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Highlight 

· Deviation from the Frankel’s law predicting the soap film thickness is computed. 

· The film thickness varies non-monotonically with the surfactant bulk concentration. 

· The elastic interface behavior is recovered at small solubility. 

· The predictions are compatible with available experimental data. 

 

*Highlights (for review)
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Generation of soap films with instantaneously adsorbed

surfactants: concentration-dependent film thinning

J. Seiwerta, I. Cantata,∗

aInstitut de Physique de Rennes, UMR 6251 CNRS/Université de Rennes 1, Rennes,
France.

Abstract

In this theoretical work, we predict the steady state thickness of soap films

pulled from a bath of surfactants. Assuming simplified thermodynamical prop-

erties for the surfactants, we compute the interfacial stresses by taking explicitly

into account surfactant convection along the film. We make no assumption on

interfacial rheology: the rigidification of the interfaces results entirely from con-

finement and depletion effects. Two main approximations are used: the concen-

tration of surfactants is supposed homogeneous within the thickness of the film,

and at equilibrium with the adsorbed layer. With these hypothesis, we show

that the thickness of the film follows Frankel’s law at low capillary numbers, and

that deviations occur at higher pulling velocities. We study the dependence of

the film thickness with the characteristics of the surfactant used and especially

with its initial concentration, and we show that our predictions are compatible

with available data by Saulnier and coworkers.

1. Introduction

The generation of soap films when extracted from a bath at a constant

velocity is one of the staple problems featuring hydrodynamics in the presence

of surfactants. The great and constant interest in this seemingly simple set up

has several origins: it appears in numerous industrial processes, and it features5
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the same key ingredients as the central mechanisms for foam evolution and

rheology, namely the coupling between hydrodynamics and surfactant dynamics.

By extending the work of Landau, Levich [1] and Derjaguin [2], Frankel [3]

has first predicted the steady state thickness of the film and its power law

dependency with the capillary number Ca = ηU/γ, with U the pulling velocity,10

η the solution viscosity and γ its surface tension. Numerous experimental studies

have confirmed the great accuracy of this theory, over a large range of capillary

numbers and for a large sample of surfactant solutions [4, 5, 6].

However, at large enough capillary numbers, several surfactant solutions

exhibit a clear deviation from Frankel’s law [7, 8, 9]: the measured film thickness15

is lower than predicted by Frankel, and exhibits a maximum at a given capillary

number. In [7, 8, 10, 9], these observations are explained by a finite elasticity

of the interface. Scaling analysis shows that a deviation from the Frankel’s

law, which assumes incompressible interfaces, is expected for capillary numbers

larger than (E/γ)3/2, with E = ∂γ/∂(ln(A)) the elasticity of the interface.20

Depending on the type of surfactant used, this may or may not be in the range

of capillary numbers accessible to experiments, which explains why only some

solutions exhibit the aforementioned deviation. The main shortcoming of this

approach is related to the fact the underlying physical mechanisms at the origin

of the elasticity E are most often not explicited.25

For insoluble surfactants with negligible surface diffusion, or when the ex-

change of surfactant between the interface and the bulk is slow enough that it

can be excluded from the process, this elasticity arises directly from the vari-

ation of surface tension with the surface excess Γ. Indeed, in that case mass

conservation of surfactants implies that AΓ be constant so d ln(Γ) = −d ln(A)30

and thus E = −∂γ/∂ ln(Γ). This elasticity is known as the Marangoni elasticity

EM [11].

However, for soluble surfactants, exchange with the bulk phase modifies the

mass balance equation and the interface elasticity becomes an effective quan-

tity which potentially depends on the complicated interplay between surfactant35

dynamics and hydrodynamics, through advection, diffusion and adsorption pro-

2
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cesses. As a general picture, fast adsorbing surfactants may repopulate instantly

any interface that is stretched, and should not lead to any interfacial gradients

and Marangoni stresses: the effective elasticity or viscosity associated with ex-

changes with the bulk should vanish for such surfactants. The film systems that40

we consider here, however, have a very peculiar aspect ratio, as their thickness

is generally several orders of magnitude smaller than their extent.

In such confined films, the physical origin of interfacial stresses, and thus of

the effective interfacial elasticity, is generally assumed to lie in surfactant de-

pletion within the film [12, 11, 13]. As interfaces stretch, surfactant molecules45

within the volume of the film are adsorbed, thereby lowering locally their con-

centration, increasing locally surface tension and generating Marangoni stresses.

This depletion effect becomes important if the thickness of the film becomes

smaller than the typical length lq = Γ/c, where Γ and c are respectively the in-

terface and volume concentration of surfactant [13]. For typical surfactants used50

in film withdrawal experiments, this length varies between 1 µm and 100 µm,

which is comparable or larger than film thicknesses (1 µm to 10 µm).

When the thin film deformation is a pure stretching deformation, a film

element constitutes a closed system. The surfactant mass balance, involving

interface and bulk contributions, can thus still be used to relate area variations55

to surface excess variations. This leads to the definition of an effective surface

elasticity of the film, namely the Gibbs elasticity EG [12, 11], that consistently

takes into account the depletion effect. In contrast, in more complex dynamical

situations, such as film extraction, the velocity of the fluid is not homogeneous

across the width of the film, and the local mass balance at the origin of the60

definition of the Gibbs modulus is not valid anymore. Surfactants are convected

along the film and interface stretching at a given place of the film can therefore

lead to a surface tension increase at another place of the film. An effective

surface elasticity, coupling locally area variation and surface tension, can not be

rigorously defined.65

We present here a model that rationalizes the depletion effect involved in

the film generation process. The model takes surfactants convection explicitly

3



Page 6 of 29

A
cc

ep
te

d 
M

an
us

cr
ip

t

into account by tracking surfactant concentrations in the volume and at the in-

terface. We consider the case where surfactant adsorption is instantaneous: our

model thus predicts the thickness of soap films for a given surfactant solution70

from its equilibrium isotherm and equation of state. Both the incompressible

interface behavior and the elastic interface behavior are recovered, as limiting

cases in the parameter space. This model allows a better understanding of sur-

factant transport phenomena, and, despite its approximations, it does compare

favorably with experimental data.75

2. Model

The problem that we consider is sketched on figure 1. A film is withdrawn

at a constant velocity U from a meniscus acting as a reservoir of surfactant

solution (viscosity η, surface tension γm). We neglect the effect of gravity, so

that the meniscus features, at rest, a constant radius of curvature rm. We80

further assume the problem to be bidimensionnal (the film has an infinite width

in the z direction, perpendicular to the plane of the sketch), and we focus on

steady state: far from the meniscus, the film has a constant thickness 2hf .

In typical experiments, hf is on the order of micrometers, while the meniscus

has a millimetric size. This large difference in sizes allows for the classical85

division of the system in three distinct regions [1]: 1) the flat film at the top,

which is translated at a constant velocity U ; 2) the static meniscus, a the region

of negligible flow where the meniscus is unperturbed and; 3) the dynamical

meniscus of length ℓ and of typical thickness hf bridging the two, where viscous

and pressure forces balance.90

2.1. Scaling analysis of Frankel’s law

In Frankel’s theory, the interfaces are incompressible, and they move with

the tangent velocity U imposed by the operator. In that case, the viscous force

(per unit volume) in the dynamic meniscus scales like ηU/h2

f . Moreover, the

dynamic meniscus connects the flat film, where the pressure is p0 (the atmo-

spheric pressure), to the static meniscus where the pressure is p0 − γ/rm. The

4
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Figure 1: Sketch of the problem: only half of the film is represented, the dashed line represents

an axe of symmetry of the problem. The film is extracted at a constant velocity U from a

meniscus of constant radius of curvature rm. We compute its half thickness profile h(x), the

interfacial velocity vs(x) and the concentration of surfactant c(x). Γ and γ are respectively

the interfacial concentration of surfactants, and the surface tension.

balance between pressure gradient and viscous forces thus writes:

ηU

h2

f

∼
γ

rmℓ

The length ℓ of the dynamic meniscus is determined by imposing that its

curvature (of order hf/ℓ
2) matches that of the static meniscus (1/rm) to ensure

the continuity of pressure, so that ℓ ∼
√

rmhf . The well known prediction for

the thickness of the film follows [3]:

hf = 1.34rmCa
2/3

with Ca = ηU/γ the capillary number. A consequence of this scaling is the

length of the dynamic meniscus: ℓ ∼ rmCa
1/3.

2.2. Marangoni stresses and elastic interfaces

Another prediction deduced from Frankel’s model is the stress arising at95

the interface in order to pull the film out of the reservoir. It does not appear

explicitly in the calculation, since the imposed constant velocity U is used as

5
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boundary condition instead. However, it can be computed from the velocity

field, since the surface tension gradient must balance, at each position along the

interface, the viscous stress in the bulk of the film. This gradient is confined to100

the dynamical meniscus, and scales like ηU/hf [14].

In other words, the surface tension γf in the flat film region must be slightly

larger than the surface tension γm in the static meniscus, in order to balance

viscous dissipation and extract the film. Their difference ∆γ = γf − γm is [10]

∆γ

γ
=

γf − γm
γm

= 3.84Ca2/3 (1)

Frankel’s theory assumes perfectly incompressible interfaces, where any sur-

face tension difference may be generated with negligible interface deformation.

For elastic interfaces, on the other hand, this difference in surface tension ∆γ

originates from a relative increase of interface area ∆A/A which depends on105

the interface elastic modulus: ∆A/A = ∆γ/E ∼ Ca2/3γm/E. As pointed out

earlier [7, 9, 10], when Ca & (E/γ)3/2, interfacial deformation becomes non

negligible, and deviations from Frankel’s law are observed.

The elastic model will appear as a limit, for poorly soluble surfactants, of

the more complex model presented below.110

2.3. Surfactant transport

Our model for surfactant transport is based on two main approximations:

1. surfactant concentration c(x) is homogeneous in the direction of the film

thickness.

2. surfactant adsorption is instantaneous, so that bulk concentration c(x) is115

always at equilibrium with surface excess Γ(x).

Stresses and surface deformations only occur in the dynamical meniscus,

so the validity of these approximations needs to be satisfied in this region.

Concentration gradients across the thickness of the film decay by diffusion with

a typical time t⊥D = h2

f/D ∼ r2mCa
4/3/D, where D is the diffusion coefficient120

for the surfactant. On the other hand, changes in subsurface concentration

6
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occur on the time scale of the transit in the dynamical meniscus tdyn = ℓ/U ∼

rmCa
1/3/U = Ca−2/3ηrm/γ.

Approximation 1 is valid as long as t⊥D ≪ tdyn, that is Ca ≪ CaD =
√

ηD/γrm. With typical aqueous surfactant solutions (D ≈ 10−10 m2/s, η ≈125

1 mPa · s, γ ≈ 30 mN/m and rm = 1 mm), CaD ≈ 10−4 is close to the upper

limit of the range of capillary numbers tested in experiments (Ca = 10−6
−10−3),

and approximation 1 is well satisfied at low velocities.

Evaluating approximation 2 requires the typical adsorption time tads of the

surfactant. To estimate it, we assume a linear kinetics adsorption (Henry kinet-130

ics), where the flux of adsorbed surfactant molecules is proportional to the bulk

concentration, and to the deviation from the equilibrium interfacial concentra-

tion: j = kc (1− Γ/Γeq) [15]. Assuming small deviations of c and Γ around

an equilibrium value, the equation for ∆Γ = Γ− Γeq becomes, at first order in

deviations from equilibrium, d∆Γ

dt = −kceq
∆Γ

Γeq
. The interface thus repopulate135

on a timescale tads =
Γeq

kceq
=

lq
k .

The value of k depends on the surfactant used, and in the simplest cases

it may be evaluated as a diffusion speed on a molecular length scale a [13]:

k = D/a. With a = 1 nm and D = 10−10 m2/s, k ≈ 0.1 m/s. The ratio

lq =
Γeq

ceq
depends strongly on the concentration, and on the surfactant used. At140

the critical micellar concentration (cmc), lq varies for example between 1 µm for

Sodium Dodecyl Sulfate, and 1 cm for Triton X-100 [15]. Above the cmc, since

Γ remains approximately constant, the above estimations need to be multiplied

by a factor c/ccmc, that may be of the order of 10. With these values, tads

varies between 10−5
− 10−1 s. For the fastest surfactants, tads is always much145

shorter than tdyn (10−2
− 1 s), and approximation 2 is well satisfied. For other

surfactants, however, this approximation is not correct anymore: the slowest

surfactants behave like insoluble surfactants in this problem.

These set of approximations has been used previously to study the static

thickness of soap films [16] and the (slow) drainage of Plateau borders [17] in150

the field of gravity. We showed here that their validity can be extended to our

case.

7



Page 10 of 29

A
cc

ep
te

d 
M

an
us

cr
ip

t

In the following, we will also neglect any diffusion in the direction along the

film (both in the volume and at the interface). Indeed, comparing a diffusion

time based on ℓ with tdyn shows that longitudinal diffusion is negligible as long155

as Ca≫ (ηD/γrm)
3/4
≈ 10−6. This is a very well satisfied approximation, since

in most experiments other phenomena (such as disjoining pressure, evaporation,

etc.) would become dominant at such low capillary numbers.

Lastly, we use the same set of hydrodynamics approximation as Frankel,

namely: we assume a gravity free lubrication flow in the dynamical meniscus160

and match it asymptotically to both the static meniscus and the film.

2.4. Shape of the dynamic meniscus

As we mentioned earlier, we model the dilution of surfactants that gener-

ates the necessary Marangoni stresses in the dynamic meniscus. The dilution

is driven by interface stretching: correspondingly, interfacial velocity increases165

along the dynamical meniscus (from the static meniscus to the film). Five vari-

ables need to be tracked: the half with h(x) of the film, the bulk and interfacial

surfactant concentrations c(x) and Γ(x), the surface tension γ(x) and the inter-

facial velocity vs(x).

The adsorption isotherm and the equation of state relate γ and Γ to c (see170

section 2.5), so three additional equations are needed to close the problem.

These come from the conservation of the volume flux along the film, the balance

of stresses at the interface and the conservation of surfactant molecules.

With the usual lubrication assumptions, symmetry around y = 0 and an

interfacial velocity vs(x), the x-component of the fluid velocity within the film

writes, at dominant order in hf/ℓ (subscripts are used to denote derivations) :

v(x, y) = −
γhxxx

2η

(

y2 − h2
)

+ vs(x) (2)

At steady state, the volume flux q (in the half film) must be constant along

the film, and may be evaluated in the flat film region where q = Uhf (with175

U the imposed velocity), giving the differential equation for h in the dynamic

8
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meniscus:

q = Uhf =
γhxxx

3η
h3 + vsh (3)

The second equation relates the distribution of γ to the underlying flow by

expressing the balance between the bulk viscous stress and Marangoni forces at

the interface:
∂γ

∂x
= η

∂v

∂y

∣

∣

∣

∣

h

= −γhxxxh (4)

The last relation that we use expresses the conservation of surfactant molecules.

Since we neglect diffusion in the x direction, the flux of surfactants is only due

to convection, and it has a bulk and a surface contribution: qsurf = cq + Γvs.

It must be constant with respect to x at steady state:

∂

∂x
(cq + Γvs) = 0 (5)

Boundary conditions for h and vs are specified in the flat film region: for

x→ +∞, they must asymptote to constant values hf , and U . c, γ and Γ must

also reach constant values cf , γf and Γf . However, in practice the concentration,180

and thus the value of γ and Γ, is imposed in the static meniscus, which acts

as a reservoir for surfactants due to its large size. Thus, the physical boundary

condition for those variables is imposed for x → −∞, where c = cm, γ = γm

and Γ = Γm.

2.4.1. System of equations185

Surfactants are assumed to equilibrate instantaneously between the interface

and the bulk (assumption 2), so that the equilibrium equation of state and

adsorption isotherm may be used to relate respectively γ to Γ and Γ to c.

We discuss the shape of these functions in the next section, but we take them

formally into account here by treating γ and Γ as functions of respectively Γ190

and c only.

Equation 4 is rewritten, using equation 3, as:

∂γ

∂Γ

∂Γ

∂c
cx = −3η

Uhf − vsh

h2
(6)

9
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Equation 5 is integrated between x and the flat film region, where Γ(x) = Γf ,

vs(x) = U , c(x) = cf , γ(x) = γf , h(x) = hf

Uhf (c− cf ) + vsΓ− UΓf = 0 (7)

2.5. Adsorption isotherm and equation of state

Figure 2: Blue solid line: non dimensional adsorption isotherm Γ̃ = Γ/Γcmc as a function of

C = c/ccmc, which is affine far enough below and above the critical micellar concentration

(C = 1), with slopes equal to 1 and KΓ. The transition region has a thickness ξ (throughout

this study ξ = 0.15). Red dashed line: non dimensional surface tension γ̃ = γ/γcmc as a

function of C. The equation of state γ̃(Γ̃) is affine on the entire range, its only free parameter

is the surface tension of the pure liquid γ̃(0) (throughout this study γ̃(0) = 72/35 ≈ 2.1).

For the sake of simplicity we use simplified analytical expressions for the

adsorption isotherm and the equation of state. Note that it is not necessary for

our calculations, and arbitrary functions could be used instead. The adsorption

isotherm Γ(c) has been chosen as a derivable function satisfying the two following

important properties: a rapid increase of Γ from 0 to Γcmc when c increases from

0 to the cmc, and a saturation of Γ above the cmc. Indeed, we found that the

non linearity in the isotherm is crucial for the generation of films (see section 4.4,

incidentally, it is the main difference, regarding surfactants dynamics, between

our model, and the aforementioned studies on static films [16] and Plateau

10
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border drainage [17]). More precisely, we impose

Γ

Γcmc
=
1 +KΓ

2

c

ccmc
+
1−KΓ

2

(

1− ξ log
[

e
c/ccmc−1

ξ + e−
c/ccmc−1

ξ

])

(8)

whose graph is plotted on figure 2. The parameter ξ is the size of the transition

region at the cmc. It does not affect the result of the model as long as it is small

enough.195

Below the cmc, the above expression asymptotes to the linear relation Γ/Γcmc =

c/ccmc. Due to the transition region, Γ is close, but slightly below, Γcmc for

c = ccmc. Above the transition, the adsorption isotherm reduces to Γ/Γcmc =

1 + KΓ(c/ccmc − 1). We chose an affine relation with a very small slope KΓ

above the cmc instead of a strict saturation. A non vanishing value for KΓ is200

indeed required for numerical stability. We additionally believe that this pa-

rameter KΓ is a physical parameter, even if difficult to measure. Stubenrauch

and collaborators [18] measured for example a decrease of the surface tension of

a solution of C12E6 close to 2 mN/m as the concentration goes from c = ccmc

to c = 10 ccmc. Even such a small variation of γ above the cmc may not be205

neglected a priori: as we already stressed, in these films, minute surface tension

variations (on the order of 0.01 % to 1%, that is 0.01 to 1 mN/m) have a strong

effect.

Finally, we assume an affine relationship between γ and Γ. The equation of

state is thus
γ

γcmc
=

γ(0)

γcmc
−

Γ

Γcmc

(

γ(0)

γcmc
− 1

)

(9)

with γ(0) the surface tension of pure water.

3. Numerics210

3.1. Rescaling

We define the dimensionless variables as follows, and separate them by up-

percasing, or tilding. h and vs are rescaled by their value in the flat film:

H = h/hf , Vs = vs/U . The concentrations and the surface tension are rescaled

by their value at the cmc: C = c/ccmc, Γ̃ = Γ/Γcmc, γ̃ = γ/γcmc. Consistently,215

11
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the space variable becomes X = xCac
1/3/hf with Cac = ηU/γcmc. This capil-

lary number Ca is based on the value of surface tension at the cmc. It is slightly

different than the capillary number used, for example, to describe experimental

studies, based on the surface tension of the solution (at whatever surfactant

concentration is used), which we denote by Ca.220

Equations 3, 6 and 7 become, with Γ̃ and γ̃ explicit functions of C given by

equations 9 and 8:

HXXX =
3

γ̃

1− VsH

H3
(10)

∂γ̃

∂Γ̃

∂Γ̃

∂C
CX = −3Cac

2/3 1− VsH

H2
(11)

αβCac
2/3(C − Cf ) + VsΓ̃− Γ̃f = 0 (12)

where we introduce the coefficient β defined by hf = βrmCac
2/3 (which is the

quantity that we are trying to determine) and the coefficient α = rmccmc/Γcmc.

The coefficient α is a crucial non dimensional parameter of our model, which225

compares the concentration of surfactants in the bulk to that at the interface.

It compares rm to the length lcmc = Γcmc/ccmc, which is the thickness of a

liquid layer containing as many surfactants as the corresponding interface, at

the cmc. Depending on the surfactants used, it can range from 1 µm to 1 cm,

and accordingly α ranges from 1 to 1000 for millimetric menisci.230

3.2. Boundary conditions and resolution

For numerical reasons, the boundary conditions must be imposed in the flat

film region. As X → +∞:

H = 1, HX = 0, HXX = 0

C = Cf

Vs = 1

(13)

The integration is started for H = 1 + ǫ0 and X = X0 with ǫ0 a small but

finite quantity. The starting values for the other variables and the derivatives

12



Page 15 of 29

A
cc

ep
te

d 
M

an
us

cr
ip

t

(a)

130 140 150

0

2

4

X

HX X, H

(b)

90 110 130 150

0

0.5

1

X

V

(c)

90 110 130 150

0

2

4

X

C

Figure 3: (a): profile H(X) of the dynamical meniscus (dashed line), for Cac = 10−4, α = 60,

Cm = 5, KΓ = 0.001. We only show a portion of the solution, which is computed from X = 150

(flat film) to X = 0 (static menisus). The solid line is the curvature of the profile HXX : it

reaches a constant value H−∞XX ≈ 1.19 towards the static meniscus. (b): a direct illustration

of interface stretching is given by the interfacial velocity Vs, which is much lower towards the

static meniscus (Vm ≈ 0.42) than the imposed velocity in the flat film (Vs(+∞) = 1). (c):

Marangoni stresses at the interface are related to the distribution of surfactant along the film.

In this example, we impose C(−∞) = Cm = 5, and the concentration in the film is much

lower (Cf ≈ 1.27).

of H are found by linearizing the problem in the flat film region. The profile is

then integrated to X = 0, towards the static meniscus.235

Typical profiles are shown in figure 3. The important feature is that we

choose X0 to be large enough that both HXX , Vs and C tend towards well

converged constant values as X decreases. This ensures the validity of the

asymptotic matching to the static meniscus.

3.3. Matching to the static meniscus240

The matching to the meniscus imposes that the curvature tends to 1/rm for

negative x. This condition can be written with non dimensional variables as

1

rm
= hxx(−∞) = H−∞

XX

Cac
2/3

hf
(14)

Given hf = βrmCac
2/3 this imposes

β = H−∞

XX (15)

This numerical parameter β appears in equation 12, and it can thus not

be freely chosen. Instead, the matching to the meniscus requires to solve the

13
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implicit equation β = H−∞

XX (β). With β∗ the solution of this equation, the film

thickness is obtained as:

hf = β∗rmCac
2/3 (16)

In Frankel’s problem, the solution is hFr = 1.34rmCa
2/3 with a capillary

number Ca = ηV/γm. To compare our predictions to Frankel’s, we use the fact

that hf/h
Fr = (γcmc/γm)

2/3β∗/1.34. Note that, as the surface tension variation

is very small above the cmc, Ca and Cac differ significantly only below the cmc

and the distinction between both is made only when necessary.245

Lastly, since the concentration of surfactants is in practice imposed in the

static meniscus, a shooting method is used to select the right value of Cf (con-

centration in the film), given the value of Cm (in the static meniscus) that is

imposed.

This procedure allows us to solve the problem, given the following set of inde-250

pendent numerical parameters: Cm, Cac, α and the parameters of the equation

of state and of the isotherm equation γ̃(0), KΓ and ξ.

4. Results and discussion

4.1. Influence of the capillary number

Figure 4.a shows the predicted value of hf/h
Fr as a function of Ca (in the255

range 10−6 to 10−2), and for α = 60, γ̃(0) = 2.06, KΓ = 0.001 and Cm = 5.

Figure 4.b shows the value of the velocity in the static meniscus Vm for the same

parameters.

Frankel’s prediction, which corresponds to a vanishing interface extension,

is recovered within 5 %, for Ca < 10−5. Consistently, as seen on figure 4.b,260

the velocity difference 1 − Vm between the static meniscus and the film, hence

interface stretching, is negligible at these low capillary numbers. For some

critical capillary numbers interface deformation becomes relevant, as illustrated

by the larger velocity difference. Accordingly, hf departs from Frankel’s law.

A higher capillary numbers, there is no direct relation between interface265

stretching and film thickness, as evidenced by the fact that the non-monotonic
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Figure 4: (a): Thickness of the film hf/h
Fr as a function of Ca. (b): Interfacial velocity in

the meniscus Vm, as a function of Ca.

behavior of hf/h
Fr for intermediate Ca is not observed for Vm. Note that the

physical thickness of the film (hf = β∗rmCa
2/3) does increase monotonically

with Ca.

4.2. Scaling law analysis for the velocity270

Although there is no direct relation between the velocity difference δvs be-

tween the film and the static meniscus and the thickness of the film hf , deviation

from Frankel’s law only occur for significant interface stretching, that is values

of δvs of order one. A simple law can be derived for this parameter, based on

the mass conservation. In this scaling law analysis, we separate formally the275

dynamic meniscus from the static part and the flat film region, as sketched on

figure 5. We limit our analysis to small deviations from Frankel’s law. Γ, c,

γ and vs are assumed constant within the film (with respective values Γf , cf ,

γf , U) and in the static meniscus (Γm = Γ + δΓ, cm = c + δc, γm = γ − δγ,

vm = U − δvs). We focus on the regime of small interfacial stresses, and we280

treat the problem at first order in δc and δvs.

At steady state, the net flux of surfactants going through the dynamic menis-

cus must be zero:

(c+ δc)q + (Γ + δΓ)(U − δvs) = cq + ΓfU
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Figure 5: Sketch of half a dynamical meniscus.

At first order, using q ∼ rmCa
2/3U , we get:

δvs =
U

Γ
δΓ

(

1 + rmCa
2/3 ∂c

∂Γ

)

(17)

Lastly, the surface tension difference scales like δγ ∼ γCa2/3 (see equation 1),

so that our final prediction for interface stretching is:

δvs
U

= Ca2/3
γ

Γ

∂Γ

∂γ

(

1 +
rm

∂Γ/∂c
Ca2/3

)

(18)

The surface dominated case corresponds to rmCa
2/3∂c/∂Γ ≪ 1. In this

limit, the predictions of the elastic interface model are expected and recovered,

as verified in the section 4.3.

On the other hand, for a large meniscus radius, or above the cmc where285

∂Γ/∂c is very small, surfactants in the bulk are dominant (rmCa
2/3∂c/∂Γ≫ 1).

A new behavior is observed, which depends on the bulk concentration, as shown

in section 4.4.

In non-dimensionnal variables, equation 18 becomes

δVs = 1− Vm = Cac
2/3(γ̃(0)− 1)

γ̃1/3

Γ̃f

(

1 +
α

γ̃2/3

1

∂Γ̃/∂C
Cac

2/3

)

(19)

The variation of 1−Vm with the capillary number is plotted in figure 6. The

two power laws are not well separated, but can still be observed.290
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Figure 6: Velocity decrease in the meniscus, as a function of the capillary number Ca, for

Cm = 5, α = 1000 and KΓ = 0.1. δV = 1 − Vm, i.e. interface stretching, increases with Ca.

As Ca increases, δV goes from a surface dominated regime, where it increases as Cac2/3, to

a bulk dominated regime with a Cac4/3 dependence, as expected from equation 19 (dashed

lines are guides of slope 2/3 and 4/3).

4.3. The limit of elastic interface

If the amount of surfactant in the bulk is much smaller than the amount of

surfactant at the interface, then the exchange between interface and bulk be-

comes negligible and surfactant transport is governed by interfacial convection.

In that limit, our model coincides with a model of insoluble surfactant, leading295

to a purely elastic interface, as studied in [10] and [8]. This limit is recovered

when Γf ≫ chf = cfrmβ∗Ca2/3, or more precisely (using equation 18) when

∂Γ/∂c≫ rmCa
2/3. The Ca dependence of the validity criterium simply stresses

the fact that the relative contributions of surface and bulk transport vary with

Ca, as seen in equation 12.300

For simplicity we restrict the comparison to the case cm = ccmc. In that

case, the previous condition becomes α = rmccmc/Γcmc ≪ Ca−2/3 and the

Marangoni elasticity is E = −Γ∂γ/∂Γ = γ(γ̃(0) − 1), as obtained from our

equation of state 9.

We compare in figure 7 the results obtained with the elastic model discussed305

in [10] and the results obtained with our calculations in different regimes. We
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Figure 7: Thickness of the film hf/h
Fr as a function of Ca (Cm = 1, so Ca = Cac). Symbols

are for the present model with α = 0.01Ca−2/3 (▽), α = 0.1Ca−2/3 (◦), α = Ca−2/3 (�),

α = 10Ca−2/3 (⋄), α = 100Ca−2/3(△). The other parameters of the calculations are chosen

to allow for an easy direct visual comparison with the elastic case and thus test the robustness

of the model, and may thus not correspond to real experimental values: KΓ = 1, γ̃(0) = 1.1.

The solid line is the prediction of the model with elastic interfaces, with an elasticity E/γ =

0.1 = γ̃(0)− 1 [10]. It follows Frankel’s law (dashed line) for Ca < 10−4, then decreases with

Ca.
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plot the film thickness, renormalized by Frankel’s thickness, as a function of

the capillary number. The solid black curve is obtained with the elastic model,

with E/γ = 0.1. For each other curve, obtained with the full model, we set

γ̃(0)−1 = 0.1, Cf = 1 and α = kCa−2/3, with k a constant. For α = 0.01Ca−2/3
310

or α = 0.1Ca−2/3, both predictions for the thickness of the film agree, as ex-

pected. Frankel’s law is observed at small capillary numbers and a thinner film

is obtained if E/γ ≫ Ca2/3.

For higher values of α (α = Ca−2/3, α = 10Ca−2/3 or α = 100Ca−2/3),

the solubility of the surfactant is increased and the bulk concentration becomes315

non-negligible with respect to surface concentration. Surface extension can be

cured by a reabsorption of surfactants. The surface tension variation for a

given interfacial extension is thus reduced at high solubility, which corresponds

qualitatively to a smaller effective elasticity. Consistently, the departure from

Frankel’s law occurs at lower capillary number for larger values of the solubility.320

Note that, in figure 7, the bulk concentration is fixed: the variation of the ratio

c/Γ thus corresponds to a variation of Γ, at constant c, that can be achieved

by changing the surfactant used. The influence of the bulk concentration, for a

given surfactant, is discussed below.

4.4. Effect of initial surfactant concentration cm325

An important aspect of our model is the ability to predict film thickness

variations as a function of the concentration in the meniscus. The most im-

portant feature is a strong film thinning observed when the concentration goes

from one cmc to several cmc.

The variation of hf/h
Fr with Cm = cm/ccmc is shown in figure 8, where330

we plot the result of our calculations for a constant pulling velocity, constant

surfactant physicochemical properties, constant meniscus radius and increasing

values of bulk concentration. For 1 < Cm < 6, an important thickness decrease

is obtained. Note that Frankel’s film thickness hfr = 1.34(ηU/γ)2/3, used as a

thickness reference, varies slightly with Cm, as the surface tension varies (see335

the surface tension in the film and in the meniscus in figure 9.b). However, this
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Figure 8: Thickness of the film, rescaled by hFr, as a function of the imposed concentration

of surfactant in the meniscus Cm = cm/ccmc, for Cac = 10−4 (i.e. for a constant pulling

velocity), α = rmccmc/Γcmc = 60 and KΓ = 0.001. hf/h
Fr increases slowly with Cm for

Cm < 1, and for Cm > 6 (see the zooms on the relevant regions in insets). Between these

values, it decreases much more rapidly with Cm. For these values of the parameters, hf/h
Fr

always remains significantly smaller than 1.

(a)
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C m

C f , γ̃m

(b)
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0.008
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Figure 9: (a): for the same data as figure 8, the concentration in the film Cf = cf/ccmc

(solid line) increases monotonously with Cm. It does, however, also feature three well distinct

regimes of very different slopes. Dashed line is γ̃m. (b): for the same data, the surface tension

difference γ̃f − γ̃m remains very small (below 1 %).
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effect is only sensible much below the cmc and does not play any relevant role

here.

The observed transition between a film close to the Frankel’s film and a

much thinner film can be understood on the basis of the velocity scaling given340

by equation 19. The concentration decreases from the static meniscus to the

film, and for 1 < Cm < 6, the film is almost at the cmc, as seen in figure 9.a.

For lower concentrations, the film is entirely below the cmc, whereas for higher

concentrations, it is always above the cmc. It means that the non linearity of

the isotherm (i.e., the fact that the concentration crosses the cmc, where ∂Γ̃/∂C345

changes abruptly) has to be taken into account in the intermediate concentration

regime only.

With the parameters of figure 8, we have KΓ = 10−3
≪ αCac

2/3 = 0.13≪ 1.

The second term in equation 19, associated to bulk concentration effects, is thus

negligible below the cmc, but non negligible above, as the coefficient ∂Γ̃/∂C350

suddenly decreases from 1 to KΓ. The velocity difference thus jumps from a

small value below the cmc to a much higher value above the cmc, thus explaining

the sudden thickness decrease for meniscus concentrations slightly above the

cmc.

Let us simplify the problem one final time by considering the limit where the355

surface tension variation above the cmc is negligible and the tension variation

below the cmc very large (which corresponds to incompressible interfaces, as in

Frankel’s work). Starting from a concentration in the static meniscus Cm > 1,

the concentration must first decrease to the cmc, which generates no interfacial

stresses, but does stretches the interface. Below the cmc, the necessary stresses360

may now be created with negligible concentration difference, hence negligible

interface deformation. In other words, the entire interfacial elongation happens

above the cmc, and corresponds to a decrease in concentrations from Cm > 1

to 1. Interface stretching thus increases with Cm, which results in the thickness

decreasing. The real curve is smoothened out by the small surface tension365

variation above the cmc, and by the finite size of the transition region between

the affine regimes of the isotherm. The physical origin of the thickness decrease
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still holds: it is a signature of the non linear isotherm.

As visible on the two enlargements of figure 8, the rescaled thickness in-

creases slightly with Cm for Cm < 1 and for Cm > 6: surprisingly, for a given

pulling velocity, the film thickness thus varies in a non-monotonic way with the

concentration. For Cm < 1 or Cm > 6, the film is either always below the cmc

or always above, as shown in figure 8. The variation of the surface concentration

with the bulk concentration is thus affine: ∂Γ̃/∂C is either 1 (below the cmc)

or KΓ (above the cmc). Equation 19 can then be simplified into

δVs = 1− Vm = Cac
2/3(γ̃(0)− 1)

γ̃1/3

Γ̃

(

1 +
α

γ̃2/3

1

KΓ

Cac
2/3

)

(20)

for the case Cm > 1 (the case Cm < 1 is obtained by setting KΓ = 1). In

figure 8, Cac (i.e. the pulling velocity) is maintained constant, as well as the370

physicochemical properties γ̃(0) and α. In the previous equation, only γ̃ and Γ̃

vary with the concentration in the meniscus, and the main effect is the affine

increase of Γ̃ with Cm. Consequently, the velocity variation along the film

decreases with Cm, and the film thickness increases.

4.5. Comparison with experiments375

As a final summary of our results, we compare our model to experimental

data published by Saulnier and collaborators [8]. One of the central results of

their work is the fact that deviation from Frankel law is observed above a certain

capillary number, for a solution of C12E6 surfactant. Most importantly, they

measured film thicknesses for different surfactant concentrations (Cm = 1, 3,380

5 and 10 in our notations), and showed that this transition capillary number

decreases with Cm.

As we mentioned in the previous section, our model does reproduce qualita-

tively this behavior. More precisely, we show on figure 10.a the best fit of their

data by our model, with KΓ = 0.0012 as the only adjustable parameter (α = 63385

has been estimated from Γcmc = 310−6 mol/m2 and ccmc = 7.3 10−5 mol/L, as

measured in [18]). In our model, Cac is imposed, instead of Ca, however, the
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Figure 10: (a): experimental film thicknesses measured by Saulnier and coworkers[8] for a

solution of C12E6 at the cmc (+), at 3 cmc (◦), at 5 cmc (�) and at 10 cmc (⋄). Solid lines

are predictions of our model with the corresponding value of Cm, α = 63 (computed from

experimental values of Γcmc and ccmc), γ̃(0) = 2.1 (computed from the measured value of

γcmc) and KΓ = 0.0012 (fitted). (b): our model also predicts the surfactant concentration Cf

in the film. Short horizontal lines show the concentration that is imposed in the meniscus.

difference between the two parameters is negligible above the cmc, as γ remains

very close to γcmc.

Our model captures the Ca and Cm dependance of the thickness quite well,390

except for the smaller Cm where it underestimates deviations from Frankel’s

law.

The relevance of the fitted value of KΓ is difficult to evaluate, since most

studies on surface tension focus on concentrations below the cmc, and measuring

γ with the appropriate precision is not straightforward. In one study [18],395

Stubenrauch and collaborators measured the surface tension well above the cmc.

By fitting their data, we found a value of KΓ on the order of 0.01.

Our model also predicts the surfactant concentration Cf in the extracted

film (figure 10.b). As Ca increases, the stresses needed to extract the film in-

crease, hence Cf decreases to generate a larger surface tension difference across400

the system. For Cm = 3 and Cm = 1, the concentration C in the dynami-

cal meniscus becomes low enough that it reaches the transition region of our

isotherm (with ξ = 0.15, the transition region starts at C ≈ 1.3) for Ca > 10−4.
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The prediction is thus sensitive, for these Cm, to the exact function used to

describe this region. This may explain the discrepancy between our model and405

the data.

Lastly, our computations predict values of Cf significantly different from Cm

(by up to 50 %). We believe that measuring this quantity would provide the

most direct way to confirm or infirm the relevance of our work to experimental

situations.410

5. Conclusion

In the present study, we predict the steady state thickness of soap films

pulled from a bath of surfactants at constant speed. The originality of our

work lies in the fact that we do not assume a particular effective interfacial

rheology (i.e., incompressible or elastic or viscous interface). Instead, we take415

explicitly into account the transport of surfactant molecules, and we deduce the

Marangoni stresses at the interface, which serve as boundary condition for the

hydrodynamics within the film, from their repartition.

In our model, the apparent rigidification of the interfaces comes explicitly

from depletion/confinement effects: interface stretching lowers locally the con-420

centration of surfactants, because molecules in the bulk adsorb on the newly

created interface. The peculiar thinness of the films make this mechanism par-

ticularly efficient to create interfacial stresses. We use two key approximations

to track surfactants: their concentration is supposed homogeneous within the

thickness of the film, and bulk and surface adsorbed surfactants are supposed425

at equilibrium.

We show that this mechanism suffices to create the necessary stresses to

pull a film out of a reservoir. For low enough capillary numbers, Frankel’s law

is recovered. Much like what is observed in experiments, deviations from this

law occur at higher pulling velocities. We identify a regime of "insoluble" sur-430

factants, where the elastic interface model is recovered. Outside of this regime,

bulk molecules have to be taken into account and lead to a less "rigid" interfaces.
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Most importantly, with our approximations, the entire problem is computed

from equilibrium properties of the surfactant molecules. In particular, the re-

sulting Marangoni stresses, hence the thickness of the film, depend strongly on435

the form of the adsorption isotherm and the equation of state. We use here

a simplified form for these two functions, but more realistic ones could be as

easily incorporated. In fact, we found that the non linearity of the adsorption

isotherm (namely the fact that its slope change abruptly around the cmc) is

crucial to the generation of films.440

Lastly, the most obvious prediction of our model is the thickness of the film,

because it can be easily measured. We show that its results are compatible

with available data by Saulnier and coworkers [8]. Our calculations additionally

compute the repartition of surfactants, and the interfacial velocity. Although

these quantities are much harder to measure in experiments, they are much more445

closely related to the mechanisms at work: the lower concentration in the film

is a direct effect of depletion, while the lower interfacial velocity in the static

meniscus comes from interface stretching.
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