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ABSTRACT 
 This paper presents a modular model of rigid 

multibody system using the acceleration-based 
augmented Lagrangian formulation. An important 
effort on the formulation of the governing equations 
has been made in order to meet the requirements for 
interactive simulation in computer aided design. 
Each body has been considered as an independent 
numerical component with its own numerical 
parameters, own mechanical parameters and own 
numerical integration scheme. Non-holonomic and 
holonomic constraints have been implemented in this 
formulation. This present work can be considered as 
an extended formulation of Bayo et al. [1] to the 
problem of interactive design and particular attention 
is paid to define the criteria of numerical stability. 

Keywords: modular dynamics, stabilisation method, 
augmented Lagrangian, numerical components 

1 INTRODUCTION 
Traditionally, a mechanical engineer in charge of 

the design of a mechanism with some expected 
behaviour starts with a draft version and then 
performs a kinematic, static, and dynamic analysis. 
According to the results, he refines the mechanism 
and restarts another cycle of design. Introducing 
computer simulation accelerates this process 
considerably and for this reason a lot of mechanical 
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system simulation softwares exists (ADAMS, 
CATIA, SOLIDWORKS...). All these software 
programs have graphical user interfaces to help the 
design of mechanisms at the geometric level, 
sometimes at the static level, but rarely at the 
dynamical level.  It is not possible, for example, to 
modify the model during the simulation by 
eliminating, introducing or modifying a component 
in the mechanism. It is necessary to follow the 
traditional cycle of modelling in these software 
programs which involves a pre-processing phase (to 
define the geometry and the loading), a solution 
phase (to solve the equations of motion) and a post-
processing phase (to analyse the results). The major 
reason for this shortcoming is that the dynamic 
model solved is not associated to an object-oriented 
design. A primary condition to realise such objects 
consists in defining a dynamic model as a package of 
autonomous numerical components. Another 
condition is to use an object-oriented programming 
approach [6,7].   

The purpose of this paper is to define a modular 
dynamic model using the acceleration-based 
augmented Lagrangian formulation [1]. In the second 
section, we present classic formulations to model a 
multibody system in a centralised manner. The 
advantages, referenced by other authors [3], of the 
acceleration-based augmented Lagrangian method, 
are presented. In the third section two criteria of 
numerical stability are defined relative to holonomic 



and non-holonomic algebraic constraints. In the 
fourth section, the choice of generalised coordinates 
for a rigid body is discussed. The natural coordinates 
provide some interesting features, already referenced 
[10,11], and in our opinion the main interest is the 
facility of connection with finite element structures. 
In the fifth section, we present our modular dynamic 
model in acceleration-based augmented Lagrangian 
formulation and the concept of numerical 
components associated to a rigid body. In the sixth 
section, we present two numerical results using 
modular dynamic models. The first one compares the 
simulation of a double pendulum with the results 
obtained by a centralised dynamic model. The second 
one is a simple pendulum subject to topology 
changes pointing out the properties of modular 
modelling.  

2 CENTRALISED MODEL 
2.1 Classical Lagrangian formulation 

The governing equations of a multibody system 
derived from Lagrange’s equations [12,13] are given 
by:  
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• q , q& , q&&  are respectively the generalised vector
of n-coordinates, velocities and accelerations.

• Q  is the vector including internal and external
generalised forces dependent on time t , q , q& .

• K  is the kinetic energy of the system. ∑= iKK

where iK  is the kinetic energy of one body. K
has the following quadratic symmetrical form:

qqqK T && )(
2
1 M=  where )(qM  is the semi-definite 

positive mass matrix of the system. This matrix
is invertible, except for singular configurations.

• 
q

h
h
q ∂

φ∂=ΦΦΦΦ  and 
q

nh
nh
q &
& ∂

φ∂=ΦΦΦΦ  are respectively  the 

(m x n) jacobian matrix associated  to the vector 
of  holonomic constraints hφ  and the (r  x n) 
jacobian matrix associated  to the vector of  non 
holonomic constraints nhφ . The equations 0=φnh  
constrain the generalised velocities and have the 
general form 0)()( =+ taqqnh

q &&ΦΦΦΦ .  
 The governing equations can be written as: 
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where: 

• qq
q

qtqqQ T
c &&&&& MM −

∂
∂=

2
1),,(  represents  the 

generalised centrifugal and Coriolis forces, 

• )(),,( µ+λ−=µλ
Tnh

q
Th

qqR &ΦΦΦΦΦΦΦΦ  represents the 
necessary generalised reaction forces needed to 
satisfy the constraints equations 0=φh  and 

0=φnh . 

The system of Eq. (2) represents a system of 
( )rmn ++  differential algebraic equations (DAE) of
index 3. The solution of such a system can not be 
obtained directly. Two methods are usually followed: 

• One method consists in transforming the system
of DAE into a system of ordinary differential
equations (ODE). Thus, it will be possible to use
easily a classic numerical scheme to solve the
problem.

• Another method is to transform the DAE into an
associated incremental formulation. The
incremental formulation is well suited to a
numerical implicit resolution and offers good
properties of numerical stability [4].

These transformations lead to lower index 
differential systems but can however introduce 
numerical instability. In the past, several 
stabilisation methods have been proposed such as 
GGL-stabilisation method [9], Park's stabilisation 
method [5], waveform relaxation method or 
perturbation method, see [14] for a review of these 
methods. In the following, some  standard techniques 
suitable for modular models are described. 

2.2 Substitution method with Baumgarte 
stabilisation [2] 

To transform the previous system of DAE into a 
system of ODE of second order (index 1), we need to 
differentiate twice the holonomic constraint 
equations and once the non-holonomic constraint 
equations as follows: 

cQQqRqq +=µλ− ),,()( &&M (3-a)
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This system is linear with respect to the (n+m+r) 
unknowns q&& , λ  and µ .  From Eq. (3-a), it is 
possible to compute q&&  in terms of λ  and µ , then 
after substitution  into Eq. (3-b) and Eq. (3-c), λ  and 
µ  are computed as  a function of  q  and q& . It 
remains then to substitute λ  and µ  by this last 
function into Eq. (3-a) to obtain the following ODE: 
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If standard numerical integration procedures are 
used to solve the above ODE, the geometrical 
constraints are not satisfied after a short time of 
simulation (drifting constraints). The resulting 
constraint violations are commonly stabilised using 
Baumgarte’s method which consists in modifying f  
in the following way: 
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where α , β , γ  are stabilisation constants which 

avoid large violations on the constraints 0=φh , 

0=φh&  and 0=φnh . α , β , γ  are  arbitrarily chosen 
but dependent however on the multibody system and 
on external forces. In this work, for a sake of 
simplicity, the same range of parameters α , β , γ  for 
all holonomic and non-holonomic constraints are 
used, although, in general cases, they can be 
different.  

In the case of singular positions or redundant 
constraints, the constraint equations are dependent, 
the matrix B  is no longer invertible and a 
bifurcation or a chaotic behaviour of the solution 
may appear. 

2.3 Penalty formulation 
 Another approach to transform a system of DAE 

into a system of ODE consists in defining an explicit 
formulation of the Lagrange multipliers using a 
penalty function: 

hh
hp φν+φ=λ & (6-a)
3

nh
nhp φ=µ (6-b)

In this formulation, there are no longer constraint 
equations. The constraint forces (Lagrange 
multipliers) are represented by spring and damper 
forces. No singular positions exist except for the 
singular configurations of the mass matrix. 

hp , nhp , ν  are penalty factors, each one has a 
physical meaning. For example, ph represents the 
spring stiffness in the constrained direction. In order 
to avoid constraint violations, the penalty factors 
must be very large. It leads to numerical 
convergence problems in the case of implicit 
numerical procedures and serious instability in the 
case of explicit numerical procedures. 

The penalty formulation can be improved by 
adding a large artificial mass α  in the constrained 
direction.  Then the system motion is enforced to 
evolve primarily in the directions with smaller 
masses (unconstrained direction). The substitute of 
the reaction forces is made as follows, if we consider 
the same range of parameters for all the constraints: 

 )( hhh
hp φ+φν+φα=λ &&& (7-a)

 )( nhnh
nhp φ+φα=µ & (7-b)

 The governing equations take the form: 
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with 

• ΦΦΦΦΦΦΦΦ ⋅α+=α
Tq)(MM   

• f~ as defined in Eq. (5).

In this full penalty formulation, α  can be 
considered as a scale factor that can be large. The 
violation of constraints is reduced but can not be 
completely eliminated. This may lead to an unstable 
numerical solution after a long period of simulation. 

2.4 Acceleration-based augmented 
formulation 

The augmented Lagrangian formulation based on 
acceleration completes the full penalty formulation 
by applying an additional constraint reaction force 

*λ  and *µ  to remove the residual motion in the 
constrained directions at the acceleration level [1,3]. 

)(* hhh
hp φ+φν+φα+λ=λ &&& (9-a)

)(* nhnh
nhp φ+φα+µ=µ & (9-b)



In this formulation, the constraint reaction forces 
*λ  and *µ  are computed iteratively until the 

generalised acceleration vector q&&  converges to the 
solution:  
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with 00 =λ  and 00 =µ .  

At each iteration, q  and q&  remain constant. The 
iteration procedure on the vector of generalised 
acceleration is defined by: 
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From the definition of αM  used in Eq. (8) and of 

f~  in Eq. (5), we have the following expression: 

),,(
~

)( )()1(
nhh

Tii ppfqqq να−=+
α ΦΦΦΦ&&&& MM  (12) 

with initial conditions: 

TQqq 1)0( )( −= M&&   (13)

Remark 1:  The intrinsic advantages of the 
augmented Lagrangian formulation are due to the 
inherent features of the leading matrix )(qαM . This 
matrix remains invertible even in presence of 
changing topologies (varying constraints), of 
redundant constraints, singular positions or singular 
configurations of )(qM . 

Remark 2: The large artificial masses α  are 
ranging from 105 to 107 and few iterations suffice to 
achieve ε≤−+ )( )()1( ii qq &&&& , where ε  is the required 
numerical accuracy.  

Remark 3:  The governing equations are 
established at discrete time it . q  and q&  are 
estimated at the same instant by means of the 
numerical scheme used. Hence, the time step and the 
stiffness of the constraint must be small enough to 
obtain: 
• small perturbations (time step small enough).
• consistency of the dynamic time response of the

reaction force (stiffness small enough).
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3 NUMERICAL CRITERIA OF STABILITY 
3.1 Relative to the penalty parameters 

The dynamic behaviour of the penalty function 
)( h

j
h

jhp φν+φα &  associated to holonomic constraints

0=φ h
j  can be approximated by the dynamic 

behaviour of the following oscillator [2]:  
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where: 

• 
j

j
j m

k
=ω  is the natural frequency  of the 

oscillator. 
• 1.0=ε  is the numerical dissipation factor.
• jk  is the spring stiffness of the oscillator.
• jm  is the mass in the constrained direction.

This direction is defined by the vector 
Th
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T
h
j

h
j

j q
q

q
m ))((

∂
φ∂

∂
φ∂

= M (15)

 Then we can deduce that: 

j

h
j

h

j m
pα

=ω 2 (16)

 From Shannon criteria, we deduce the following 
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and after identification we obtain:  
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The dynamic behaviour of the penalty function 
nh

jnhp φα &  associated to a non-holonomic constraint

0=φ nh
j  can be approximated by the following

dynamic behaviour: 
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The parameter τj  represents the time constant of 
the motion (exponential motion) and is given by: 

nh
j

nh
j

j p
m
α

=τ (20)  

 where T
nh
j

nh
jnh

j q
qM

q
m ))((

∂
φ∂

∂
φ∂

=  is the mass of the 

system in the constrained direction. 
The time step t∆∆∆∆  must be much smaller than jτ

leading to the condition: 
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3.2 Relative to the time increment 
It is necessary to have a criteria relative to the 

time increment in order to control the numerical 
perturbation at each discrete time. In our formulation 
this perturbation is represented in Eq. (8) by: 

),,(
~

nhh ppf να (22) 

If we project this perturbation in the constrained 
directions at the acceleration level, we define the 
following numerical expression: 

 ),,(
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T ppfq να=φ −
α ΦΦΦΦΦΦΦΦM&& (23) 

φ&&~  is the vector of constrained acceleration
perturbation implicitly depending on the time 
increment t∆∆∆∆ . In explicit numerical scheme the 

greater is t∆∆∆∆ , the greater is φ&&~  and this leads to
numerical instability. The problem is equally 
encountered in the predictor phase with a 
predictor/corrector numerical scheme. 

Following the standard algorithm, we obtain: 

If 11.0~~ ε≤φφ &&&& T  then tt ∆∆∆∆∆∆∆∆
2
3* =  (24-a) 

If 1
~~ ε>φφ &&&& T  then 

2
* tt ∆∆∆∆∆∆∆∆ = (24-b) 

where 1ε  is a numerical tolerance dependent on the 

numerical scheme and *t∆∆∆∆ is the new time increment. 
If the time increment drops, the approximate 

governing equation at discrete time t  is no longer 
valid at the acceleration level. Then these equations 
5

must be reformulated at the velocity level (impact 
equations). 

4 CHOICE OF GENERALISED COORDINATES 
If the set of parameters q  involves only the 

cartesian coordinates of the absolute position of 
nodal points, the resulting mass matrix is constant. 
For these so called “natural coordinates”, no 
centrifugal or Coriolis forces appear in the motion 
equations.  However, in rigid bodies dynamics, these 
natural coordinates are not independent and a set of 
algebraic constraints must be added [10,11].  

 Another way to model the connected rigid 
bodies is the very efficient reduced–coordinates 
(joint coordinates) formulation. In this case, the 
coordinates are independent if no kinematic loops 
exist. However, the mass matrix is time dependent, 
centrifugal and Coriolis forces as well as singular 
configurations are present. 

In the following, we use natural coordinates as 
generalised parameters. However, the method 
described below can be also used with any set of 
parameters. The most important aspect is the 
principle of modularity in which connections 
between bodies can be added or removed during the 
simulation (contact problems, clearance in the joints, 
operator decision …). Following this idea, a 
multibody system can be considered like a set of 
components (or substructures) with their own 
generalised coordinates.  

5 MODULAR MODEL OF A MULTIBODY 
SYSTEM 

Let us consider a rigid multibody system defined 
by the following centralized dynamical model : 

fqq Tii ~)()1( ΦΦΦΦα−=+
α &&&& MM (25)

with Qq 1)0( −= M&& . 
Assuming that natural coordinates are used, the 

mass matrix is constant. 

5.1 Local equations  
Assuming that the multibody system is submitted 

to m holonomic constraints and r non-holonomic one, 
the first set of constraints involves the internal 
constraints 0)( =qh , associated with each rigid body 
(due to the use of natural coordinates) and the 
external constraints 0),( =tqj , related to the external 
joints between the bodies. We have the following 
partitioning of the constraints: 
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For a multibody system with n  rigid bodies 
connected by l external constraints, the structure of 
the matrices occurring in the dynamical model is 
given by:   
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 The local equations for a free rigid body j are 
deduced:  

Hj
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with j
qj

Tj
qjjj HHMM α+=α  and the  initial condition 

jjj Qq 1)0( −= M&& .  

On the contrary, for a rigid body j  submitted to 
k  external holonomic constraints and p  external 
non-holonomic one, the initial conditions are: 

)(1)0( FQq jjj −= −M&& (28) 
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We can notice that all the external constraints of 
the body j  (holonomic and non-holonomic) are taken 
into account only in the first iteration, corresponding 
thus to a simple penalty formulation. In the 
following iterations, only internal constraints of the 
body j are taken into account corresponding to an 
acceleration-based augmented Lagrangian 
formulation.  

Each body can be considered as a numerical 
component with its own: 

• Mechanical parameters (mass matrix, stiffness
matrix, damping matrix).

• Numerical parameters hp  associated to internal
holonomic constraints.

• Numerical integrator scheme.

It is necessary to consider another numerical 
component in which violations of external 
constraints between rigid bodies are calculated at 
any time. It is the joint component which 
communicates to the joined bodies the corresponding 
value inside the vector F . 

A modular model is well suited to object-
oriented programming (OOP) where each body and 
each joint can be modelled separately. It extends the 
concept of object-oriented graphic design, already 
used in domains such as animation, to the concept of 
object-oriented numerical design. Readers can have 
more details on these important aspects of OOP in a 
recent publication by the authors [7]. 

5.2 Algorithm 
With the above considerations the general 

algorithm is: 
At the discrete time it is given t∆∆∆∆ , q , q& . 

1. Each joint component gives to the connected
bodies the corresponding value inside the vector
F , after having calculated the correct penalty
parameters. These parameters must conform to
the actual time increment t∆∆∆∆  and the fixed
parameter iα  of each body i , Eq. (17), (18) and
(21).

2. Each body component i computes its own
generalized acceleration vector according to the
iteration procedure defined in Eq. (25).

3. Each body component calls its own numerical
integration subroutine to compute iq , iq&  at time
step tt ∆∆∆∆+  and communicates these state
variables to the joint components to which it is
connected.

4. Go to step  ttt ii ∆∆∆∆+=+1



6 NUMERICAL RESULTS 
6.1 Double pendulum 

The following results in Fig 2, Fig. 3 and Fig. 4 
represent the comparison between the simulation of 
the centralized dynamic model and the modular 
dynamic model of a double pendulum in fully 
cartesian coordinates (Fig. 1). 

Fig. 1: Double pendulum in fully cartesian 
coordinates 

The dynamic model has 8 degrees of freedom 
constrained by 6 holonomic constraints defined by: 

{ }2222212112121111 yxyxyxyxqT =   (29)
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 where: 

• 11 =l 12 =l  
• 11 =m 12 =m  

and the initial conditions are: 

• { }110101000 −=Tq
• { }00 =q&

Figure 4 shows very good numerical stability of
our algorithm with an increment time step of 10-3 and 
the results are similar with the centralized dynamic 
model. 
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Fig. 2: Trajectory of the mass point m2
∆∆∆∆t=10-2, 5s 
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 Fig. 3: Trajectory of the mass point m2
∆∆∆∆t =10-3, 5s 
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Fig. 4: Trajectory of the mass point m2
∆∆∆∆t =10-3, 20s 

With a larger time step of 10-2 the results 
obtained from the two models are not the same 

Centralized dynamic model 
Modular dynamic model  



(Fig.2), because the spring stiffness of the external 
link has been divided by 100 for the sake of 
numerical stability. 

Figure 3 shows more similar results between the 
two models than in Fig. 2 because the spring 
stiffness is large enough to verify approximately the 
geometrical external constraints. 

6.2 Simple pendulum with changing topology 
The second example is a simple pendulum 

composed of a rigid link of mass m  and length l . 
The four parameters ( )2211 ,,, yxyx  used to represent
the system are the absolute cartesian coordinates of 
points 1 and 2 (respectively black and white points 
on Fig. 5): 

{ }2211 yxyxqT = (31) 

Fig. 5: Trajectory of a double pendulum with 
changing topology 

The initial conditions are defined as follow: 
• { }01000 −=Tq  and { }00 =q&
• Point 1 is fixed to the ground
• Point 2 is free

The system is also subject to varying constraints: 
each time the free end meets x-axis, the constrained 
end becomes free and vice-versa. 
This one degree of freedom system needs three 
constraints composed of: 
• two external constraints to express the joint
• one internal constraint defining the rigid link
and defined by: 

( ) ( ){ }22
21
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The results shown in Fig. 5 point out the 
efficiency of the method for a system with changing 
topology. The same algorithm is able to take into 
account the creation or the deletion of constraints 
with no additional transformation.  
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7 CONCLUSION 
In this paper, a modular model of multibody 

systems using the acceleration-based augmented 
Lagrangian formulation is presented. This work is 
the first step to validate the concept of numerical 
components, involving: 

• Numerical Joint
• Numerical solid component

The results presented in this paper are obtained 
by using the same numerical scheme (Newmark β-
method with α=1/2 and β=1/4) for the two 
components of the multibody system; moreover, we 
assume that the increment time step is constant all 
along the simulation. In future works, more complex 
systems will be investigated, in order to show the 
main interest of this modular method, which is that 
each component of the system can be designed by its 
own kinematical model, its own numerical scheme 
and its own time step. More complex systems can be 
investigated, for example flexible multibody systems 
with changing topology can be solved.  

Thus we can imagine the future work of the 
mechanical designer will consist in rapidly and 
safely connecting numerical components already 
tested by other mechanical designers. 
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