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FER/Mech—a software with interactive graphics for dynamic

analysis of multibody system
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Development of user-friendly and flexible scientific programs is a key to their usage, extension and maintenance. This article presents an

Object-Oriented Programming approach for the development of FER/Mech—a software with interactive graphics for use in the design and

analysis of two and three dimensional multibody dynamic systems. The general organization of the developed software system is given

which includes the solver and the pre/postprocessors with a friendly Graphical User Interfaces. The concept of absolute natural coordinates

is discussed to model rigid bodies in order to satisfy the constraints of modularity. Two case studies with graphical representations illustrate

some functionalities of the program.
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1. Introduction

Numerical modeling is a powerful technique for the

solution of complex engineering problems. One of the

significant requirements in the design of a scientific

computing program is the ability to store, retrieve, and

process data that maybe complex and varied. To the users of

such a program, it is important not only to have a powerful

solver, but also to work in a convivial graphical interface

environment. On the other hand, as the problems to solve

have grown in size and complexity, the codes have also

grown with complex mathematical procedures and data

control. This places a high demand for maintenance, new

developments and re-use on the programming strategy and

language chosen.

Object-Oriented Programming (OOP) is a well-known

topic to computer scientists, but somewhat neglected in the

computational engineering community. One reason for this

is the limited exposure of engineers to computer science

concepts. Another reason (historical reason) is that most

scientific computing programs (e.g. finite element analysis

programs) have been and are being written in a procedural

programming language such as FORTRAN. Because of its

design, FORTRAN does not encourage the use of data

structures other than the array. The OOP techniques are not

supported by the language itself. Consequently, the analysis

programs are not easily modified for implementing new

ideas and new algorithms. However, since several years, this

problem has come to the attention of the engineering

profession, and much progress has been made to improve

the reliability of methods for finite element analysis and to

make it easier for usage, extension and maintenance of

analysis programs.

In the eighties, several researchers began work on data

management in structural analysis software [1–6]. In 1986,

Touzot [7] introduced an interactive conception system SIC.

One year after, De Saxcé [8] presented the project

CHARLY. Verpeaux et al. [9] presented the CASTEM

finite element program. These three programs aimed at

providing a veritable language devoted to finite element

modeling, based on the object database concept. One of the

first detailed applications of the object-oriented paradigm to

finite element analysis was published in 1990 by Forde et al.

[10]. The authors abstracted out the essential components of

the finite element method (elements, nodes, materials,

boundary conditions, and loads) into a class structure used
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by most subsequent authors. Also presented was a hierarchy

of numerical objects to aid in the analysis. Other authors

[11–14] increased the general awareness of the advantages

of object-oriented finite element analysis over traditional

FORTRAN based approaches. Some researchers have

concentrated on the development of numerical objects.

Scholz [15] gives many detailed programming examples for

full vector and matrix classes. Zeglinski et al. [16] provide a

more complete linear algebra library including full, sparse,

banded, and triangular matrix types. Also included is a good

description of the semantics of operators in Cþþ . Lu et al.

[17] present a Cþþ numerical class library with additional

matrix types such as a profile matrix. They report efficiency

comparable to a C implementation. Zimmermann et al.

[18–20] have developed a software architecture in Cþþ

and in SmallTalk for linear dynamic finite element analysis,

with extensions to account for material nonlinearity [21]. A

freeware, named FreeFem þ , was proposed by Pironneau

et al. [22] for solving Partial Differential Equations in two

dimensions. To our knowledge, the first large-scale finite

element analysis program, named ZéBuLoN, entirely rewrit-

ten in Cþþ , is presented in 1993 by Aazizou et al. [23,24].

All the developments mentioned above are based on

numerical computation on physical behavior of structural

components. Recently, several finite element analysis

programs including a GUI environment such as FER/View,

FER/Solid, FER/Contact, etc. have been developed by Feng

et al. and are reported in a WEB site [25]. The aim of this

article is to present the development of the program FER/

Mech. It is composed of several functional modules: the

finite element solver for modeling of multibody dynamics,

the pre and postprocessors with friendly GUIs. FER/Mech

can be considered as a 3D Computer Aided Design system

which enables users to create, modify and manipulate a

multibody system intuitively and easily in 3D space. From

this point of view, it is close to the concept of Virtual Reality

Computer Aided Design developed recently by Gao et al.

[26].

The primary goal of the present article is to illustrate the

practical application of the object-oriented approach to

design the engineering software. Section 2 presents the

object-oriented approach in developing finite element

program. Section 3 describes the general organization of

FER/Mech and its main features. Section 4 gives two case

studies to illustrate some functionalities of FER/Mech,

described in Section 3.

2. Object-oriented programming in C11

This section introduces some concepts and terminology

of OOP. The basic concept of OOP is the encapsulation of

data structure and a set of functions (procedures) manip-

ulating the data in prepackaged software components called

objects. By using an object-oriented language such as

Cþþ , a natural way of manipulating finite element objects

such as node, element, boundary conditions, matrix, vector

can be adopted. The notion of ‘object’ has been widely

employed in many computer science fields. As compared

with the traditional function-oriented programming tech-

nique, OOP is more structured and modular, yielding

programs that are easily maintained, resilient, and powerful

because of its basic features: data abstraction, encapsulation

and data-hiding, modularity, classes, hierarchy and inheri-

tance, polymorphism and dynamic binding etc. However,

this notion is not largely used in the field of numerical

simulation. We know that most programs in scientific

computing are written in FORTRAN, in which it is difficult

to write structural and object-oriented programs even

though a concerted effort has been made in this field. Of

the many possible programming languages, Cþþ is being

increasingly used in engineering applications because it was

designed to support data abstraction structure and OOP. In

addition, Cþþ is the extension of the popular language

C. So it becomes the first choice for scientists and engineers

to develop object-oriented programs for the analysis of

engineering problems.

The benefit of an object-oriented approach in Cþþ is

mainly due to the definition of classes. A class is defined by

the groups of objects that have the same kind of data and

procedures. Objects are called instances of a class in the

same sense as standard FORTRAN variables are instances

of a given data type. The class concept can be reviewed as

an extension of the record concept in Pascal or struct

concept in C to provide a set of attached procedures acting

on the data. Unlike conventional programming techniques,

which require the developer to represent data and pro-

cedures separately, an object in Cþþ is a user-defined and

self-contained entity composed of data (private or public)

and procedures. This allows developers to design objects,

which know how to behave. Fig. 1 shows an example of

class which defines the font of FER/Mech graphics

interface.

In this class, Arial12Normal, Arial14Normal, etc. are

private data of type integer, and m_window is an instance of

Fig. 1. OGLFONT class definition.
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the class VECTINT that is another user-defined class

defining an integer vector. Establish_Font, FontCreateBit-

maps, etc. are member functions (procedures) of object

OGLFONT. OGLFONT() and ,OGLFONT() are, respect-

ively, the default constructor and destructor. A high-level

object can be created by assembling a group of objects. This

new object has the collective functionality of its sub-objects.

This concept of object abstraction can be extended to the

complete software applications. A program assembled from

objects can itself be an object and thus be included in

another program. This method has been applied when

adding the finite element solver into FER/Mech.

One of the fundamental techniques in OOP is the use of

inheritance. Inheritance is a way of creating new classes

called derived classes, which extend the facilities of existing

classes by including new data and function members, as

well as changing existing functions. For instance, the

development of FER/Mech requires the creation of class

CFerMechApp which is the derived class of MFC class

CWinApp for Windows applications [27] (Fig. 2).

It is noted that objects communicate with each other by

sending messages. When an object receives a message, it

interprets that message, and executes one of its procedures.

That procedure operates on the private data of the object. So

the internal details of how it functions are hidden from the

program that uses the object. This also means that the

internal function of an object could be modified without

having to change the rest of the program. Thus, the program

becomes modular and easy to read. Without entering into

the details, Fig. 3 shows the principal database mapping of

FER/Mech.

The class CONTROL stores some control flags about

light, plot symmetry, animation, dynamic rotation or move,

etc. XYPLOT stores the numerical result date and

procedures for time history curve plot of dynamic response.

ELEM_BEAM, ELEM_SHELL, etc. are inherited from the

base class ELEMENT. The class RIGIDBODY includes

different geometrical shapes such as sphere, cylinder and

brick.

It is worth noting that many components of FER/Mech

were directly taken from the general purpose finite element

postprocessor FER/View developed previously [28]. OOP

makes this possible and allows rapid development of new

software. Reusability is so becoming a key issue in software

development.

3. General organization of FER/Mech

FER/Mech is an integrated environment composed of

several functional modules. Fig. 4 shows the flow diagram

of the software.

After preprocessing, an input file is created, which is

used by the solver. The results are written in an output file

and displayed by the postprocessor.

3.1. Numerical solution

The solver is based on the finite element approach for

solving multibody dynamics problems [29] Currently the

code offers static analysis, direct implicit transient analysis

and eigenvalue analysis. These analyses lead to the

numerical solution of linear or nonlinear systems. Gener-

ally, the finite element formulation of the problem of

multibody dynamics can be written in the discrete form

½M�{€u}þ ½C�{_u} ¼ {Fint}þ {Fext} ð1Þ

where the vectors {Fint} and {Fext} denote, respectively, the

internal, and external forces. ½M� is the mass matrix and ½C�

the damping matrix. {_u} is the velocity vector and {€u} the

acceleration vector. It is noted that the stiffness effect is

taken into account by the internal forces vector {Fint}: The

most common method for integrating the dynamics equation

Fig. 2. Derived classes.

Fig. 3. Principal class diagram of FER/Mech.

Fig. 4. Flow diagram of FER/Mech.
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(1) is the second order Newmark method [30]. It is based on

the following assumptions concerning the relation between

displacement, velocity and acceleration

{utþDt}¼{ut}þDt{_u
t}þDt2 ð0:52aÞ€utþa€u

tþDt
j k

ð2Þ

{_u
tþDt} ¼ {_u

t}þ Dt ð12 bÞ€ut þ b€u
tþDt

j k
ð3Þ

The parameters a and b determine the stability and

precision of the algorithm. With these approximations, the

nonlinear dynamics equation. (1) is transformed to an

incremental and recursive form for the current iteration

iþ 1

½K̂�
i{Du} ¼ {Fext}

tþDt
þ {Fint}

i
þ {Facc}

i

{u}iþ1
¼ {u}i þ {Du}

ð4Þ

with the effective stiffness matrix defined by

½K̂�
i
¼ ½K�

i
þ

b

aDt
½C�

i
þ

1

aDt2
½M�

i
ð5Þ

where½K� ¼ ›{Fint}=›{u} is the tangent stiffness matrix.The

inertia forces vector is given by

{Facc}
i
¼ 2

1

aDt2
½M�

i{ui 2 u
t
2 Dt _ut 2 Dt2ð0:52 aÞ€ut}

ð6Þ

Recently, a first order time stepping algorithm is applied by

Feng et al. [31] to model the impact behavior of deformable

bodies.

Because a Multibody System is articulated, we have

to consider constraint forces and torques acting onto the

joints which can be represented by Lagrange’s multi-

pliers. In this case, the equations of motion are solved in

conjunction with the constraint equations and it leads to

the resolution of Differential Algebraic Equations (DAE).

Many methods exist to solve DAE, which can be

classified as follows

† Methods to calculate Lagrange’s multipliers in two

different ways

– By an explicit formulation such as substitution

techniques [32] and penalty functions associated with

an explicit or semi-implicit numerical scheme [33].

This can introduce the problem of stabilization of

constraints [34]. In addition, in the case of penalty

functions, it is difficult to define appropriate values of

penalty factors.

– By an implicit formulation like Hilbert Hughes

Taylor (HHT) algorithm [35] which is an adapted

Newton Raphson method to avoid the problem of

high frequencies of the dynamic response. Another

efficient way is based on the acceleration-based

augmented Lagrangian formulation using an iterative

process to compute {€u} in order to correct violation

of the algebraic constraints at each time [36]. This

last numerical technique has the advantage to succeed

in the case of singular positions or redundant

constraints.

† Methods to eliminate Lagrange’s multipliers. These

techniques consist of partitioning dependent and

independent coordinates and consequently, the

system of motion/constraint equations is reduced

[37]. The problem is the high numerical cost and the

ill-conditioned matrix in the case of singular

position or redundant constraints. Using the

pseudo-inverse constraint matrix by Singular Value

Decomposition (SVD) may be an alternative sol-

ution [38].

If {u} represents only the absolute displacement vector

of nodal points, then the mass matrix will be constant. In the

case of rigid bodies, large rotations have to be taken into

account that change the vector {u} into a pseudo-vector

because the addition’s rule of vectors is no longer valid. In

this case, the mass matrix is time dependent. An alternative

way is to use natural coordinates, which does not change the

nature of the vector {u} and moreover leaves the mass-

matrix constant [32,36]. However, we have to consider

associated algebraic constraint equations (and Lagrange’s

multipliers) because natural coordinates are not

independent.

We do not discuss the very efficient reduced-coordinate

(joint coordinate) formulation [39,40] because it does not

lead to modular and extensible systems in which connec-

tions between bodies can be added or removed during the

simulation (contact problems, clearance in the joints …).

The modularity is very important to respect the concept of

OOP in Finite Element Modeling (FEM). The maximal-

natural coordinate formulation creates a number of Degrees

Of Freedom (DOF) which is not very important in regard to

the number of DOF in a classical FEM. Another advantage

of natural coordinates is that the constraint matrix

associated to the joints is constant or linear, thus it is

possible to use easily the substitution method in an explicit

way. Our preference is about a mixed formulation already

used to resolve contact problem [41]. This technique is quite

similar to the substitution method but its formulation is

based on the incremental displacement vector {u} which is

more suitable to the implicit solution of the system of Eq.

(4) presented above.

3.2. Windows utilities and functionalities of FER/Mech

Microsoft Foundation Class (MFC) [27] has been

proposed by Microsoft for the easy development of

Windows applications In this project, MFC is largely

used to design the user-interface objects such as Dialog

boxes, Menu, Icons, Tool Bar, String Table, etc. OpenGL

[42] is a relatively new industry standard that in only a

few years has gained an enormous following. It is now

4



a standard graphics library integrated in Windows or

UNIX systems. OpenGL is a procedural rather than a

descriptive graphics language. Instead of describing the

scene and how it should appear, the programmer actually

describes the steps necessary to achieve a certain

appearance or effect. These steps involve calls to a highly

portable Application Programming Interface (API) that

includes approximately 120 commands and functions.

These are used to draw graphics primitives such as points,

lines, and polygons in three dimensions. In addition,

OpenGL supports lighting and shading, texture mapping,

animation, and other special effects. A lot of these

capabilities have been implemented in FER/Mech. The

result is satisfactory. The user-interface of the program is

shown in Fig. 5, which shows equally some primitive

objects and a dialog box.

FER/Mech has many functionalities, some main features

being summarized as follows

3.2.1. Preprocessor

† Create or delete easily (with icons) different geometrical

and mechanical objects like mass, spring, etc.

† Modify the objects (size, orientation and position) and

input physical properties (mass, stiffness, initial con-

ditions) with dialog boxes, as shown in Fig. 5.

† Establish the link between the objects to form a

mechanism system.

† Apply boundary conditions and loads on the model.

† Input solution control parameters with dialog boxes.

† Display node, element and geometry with or without

numbering.

† Select nodes, and elements with dialog boxes and mouse

operations.

† List nodes, elements, materials.

Fig. 5. Friendly user-interface of FER/Mech.

Fig. 7. Animation of deformed shapes.Fig. 6. Free drop of system ‘mass-spring-rigid link’.
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† Create a neutral file to save the model. This file

contains all information about the model including

graphical entities. The graphical entities for the

representation of special elements (spring, dampers,

mass, etc.) are made of finite elements entities (nodes

and elements).

† Create an input file for the solver. This compact ASCII

file contains information for the solver with a large

place for the comments. This file is easy to read and

contains only necessary information (no graphical

entities).

3.2.2. Solver

† Include different finite elements such as mass, spring,

damper, beam, shell

Fig. 8. Displacements (Ux and Uy) and rotation (Rz) of sphere versus time.

Fig. 9. Trajectory of sphere.
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† Use implicit time stepping schemes like Newmark and

Wilson

† Treat geometrical non-linearity due to large

displacements

† Perform static and dynamic analyses

† Create an output file for postprocessing.

3.2.3. Postprocessor

† Load the model (neutral file) and the results (output

file)

† Display mesh deformation and mode shape of

structures

† Add or cancel light effects and wire frame

† Animate the results in any case of display mode

† Display selected elements group

† Display time history of multiple data

† Use mouse operation for rotation, pan and zoom as

well as node and element picking.

4. Case studies

In order to test and validate the functions of the GUI,

discussed above in the preprocessor and the postprocessor,

two examples have been carried out. The possibility to

create, to remove or to apply connections between rigid or

flexible components opens the imagination of the operator

to create various models.

The ‘mass-spring-rigid link’ example (Fig. 6) tests the

robustness of the numerical scheme.

It is 2D constraint system because the rigid link use

maximal natural coordinates which are the absolute

displacement of each extremity of the link (four DOF).

The constraint is that the length of the link has to be constant

during the whole time simulation. Moreover, the directions

of the two springs change every time that implies a non-

constant stiffness matrix. Fig. 7 shows the animation of

deformed shapes.

FER/Mech has also the possibility to show the

time history of a variable or displacement path, as shown

in Figs. 8 and 9.

The ‘rigid sphere coupled to flexible plate’ example

(Fig. 10) tests the possibility to connect a rigid body with

structural components modeled by finite elements. But in

this case the rotation of the sphere is not taken into

account because natural coordinates in 3D are not yet

implemented. Fig. 10 shows the initial and deformed

positions. The displacements of the sphere are plotted in

Fig. 11.

Fig. 10. Rigid sphere coupled to flexible plate.

Fig. 11. Displacements (Ux and Uy) of sphere versus time.
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5. Conclusions

In this article, we have presented a practical application

of the object-oriented approach to finite element analysis

and the software prototype FER/Mech. The open architec-

ture of the program facilitates further developments and

adapts to suit specific needs easily and quickly. Moreover,

the proposed user interface has proved to be satisfactory and

flexible. We have seen that absolute natural coordinates to

model rigid bodies is an efficient way to respect the concept

of modularity of OOP in FEM. Our experience shows that

Cþþ offers serious benefits for scientific computing. The

authors feel confident that OOP in Cþþ will promote the

development of computational tools for structural analysis

and GUI applications.
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du calcul par éléments finis. Colloque National en Calcul des

Structures, 11–14 mai Giens, France 1993;2:709–22.

[24] Feng ZQ, Aazizou K, Hourlier F. Modélisation des problèmes de
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