

Model. 28 (4–8) (1998) 225–245 (special issue).

[26] P.G. Ciarlet, Elasticit�ee Tridimensionnelle, Masson, Collection RMA, 1985.

[27] P.J. Blatz, W.L. Ko, Application of finite elastic theory to the deformation of rubbery materials, Trans. Soc. Rheol.

6 (1962) 223–251.

[28] O.C. Zienkiewicz, R.L. Taylor, in: The Finite Element Method, fourth ed., vol. 2, McGraw-Hill, Berkshire, UK,

1991.

[29] M.A. Crisfield, Non-linear Finite Element Analysis of Solid and Structures, Wiley, Chichester, UK, 1991.

[30] T. Belytschko, W.K. Liu, B. Moran, Nonlinear Finite Elements for Continua and Structures, Wiley, Chichester,

UK, 2000.

[31] J.C. Simo, T.J.R. Hughes, Computational Inelasticity, Springer-Verlag, New York, 1998.

[32] Available from <http://gmfe16.cemif.univ-evry.fr:8080/~feng/Fercontact.html>.
13


	Solution of large deformation contact problems with friction between Blatz-Ko hyperelastic bodies
	Introduction
	Modeling of contact problems in a reduced system
	Contact kinematics
	Local algorithm

	Hyperelastic bodies undergoing large deformations
	Finite element formulation of nonlinear structures
	Numerical examples
	Conclusions
	References




