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Abstract

In this paper, we study how multilabel predictions can be obtained when our uncertainty
is described by a convex set of probabilities. Such predictions, typically consisting of
a set of potentially optimal decisions, are hard to make in large decision spaces such as
the one considered in multilabel problems. However, we show that when considering
the Hamming or the ranking loss, outer-approximating predictions can be efficiently
computed from label-wise information, as in the precise case. We also perform some
first experiments showing the behaviour of the partial predictions obtained through
these approximations. Such experiments also confirm that predictions become partial
on those labels where the precise prediction is likely to make an error.
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1. Introduction

The problem of multi-label classification, which generalizes the traditional (single
label) classification setting by allowing multiple labels to simultaneously belong to an
instance, has recently attracted a lot of attention. Such problems indeed appear in a
lot of situations: a movie can belong to multiple categories, a music can stir multiple
emotions [30], proteins can possess multiple functions [33], images can have multiple
elements displayed in them, [5] etc. In such problems, obtaining a complete ground
truth (sets of relevant labels) for the training data and making accurate predictions is
more complex than in traditional (single label) classification, in which the aim is to
predict a unique label.

In such a setting the appearance of incomplete observations, i.e., instances for
which we do not know whether some labels are relevant or not, is much more likely.
For example, a user may be able to tag a movie as a comedy and not as a science-fiction
movie, but may hesitate whether or not it should be tagged as a drama. Other examples
include cases where a high number of labels are possible and where an expert cannot
be expected to provide all relevant ones due to time or cost constraints. Such partial
labels are commonly called weak labels [27] and are common situations in problems
such as image annotation [28] or protein function prediction [33].
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Even when considering weak labels, all multilabel methods we are aware of still
produce complete predictions as outputs. However, given the complexity of the pre-
diction to make and the likely presence of missing data, it may be sensible to look for
cautious yet more trustful predictions. That is it may be interesting for the learner to
abstain to make a prediction about a label whose relevance is too uncertain, so that the
final prediction is partial but more robust, in the sense that a prediction is made only for
those labels about which we have sufficient information. Such partial predictions can
help to identify which instances are hard to predict (i.e., as is the case in multi-class
settings [9]), therefore pointing out where we would need to collect more information.
They could therefore be used in active learning settings, or more simply to warn the
user or analyst that our current information does not allow us to make a prediction for
a particular instance. For example, when trying to detect protein or gene functions, it
could be quite useful for the domain expert to know about which function we should
collect more data.

Various approaches have been proposed in the literature to obtain such partial pre-
dictions: a classical way is to implement a reject option [3, 23], or a partial version of
it [18]. More recent methods includes the use of probability sets [8] (the size of the set
then reflecting our lack of knowledge) or the use of conformal prediction [26]. Finally,
more recent proposals have looked at the problem of making partial predictions for the
problem of label ranking [7, 6], of which multilabel problems can be seen as a special
case.

In this paper, we consider the practical problem of making partial predictions in the
multilabel setting when using convex sets of probabilities, or credal sets [20], as our
model of uncertainty. Making partial predictions is one central feature of approaches
using credal sets [8], and these approaches are also well-designed to cope with the
problem of missing or incomplete data [34]. However, applying classical decision
rules to make partial predictions with credal sets in mutlilabel setting are likely to be
computationally intractable, as those decision rules involve making n2 comparisons
where n is the number of alternatives (a number that increases exponentially with the
number of labels).

Our main result is to show that this tractability issue can be avoided by considering
specific losses, namely the Hamming and ranking losses, and by considering approx-
imate inferences. This is done in Section 3, first for the Hamming loss (Section 3.1),
then for the ranking loss (Section 3.2). Other losses will only be discussed shortly,
as nothing in their structure suggests that approximate inferences are easy to do when
considering them in conjunction with credal sets. Section 4 then provides some exper-
iments to show the behaviours of the proposed inferences and predictions. Necessary
background material is given in Section 2. This paper extends a conference paper [15]
that only dealt with the Hamming loss case. In addition to dealing with the ranking
loss and to a discussion about the optimization of other losses, this paper also provides
full details, examples and experiments.

2. Preliminaries

In this section, we introduce the multilabel setting as well as basic notions needed
to deal with sets of probabilities.
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X1 X2 X3 X4 y1 y2 y3
107.1 25 Blue 60 1 0 0
−50 10 Red 40 1 0 1

200.6 30 Blue 58 ∗ 1 0
107.1 5 Green 33 0 1 ∗
. . . . . . . . . . . . . . . . . . . . .

Table 1: Multilabel data set example

2.1. Multilabel problem setting

The usual goal of classification problems is to associate an instance x coming from
an instance space X to a single (preferred) label of the space Λ = {λ1, . . . ,λm} of
possible classes. In a multilabel setting, an observation x is associated to an observed
subset Lx ⊂ Λ of labels, often called the subset of relevant labels while its complement
Λ\Lx is considered as irrelevant. We denote by Y = {0,1}m the set of m-dimensional
binary vector, and identify a set L of relevant labels with a binary vector y=(y1, . . . ,ym)
such that yi = 1 if and only if λi ∈ L.

The task in a multilabel problem is the same as in usual classification: to use the
training instances (x j,y j), j = 1, . . . ,n to estimate the theoretical conditional probabil-
ity measure Px : 2Y → [0,1] associated to an instance x∈X . Ideally, observed outputs
y j should be completely specified vectors, however it may be the case that the value
for some component y j

i is unknown, which will be denoted by y j
i = ∗. We will denote

incomplete vectors by capital Y . Alternatively, an incomplete vector Y can be charac-
terized by two sets L ⊆ L ⊆ Λ of necessarily and possible relevant labels, defined as
L := {λi|yi = 1} and L := {λi|yi = 1∨ yi = ∗} respectively. An incomplete vector Y
describes a corresponding set of complete vectors, obtained by replacing each yi = ∗
either by 1 or 0, or equivalently by considering all subsets L such that L ⊆ L ⊆ L. To
simplify notations, in the sequel we will use the same notation for an incomplete vector
and its associated set of complete vectors.

Example 1. Table 1 provides an example of a multilabel data set with Λ = {λ1,λ2,λ3}.
Y 3 = [∗ 1 0] is an incomplete observed instance with L3 = {λ2} and L3

= {λ1,λ2}. Its
corresponding set of complete vectors is {[0 1 0], [1 1 0]}

In multilabel problems the size of the prediction space increases exponentially with
m (e.g., |Y | = 32768 for m = 15), meaning that estimating directly Px will be in-
tractable even for limited sizes of Λ. As a means to solve this issue, different authors
have proposed so-called transformation techniques [31] that reduce the initial problem
into a set of simpler problems. For example

• Binary relevance (BR) consists in predicting label-wise relevance, solving in-
dependent binary problem for each label. It therefore comes down to estimate
Px(yi) and to predicts ŷi = 1 if Px(yi = 1)≥ 1/2;

• Ranking approaches such as Calibrated Ranking (CR) [17] intend to build an
ordering between labels by focusing on pairwise comparisons between labels.
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While such approaches reduce the inference complexity, a common critic is that they
only consider partial information about Px, and are therefore likely to be sub-optimal.
For instance, BR does not integrate any information about label dependencies, and
many techniques have been proposed to integrate such dependencies in the predictive
model [24, 25, 22].

However, it has been proven that these methods are actually theoretically optimal
under some specific loss functions. The main goal of this paper is to show that similar
results hold when the model Px becomes a set of probabilities.

Indeed, making a precise and accurate estimation of Px is an extremely difficult
problem given the number 2m of alternatives and the possible presence of missing data.
This problem is even more severe if little data are available, and this is why making
cautious inferences (i.e., partial predictions) using as model a (convex) set Px of prob-
ability distributions may be interesting in the multilabel setting.

2.2. Notions about probability sets

We assume that our uncertainty is described by a convex set of probabilities Px, a
credal set [20], defined over Y rather than by a precise probability measure Px. Such
a set is usually defined either by a collection of linear constraints on the probability
masses or by a set of extreme probabilities. Many authors [32, 4, 13] have argued that
when information is lacking or imprecise, considering credal sets as our model of infor-
mation better describes our actual uncertainty. Credal sets are also convenient models
in frequentist settings, when one do not want to stick to point-valued parameters [2, 21].

Given such a set, we can define for any event A⊆Y the notions of lower and upper
probabilities Px(A) and Px(A), respectively as

Px(A) = inf
Px∈Px

Px(A) and Px(A) = sup
Px∈Px

Px(A).

Lower and upper probabilities are dual, in the sense that P(A) = 1− P(Ac). Simi-
larly, if we consider a real-valued bounded function f : Y → R, the lower and upper
expectations Ex( f ) and Ex( f ) are defined as

Ex( f ) = inf
Px∈Px

Ex( f ) and Ex( f ) = sup
Px∈Px

Ex( f ),

where Ex( f ) is the expectation of f w.r.t. Px. Lower and upper expectations are also
dual, in the sense that E( f ) =−E(− f ). They are also scale and translation invariant in
the sense that given two numbers α ∈ R+,β ∈ R, we have E(α f +β ) = αE( f )+β .

2.3. Decision and predictions with probability sets

Once a space Y of possible observations is defined, selecting a prediction, or equiv-
alently making a decision, requires to define:

• a space A = {a1, . . . ,ad} of possible alternatives;

• a loss function ` : A ×Y → R such that `(a,y) defines the loss incurred by
predicting a when y is the ground-truth.
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In this paper, we differentiate the space of predictions or alternatives A from the space
of output observations Y , since they may not always coincide. Actually, we will have
A =Y in Section 3.1, but not in Section 3.2, since the ranking loss compares a vector
y ∈ Y to a ranking over the labels Λ (in which case A is the set of all permutations
over Λ).

In a precise probability setting, given an instance x and a probability P̂x, a decision
a will be preferred to a decision a′ under loss function `, denote a�` a′, if

EP̂x

(
`(a′, ·)− `(a, ·)

)
= ∑

y∈Y
P̂x(y)

(
`(a′,y)− `(a,y)

)
(1)

= ∑
y∈Y

P̂x(y)`(a′,y)− ∑
y∈Y

P̂x(y)`(a,y)

= EP̂x

(
`(a′, ·)

)
−EP̂x

(`(a, ·))> 0,

where EP̂x
is the expectation w.r.t. P̂x, and `(a, ·) : Y →R the cost function of choosing

a′ as our prediction. This equation means that exchanging a′ for a would incur a posi-
tive expected loss, or equivalently that the expected loss of choosing a′ is higher than
the one of choosing a, therefore a should be preferred to a′. In the case of a precise
estimate P̂x, �` is a complete pre-order and the optimal prediction comes down to take
the maximal element of this pre-order, i.e.,

â` = arg min
a∈A

EP̂x
(`(a, ·)) = arg min

a∈A ∑
y∈Y

P̂x(y)`(a,y) (2)

that is to minimize the expected loss (ties can be broken arbitrarily, as they will lead
to the same expected loss). This means that finding the best alternative (or prediction)
will require d computations of expectations.

When considering a set Px as cautious estimate, there are many ways [29] to ex-
tend Equation (1). The concept of maximality [32, Sec. 3.9.] is the one we will
consider here. Under this criterion, we have that a�` a′ if

EPx

(
`(a′, ·)− `(a, ·)

)
= inf

Px∈Px
EPx

(
`(a′, ·)− `(a, ·)

)
> 0, (3)

that is if exchanging a′ for a is guaranteed to give a positive expected loss. Our lack of
information is then reflected by the fact that the relation a�` a′ will be a partial order,
hence the maximal set

Â` = {a ∈A | 6 ∃a′ ∈A s.t. a′ �` a}. (4)

of alternatives can be a set of values that will form our prediction. Clearly, the more im-
precise is Px, the larger is the set Â`. It should be noted that having EPx (`(a

′, ·)− `(a, ·))>
0 only implies that EPx(`(a

′, ·)> EPx`(a, ·), due to the fact that we only have

E( f +g)≥ E( f )+E(g), (5)

i.e., E is sub-additive. Saying that a �` a′ if EPx(`(a
′, ·) > EPx`(a, ·) is then a quite

weaker criterion to build the partial order �`, known under the name of interval domi-
nance. The goal of such partial prediction is not to do ”better” then precise predictions,
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but to point out those cases where information is not sufficient to make a reliable pre-
cise prediction. They are therefore useful in applications where it is interesting to know
that we do not know. The next example illustrates this
Example 2. Consider a multi-class setting where Y = {y1,y2,y3}, and two different
input instances x1, x2 for which we must make a prediction. Assume that, for x1, we
have observed in the training set 30,20 and 10 times y1,y2 and y3, respectively. For
x2, we have observed in the training set 3,2 and 1 times y1,y2 and y3, respectively.
Assume furthermore that we are considering a classical 0/1 loss, whose associated
optimal prediction is the mode of P̂x.

In a precise setting, our prediction for x1 and x2 would both be y1, a natural choice
given the observations and the fact that a frequentist evaluation of P̂x would give
P̂x(y1) = 0.5, P̂x(y1) = 1/3, P̂x(y1) = 1/6 for x1 and x2, since P̂x(yi) = ni/n, where ni
is the number of times yi was observed, and n the total number of observations.

Instead of a precise evaluation, we could use the Imprecise Dirichlet Model, that
provides the following bounds

P̂x(yi) =
ni

n+ s
P̂x(yi) =

ni + s
n+ s

over P̂x(yi), with s an hyper-parameter, often set to s = 2. This kind of model is used,
e.g., in imprecise probabilistic decision trees [1]. With this approach, we get the fol-
lowing bounds for x1 and x2

y1 y2 y3

x1 P̂ 32/62 22/62 12/62

P̂ 30/62 20/62 10/62

x2 P̂ 5/8 4/8 3/8

P̂ 3/8 2/8 1/8

In this case, we still predict Â = {y1} for x1, but Â = {y1,y2} for x2 (as there are
distributions within the bounds P̂x2 , P̂x2 where y1 or y2 are modal values), due to the
fact that we have little information in the second case.

Making predictions with probability sets is usually harder than with precise ones,
as they require solving multiple linear optimization problems. For instance, computing
Â` requires at worst d(d− 1) computations, a quadratic number of comparisons with
respect to the number of alternatives. This makes the prediction step in a multilabel set-
ting even more difficult. In the next sections, we explore how the multilabel problem
can be solved with such credal sets. We discuss the problem, usually computationally
intensive, of making partial decision and show that it can be simplified when consid-
ering the Hamming loss or the ranking loss as our loss functions. Using these results,
we then perform some experiment based on label-wise or pairwise decomposition and
k-nn algorithm to assess the interest of making partial predictions based on credal sets.

3. Making multilabel predictions with probability sets

Computing Â` in a multilabel setting will be intractable in most cases, as the worse
number of computations to achieve will then be 22m if A = Y (m = 15 labels means

6



at worst ∼ 109 comparisons). It is therefore important to search how this computa-
tional burden can be diminished. One way to do so, that we explore here, is to pro-
vide efficient inference methods taking advantage of the formulations of particular loss
functions.

In the next subsection, we show that for the Hamming loss `H and the ranking loss
`R, we can get an outer approximation of Â` at a very affordable computational cost.
Offering such efficient way to make cautious predictions based on Px is essential to
be able to use such kind of models in complex problems.

3.1. The Hamming loss

Hamming loss `H considers as set of alternatives A =Y the set of possible outputs
of the multilabel problem. Given an observation y and a prediction ŷ, it reads

`H(ŷ,y) =
1
k ∑

i=1,...,k
1(ŷi 6=yi) . (6)

It counts the number of labels for which our prediction is wrong, and normalize it.
When the estimate Px is precise, it is known [12] that the optimal decision is the vector
ŷ such that ŷ j = 1 if Px(y j = 1) ≥ 1/2 and ŷ j = 0 else. In particular, this means that
optimal decision can be derived from the sole knowledge of the marginals Px(y j = 1),
j = 1, . . . ,n. This means that the theoretical number of estimates to obtain to have an
optimal prediction is m, which compared to the number 2m in the general case is a
drastic reduction.

The question is then to know if such a reduction is still possible when working with
a credal set Px. Let us denote Ŷ`H the maximal set of vectors that would be obtained
using Equation (4). The next proposition shows that in contrast with the precise case,
Ŷ`H can only be outer-approximated using the marginals of the cautious estimate Px.

Proposition 1. Let Px be our estimate, then the imprecise vector Ŷ ∗ such that

Ŷ ∗j =


1 if P(y j = 1)> 1/2

0 if P(y j = 0)> 1/2

∗ if P(y j = 1)≤ 1/2≤ P(y j = 1)
for j = 1, . . . ,m

is an outer approximation of Ŷ`H , in the sense that Ŷ`H ⊆ Ŷ ∗.

Proof. To prove Proposition 1, we will simply show that if P(y j = 1) > 1/2, then any
alternative y where y j = 1 dominates (in the sense of Equation 3) the prediction y′ where
only the jth component is changed (from 1 to 0). Consider a given j ∈ {1, . . . ,m} and
two alternatives ŷ and ŷ′ such that ŷ j = 1 6= ŷ′j and ŷi = ŷ′i for any i 6= j. Let us now
look at the value of `H(ŷ′, ·)− `H(ŷ, ·): for any y such that y j = 1 we have

`H(ŷ′,y)− `H(ŷ,y) =

(
∑
k 6= j

1(ŷ′k 6=yk)
+1(ŷ′j 6=y j)

)
−

(
∑
k 6= j

1(ŷk 6=yk) +1(ŷ j 6=y j)

)
= 1(ŷ′j=0) −1(ŷ j=0) = 1,

7



and for any y such that y j = 0 we have

`H(ŷ′,y)− `H(ŷ,y) =

(
∑
k 6= j

1(ŷ′k 6=yk)
+1(ŷ′j 6=y j)

)
−

(
∑
k 6= j

1(ŷk 6=yk) +1(ŷ j 6=y j)

)
= 1(ŷ′j=1) −1(ŷ j=1) =−1.

We therefore have (`H (ŷ′,·)−`H (ŷ,·)+1)/2 = 1(y j=1) , hence

P(y j = 1) = E
(
`H(ŷ′, ·)− `H(ŷ, ·)+1

2

)
=

1
2
E
(
`H(ŷ′, ·)− `H(ŷ, ·)

)
+

1
2

the last equality coming from scale and translation invariance of lower expectations.
Hence E(`H(ŷ′, ·)− `H(ŷ, ·)) > 0 if and only if P(y j = 1) > 1/2. This means that, if
P(y j = 1)> 1/2, any vector ŷ′ with ŷ′ j = 0 is dominated (in the sense of Equation (3))
by the vector ŷ where only the j-th element is modified, hence no vector with ŷ′ j = 0 is
in the maximal set Ŷ`H . The proof showing that if P(y j = 0)> 1/2, then no vector with
ŷ′ j = 1 is in the maximal set is similar. �

We now provide an example showing that the inclusion of Proposition 1 is usually
strict.
Example 3. Consider the 2 label case Λ = {λ1,λ2} with the following constraints:

0.4≤ P(y1 = 1) = P({[1 0]})+P({[1 1]})≤ 0.6
0.9(P({[1 0]})+P({[1 1]})) = P({[1 0]})
0.84(P({[0 1]})+P({[0 0]})) = P({[0 1]})

These constraints describe a convex set P , whose extreme points (obtained by satu-
rating the first inequality one way or another) are summarized in Table 2. The first
constraint induces that P(y1 = 1) = 0.4 and P(y1 = 0) = 0.6, while the bounds P(y2 =
1)= 0.396,P(y2 = 1)= 0.544, are reached by the extreme distributions P([1 1]) = 0.06,
P([0 1]) = 0.336 and P([1 1]) = 0.04, P([0 1]) = 0.504, respectively. Given these
bounds, we have that Ŷ ∗ = [∗ ∗] corresponds to the whole space Y (i.e., the empty
prediction). Yet we have that

E(`H([1 1], ·)− `H([0 0], ·)) = 0.0008≥ 0

also obtained with the distribution P([1 1]) = 0.06, P([0 0]) = 0.064. This means that
the vector [0 0] is not in the maximal set Ŷ`H , while it is included in Ŷ ∗.

Proposition 1 shows that we can rely on marginal information to provide an outer-
approximation of Ŷ`H that is efficient to compute, as it requires to compute 2m values,
which are to be compared to the 22m usually required to assess Ŷ`H . It also indicates
that extensions of the binary relevance approach are well adapted to provide partial
predictions from credal sets when considering the Hamming loss, and that in this case
global models integrating label dependencies are not necessary, thus saving a lot of
heavy computations.
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P({[0 0]}) P({[1 0]}) P({[0 1]}) P({[1 1]})
0.096 0.36 0.504 0.04
0.064 0.54 0.336 0.06

Table 2: Extreme points of P of Example 3

3.2. The ranking loss

In the multilabel setting, it is also quite common to consider predicting a ranking
over the labels (ideally from the most relevant to the least relevant) instead of a vector
of relevant labels. This is quite natural if the classifier returns for each label λi a
score sx(i) ∈ R [19] (in which case the labels are ranked according to their scores),
or if one uses methods especially tailored to return rankings [17, 16]. In such a case,
the set of alternatives A is the set RΛ of rankings over Λ, or equivalently the set
Sm of all permutations over [m] := {1, . . . ,m}, meaning that the number of alternative
|A | = m! is in general much higher than 2m. For easiness of notation, we will denote
by r : [m]→ [m] the permutation of indices corresponding to a ranking r, and by�r the
corresponding order between elements of Λ.

In such cases, the ranking loss can be used. Given a predicted ranking r and an
observed output y, it reads as

`R(r,y) = ∑
(i, j)∈[m]×[m]

yi>y j

1(λi≺rλ j) . (7)

The ranking loss counts the number of pairs of labels that disagree between r and
the partial order induced by y (assuming that all relevant labels are preferred to non-
relevant ones). When the estimate Px is precise, the optimal decision [12] is the ranking
r̂ that ranks items in Λ according to the values Px(y j = 1), that is λi �r̂ λ j if P̂x(yi =
1) ≥ P̂x(y j = 1). Again, the optimal decision can be derived from the sole knowledge
of the marginals Px(y j = 1), j = 1, . . . ,n.

Example 4. Consider the space Λ = {λ1,λ2,λ3} and the predicted ranking λ2 �r̂ λ3 �r̂
λ1, then r̂(2) = 1, r̂(3) = 2 and r̂(1) = 3. If the observed multilabel output is y = [110],
then `R(r̂,y) = 1 because λ3 �r̂ λ1 while y1 > y3.

Before showing that we can extend the precise case prediction technique to com-
pute an outer approximating prediction of the optimal set R̂`R that would be obtained
by using Equation (4), we need to first establish a small result.

Lemma 1. Given a model Px on Y , we have that

E
(

1(yi=1,y j=0) −1(yi=0,y j=1)

)
= E

(
1(yi=1) −1(y j=1)

)
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Proof. Simply consider that

inf
Px∈Px

E
(

1(yi=1) −1(y j=1)

)
= inf

Px∈Px
P(yi = 1)−P(y j = 1)

= inf
Px∈Px

(P(yi = 1,y j = 0)+P(yi = 1,y j = 1))−

(P(y j = 1,yi = 0)+P(y j = 1,yi = 1))
= inf

Px∈Px
P(yi = 1,y j = 0)−P(y j = 1,yi = 0)

= inf
Px∈Px

E
(

1(yi=1,y j=0) −1(yi=0,y j=1)

)

We are now ready to prove the main proposition of this section

Proposition 2. Let Px be our estimate, then the set R̂∗ of linear extensions of the
partial order R such that

λi �R λ j if P(yi = 1)> P(y j = 1)

is an outer approximation of R̂`R , in the sense that R̂`R ⊆ R̂∗.

Proof. Similarly to the proof of Proposition 1, we will show that any alternative where
λ j � λi is dominated by another one where λi � λ j if P(yi = 1)> P(y j = 1). To do this,
consider a ranking r where λi �r λ j and the ranking ri| j where only the ranks of labels
λi,λ j are swapped, the others being left untouched, i.e., r(k) = ri| j(k) for any k 6= i, j,
r(i) = ri| j( j) and r( j) = ri| j(i). Let us now look at the form of `R(r, ·)− `R(ri| j, ·).
Depending on y, three cases can occur:

I if yi = 1 and y j = 0, we have

`R(r,y)− `R(ri| j,y) = ∑
(p,q)∈[m]×[m]

yp>yq

1(λp≺rλq) − ∑
(p,q)∈[m]×[m]

yp>yq

1(λp≺ri| j λq)

= r(i)− r( j),

that is, the number of elements in the ranking r (or ri| j) between λi and λ j. To see
this, consider that the only pair that could agree in r and disagree in ri| j, outside
of the pair (i, j) itself, are those involving either λi or λ j and one element ranked
between λi and λ j. Now, for any element λk ranked between λi and λ j, if yk = 0,
then the pair (i,k) is disagreeing in ri| j and not in r, and if yk = 1, then the pair
( j,k) is disagreeing in ri| j and not in r. This means that the difference is indeed the
number of elements between λi and λ j (r(i)− r( j)−1), plus the pair (i, j) itself;

II if yi = 0 and y j = 1, we have

`R(r,y)− `R(ri| j,y) = ∑
(p,q)∈[m]×[m]

yp>yq

1(λp≺rλq) − ∑
(p,q)∈[m]×[m]

yp>yq

1(λp≺ri| j λq)

= r( j)− r(i),

for reasons similar to the previous case.
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III if yi = y j, then

`R(r,y)− `R(ri| j,y) = ∑
(p,q)∈[m]×[m]

yp>yq

1(λp≺rλq) − ∑
(p,q)∈[m]×[m]

yp>yq

1(λp≺ri| j λq)

= 0

since the swap between λi and λ j in r does not make new disagreeing pairs in this
case.

Putting these three cases together, we have that

`R(r, ·)− `R(ri| j, ·) = (r(i)− r( j))1(yi=1,y j=0) +(r( j)− r(i))1(yi=0,y j=1)

= (r(i)− r( j))
(

1(yi=1,y j=0) −1(yi=0,y j=1)

)
Now, r dominates ri| j in the sense of Equation 3 if E

(
`R(r, ·)− `R(ri| j, ·)

)
> 0. Since

we have that

E
(
`R(r, ·)− `R(ri| j, ·)

)
= (r(i)− r( j))E

(
1(yi=1,y j=0) −1(yi=0,y j=1)

)
= (r(i)− r( j))

(
E
(

1(yi=1) −1(y j=1)

))
≥ (r(i)− r( j))

(
E
(
1(yi=1)

)
+E

(
−1(y j=1)

))
= (r(i)− r( j))

(
P(yi = 1)−P(y j = 1)

)
is positive if P(yi = 1) > P(y j = 1), which is sufficient to show the proposition (the
second equality is obtained by applying Lemma 1).

Proposition 2 shows that the partial order R̂∗ obtained by considering the interval
order induced by [P(y j = 1),P(y j = 1)], that is to state that λi �R λ j if P(yi = 1) >
P(y j = 1), approximates the optimal prediction. This is a straightforward extension of
the optimal ranking obtained in the precise case. That the inclusion of Proposition 2
can be strict already follows from the fact that the ordering is based on an upper bound
of the value E

(
1(yi=1) −1(y j=1)

)
. Proposition 2 tells us that one can also rely on

marginal information on each label to optimize the rank loss, meaning that the same
learning techniques can be used to approximate both R̂`R and Ŷ`H , which from a com-
putational view point is a good news.

There is a more general version of the ranking loss than Equation 7, namely

`R(r,y) = w(y) ∑
(i, j)∈[m]×[m]

yi>y j

1(λi≺rλ j) . (8)

where each possible ground-truth y is weighted by w(y). In the precise case, it has
been shown [10] that such a generalization is not too problematic, and that producing
an optimal ranking remains relatively easy. Unfortunately, Proposition 2 do not extend
as easily when considering sets of probabilities, mainly because E is a sub-additive
function.
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3.3. Discussion about other losses

There exist many other losses that have been defined within the multilabel set-
ting [12, 31], some of them being the average for each label over an entire data set
(micro measures), others being computed for each instance and then averaged (macro
measures). Equation (3) only applies to these latter losses, among which one can find
the 0/1 loss

`0/1(ŷ,y) = 1(y6=y) (9)

which is a straightforward extension of the 0/1 loss used in classification. Also com-
monly used is the F1-measure

`F1(ŷ,y) = 1−
2∑

m
i=1 1(yi=ŷi=1)

∑
m
i=1 1(yi=1) +∑

m
i=1 1(ŷi=1)

(10)

and other ones such as accuracy, recall, precision, . . .
All these loss functions cannot be easily decomposed in pairwise or labelwise com-

ponents, and computing the optimal prediction for such losses is already far from being
trivial in the precise case (see [11] for the case of the F-measure). There is therefore
very little hope to obtain easy ways to approximate their prediction sets when consid-
ering a credal set Px as our uncertainty model, and further efforts should focus on
developing adequate heuristic algorithms.

4. Experiments

In this section, we provide first experimentations illustrating the effect of making
partial predictions with a decreasing amount of information. These experiment show
the typical behaviour we can expect from imprecise probabilistic methods in a multi-
label setting: that the labels over which we abstain to make predictions are those for
which we make the most mistakes. This means that the percentage of correct answer
over the labels for which we still make a prediction increases.

While those predictions are not ”better” than precise ones, they are more cautious,
as they do inform us when information is insufficient to make a reliable prediction.
Those experiments mainly serve to illustrate how the theoretical results of Section 3
can be applied and evaluated in practice.

4.1. Evaluation

Usual loss functions such as Equations (6) or (7) are based on complete predic-
tions. When making partial predictions, the quality of a classifier cannot be computed
by simply making an average of such measures, and new measures must therefore be
proposed. This can be done, for instance, by decomposing the quality into two compo-
nents [7], one measuring the accuracy or correctness of the made prediction, the other
measuring its completeness.

If the partial prediction is an incomplete vector such as the prediction Ŷ ∗ obtained
by Proposition 1, then Hamming loss can be easily split into these two components.
Given the prediction Ŷ ∗ characterized by subsets L,L, let us denote Q = Λ\ (L∩L) the
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set of predicted labels (i.e., labels such that Ŷ ∗j = 1 or Ŷ ∗j = 0). Then, if the observed
set is y, we define incorrectness (ICH ) and completeness (CPH ) as

ICH(Ŷ ∗,y) =
1
|Q| ∑

λi∈Q
1(ŷi 6=yi) ; (11)

CPH(Ŷ ∗,y) =
|Q|
m

. (12)

when predicting complete vectors, then CPH = 1 and ICH equals the Hamming loss (6).
When predicting the empty vector, then CPH = 0 and by convention ICH = 0.

Example 5. Consider the space Λ = {λ1,λ2,λ3}, the predicted vector Ŷ ∗ = [10∗] and
the observed vector y = [110]. Then we have ICH(Ŷ ∗,y) = 1/2 as only one predicted
vector is correct, and CPH(Ŷ ∗,y) = 2/3 as one label remains unpredicted.

If the partial prediction is the ranking R̂∗ obtained by Proposition 2, then we can
just adopt the setting proposed by Cheng et al. [7]. y being the set of observed relevant
label, let

C = |{(i, j)|(i, j) ∈ [m]× [m],yi > y j ∧λi �R̂∗ λ j}|

and
D = |{(i, j)|(i, j) ∈ [m]× [m],yi > y j ∧λi ≺R̂∗ λ j}|

be the number of label pairs compared in R̂∗ that are respectively concordant (C) and
discording (D) with the partial order induced by y. We then define incorrecteness (ICR)
and completeness (CPR) as

ICR(R̂∗,y) =
D

C+D
; (13)

CPR(R̂∗,y) =
C+D

(∑m
i=1 yi)(m−∑

m
i=1 yi)

. (14)

ICR is simply the fraction of discordant pairs over the number of predicted pairs, as pro-
posed by [7], while CPR measure the number of predicted pairs over the total number
of pairwise comparison induced by y. When predicting the empty vector, then CPR = 0
and by convention ICR = 0.

Example 6. Consider again the space Λ = {λ1,λ2,λ3} and the observed vector y =
[110] corresponding to the partial ranking λ1 � λ3,λ2 � λ3. If the predicted par-
tial ranking R̂∗ is λ2 �R̂∗ λ3, then we have C = 1, D = 0 from which follows that
ICR(R̂∗,y) = 0 (no predicted relations contradict the observed vector) and CPR(R̂∗,y) =
1/2 (only one of the two observed preference is predicted).

4.2. Method
Note that, in practice, the main results of this paper can be applied to any method

estimating a credal set over the space Y , as long as we can retrieve marginal bounds
over each label. Whatever the complexity of P , Propositions 1 and 2 tells us that we
can use the marginal information to derive efficient predictions.

The method we used was to apply, label-wise, the k-nn method using lower proba-
bilities introduced in [14]. This means that from an initial training data set D , m data
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sets D j corresponding to binary classification problems are built, this decomposition
being illustrated in Figure 1. Given an instance x, the result of the k-nn method on
data set D j provides an estimate of [P(y j = 1),P(y j = 1)] and by duality an estimate of
P(y j = 0) = 1−P(y j = 1) and P(y j = 0) = 1−P(y j = 1). Algorithm 1 provides the
details about how the bounds are derived from the instances x1, . . . ,xn in this particular
case.

Algorithm 1: Computation of probability bounds by k-nn method
Input: Data set D j, β > 0, ε0, k, instance x
Output: Interval [P(y j = 1),P(y j = 1)]
P(y j = 1)← 0 ;
P(y j = 1)← 0 ;
Compute average distance dy j=1 between instances {x1, . . . ,xn} where y j = 1;
Compute average distance dy j=1 between instances {x1, . . . ,xn} where y j = 0;
Order instances x(1), . . . ,x(n) such that d(x(i),x)≤ d(x(i+1),x) ;
for i = 1, . . . ,k do

Disc = ε0 · exp
−d(x(i),x)β

dy j=1 ;

if y(i)j = 1 then
P(y j = 1)← P(y j = 1)+ 1/k ;
P(y j = 1)← P(y j = 1)+Disc/k ;

if y(i)j = 0 then
P(y j = 1)← P(y j = 1)+ 1/k−Disc/k ;

if y(i)j = ∗ then
P(y j = 1)← P(y j = 1)+ 1/k ;

As we have that P(y j = 1) = 1−P(y j = 0) and P(y j = 1) = 1−P(y j = 0), the
algorithm process as follows:

• if 1 is observed, then P(y j = 1) is increased slightly less than P(y j = 1), thus
lowering the plausibility (P(y j = 0)) of having 0;

• if 0 is observed, P(y j = 1) is increased only slightly to reflect the fact that the
neighbours only brings an imperfect information about x, leaving P(y j = 1) (and
P(y j = 0)) untouched;

• if a missing variable is observed, then P(y j = 1) is increased with maximal value
to maximally increase the gap P(y j = 1)−P(y j = 1) for this observation.

The value Disc is an increasing function of the distance d(x(i),x), meaning that the
more distant is a neighbour, the bigger is the value 1/k− 1/Disc. As this corresponds to
the imprecision added to P(y j = 1)−P(y j = 1) when observing either a 1 or a 0 in a
neighbour, this means that the further away is a neighbour, the more imprecise is its
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X1 X2 X3 X4 y1 y2 y3
107.1 25 Blue 60 1 0 0
−50 10 Red 40 1 0 1
200.6 30 Blue 58 ∗ 1 0
. . . . . . . . . . . . . . . . . . . . .

data set D1

X1 . . . X4 y1
107.1 60 1
−50 40 1
200.6 58 ∗
. . . . . . . . .

data set D2

X1 . . . X4 y2
107.1 60 0
−50 40 0

200.6 58 1
. . . . . . . . .

data set D3

X1 . . . X4 y3
107.1 60 0
−50 40 1

200.6 58 0
. . . . . . . . .

Figure 1: Label-wise decomposition of data set D

contribution to our knowledge of the current label. For example, if x(i) is very close
to x, almost no change will be done on [P(y j = 1),P(y j = 1)] if y(i)j = 0, while values

close to 1/k will be added to both if y(i)j = 1.
The width of [P(y j = 1),P(y j = 1)] is also increasing with the number k, hence

a higher number of neighbours will provide more cautious answers. The method also
automatically takes account of missing label information, as show the case y(i)j = ∗, and
treat such missing data in a conservative way, considering them as completely vacuous
information (that is, we treat them as non-MAR variables [37]).

4.3. Results

In the experiments, the parameters of the k-nn algorithm were set to β = 0.5 and
ε0 = 0.99, so that results obtained when fixing the number k of neighbors to 1 display
a sufficient completeness. ε0 settles the initial imprecision, while β determines how
much imprecision increases with distance (details about the role of these parameters
can be found in [14]).

We ran experiments on well-known multilabel data sets having real-valued features.
Their characteristics are summarized in Table 3. Recall that the cardinality is the aver-
age number of relevant labels per instance, while the density is the average percentage
of relevant labels among all labels per instance. For data set, we ran a 10-fold cross
validation with the number k of neighbors varying from 1 to 3, and with various per-
centages of missing labels in the training data set (0%, 20% and 40%). Varying k in
the algorithm allows us to control the completeness of the prediction: the higher k is,
the more imprecise become the estimations.

Results on those data sets for the Hamming and ranking losses are shown in Ta-
bles 4 and 5, respectively. Note that the results display the expected behaviour, since
when k increases, the incorrectness (IC) and the completeness both decrease on all data
sets. This means that those labels for which we abstain to make a prediction are more
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Name # Features # Labels # Instances Cardinality Density
emotion 72 6 593 1.90 0.31

scene 294 6 2407 1.07 0.18
yeast 103 14 2417 4.23 0.30

CAL500 68 174 502 26.04 0.15
mediamill 120 101 43907 4.38 0.04

NUS-WIDE 128 81 269648 1.86 0.02

Table 3: Multilabel data sets summary

likely to be labels on which a mistake was made (otherwise, incorrectness would not
decrease). In addition to that, we can make a couple of interesting remarks:

• missing data mainly affects the completeness of the predictions, but have almost
no effect on incorrectness (particularly for the Hamming loss). This can be ex-
plained by the conservative approach we adopt in Algorithm 1, that is equivalent
to consider every possible replacement of missing data;

• the decrease in completeness for the Hamming loss when one neighbour is added
can be strong (emotions) or quite limited (scene or mediamill), and can be ex-
plained by the data set density. Yet, it is clear that when data are missing, con-
sidering multiple neighbours will quickly give quite incomplete results, which is
again due to the conservativeness of our approach;

• the completeness values are much lower when considering the rank loss, and
the completeness decrease is usually more important than for the Hamming loss
when considering missing data or additional neighbours. This can go to the
point where results are almost completely incomplete (e.g., k = 3 and 40% miss-
ing data for the sparser data sets CAL500, yeast, emotions and NUS-WIDE).
This can be explained by the following considerations: consider a precise and
fully correct model where n labels y j are such that P(y j = 1) = 1 and m−n la-
bels y j are such that P(y j = 1) = 0, hence give fully precise predictions. Now,
consider that our knowledge on one of the label y j such that P(y j = 1) = 1 be-
comes vacuous, i.e., [P(y j = 1),P(y j = 1)] = [0,1]. In this case, the value of
CPH will decrease by 1/m, while the value of CPR will decrease by (m−1)/m, a
much higher number. So, the decrease of completeness for the ranking loss will
usually be much quicker than for Hamming loss. Also, the produced predictions
R̂∗ for the ranking loss can be expected to be more conservative than for the
Hamming loss, as we explicitly use a conservative approximation of the value
E
(

1(yi=1) −1(y j=1)

)
.

These results are sufficient to show the good behaviour of the proposed predictions,
as well as what can be expected from the completeness and incorrectness evaluation
measures. In future works, it would be interesting to study the behaviour of additional
imprecise probabilistic classifiers such as the naive credal classifier [35] or its recent
extensions [8].
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Hamming loss
k=1 k=2 k=3

Data set % missing ICH CPH ICH CPH ICH CPH
0 0.23 0.79 0.12 0.61 0.09 0.52

CAL500 20 0.23 0.63 0.12 0.40 0.08 0.28
40 0.22 0.48 0.12 0.21 0.08 0.11
0 0.23 0.97 0.14 0.72 0.10 0.60

emotions 20 0.22 0.78 0.15 0.49 0.09 0.31
40 0.22 0.60 0.10 0.29 0.08 0.11
0 0.11 1.00 0.06 0.90 0.04 0.81

scene 20 0.11 0.80 0.06 0.57 0.04 0.41
40 0.11 0.60 0.06 0.31 0.03 0.19
0 0.25 1.00 0.16 0.76 0.13 0.61

yeast 20 0.24 0.80 0.16 0.50 0.13 0.31
40 0.25 0.60 0.16 0.30 0.11 0.12
0 0.05 0.87 0.03 0.81 0.02 0.79

mediamill 20 0.05 0.72 0.03 0.51 0.02 0.40
40 0.05 0.50 0.03 0.29 0.02 0.19
0 0.03 0.91 0.01 0.81 0.005 0.75

NUS-WIDE 20 0.03 0.78 0.01 0.61 0.005 0.49
40 0.03 0.67 0.01 0.49 0.005 0.36

Table 4: Experiment results: Hamming loss

5. Conclusions

Producing sets of optimal predictions in the multilabel setting when uncertainty is
modeled by convex probability sets is computationally hard. The main contribution of
this paper is to show that some results coming from the precise case can be partially
transferred to the imprecise probabilistic case. Precisely, sets of optimal predictions un-
der the Hamming and the ranking loss can be easily outer-approximated by considering
the marginal probabilities of each label being relevant. This makes both computation
and learning issues easier, as one can focus on estimating such marginals (instead of
the whole joint model). We can consider that as an important result, as it shows that
imprecise probabilistic approaches can be computationally affordable (at least under
some conditions).

Some preliminary experiments with a nearest neighbour approach also indicate the
interest of producing such partial predictions, showing that making more cautious pre-
dictions lead to more correct predictions. Nevertheless, those same results show that
it can be hard to finely control the trade-off between completeness ad incorrectness.
Experimental studies with other well known imprecise probabilistic classifiers should
thus be performed.

Several other questions of interest remain. We can for example mention the case of
the generalized form (8), for which it is not clear if efficient approximations can be ob-
tained. This contrasts with the precise probabilistic case, where results easily extends
to this form. Similarly, it would be desirable to develop methods using imprecise prob-
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Ranking loss
k=1 k=2 k=3

Data set % missing ICR CPR ICR CPR ICR CPR
0 0.25 0.3 0.14 0.12 0.11 0.06

CAL500 20 0.26 0.20 0.15 0.05 0.15 0.02
40 0.24 0.11 0.20 0.02 0.13 0.01
0 0.24 0.62 0.07 0.40 0.05 0.30

emotions 20 0.20 0.40 0.05 0.29 0.03 0.10
40 0.14 0.21 0.03 0.05 0.01 0.01
0 0.29 0.73 0.15 0.72 0.11 0.68

scene 20 0.17 0.50 0.08 0.49 0.04 0.38
40 0.11 0.25 0.04 0.24 0.02 0.12
0 0.25 0.61 0.15 0.39 0.09 0.28

yeast 20 0.25 0.4 0.12 0.18 0.05 0.10
40 0.25 0.21 0.07 0.04 0.01 0.01
0 0.11 0.51 0.05 0.42 0.05 0.39

mediamill 20 0.11 0.32 0.05 0.23 0.04 0.20
40 0.13 0.19 0.04 0.10 0.03 0.08
0 0.11 0.49 0.02 0.31 0.01 0.27

NUS-WIDE 20 0.10 0.25 0.02 0.13 0.01 0.02
40 0.07 0.13 0.01 0.02 0.01 0.01

Table 5: Experiment results: Ranking loss

abilistic ideas and dedicated to producing partial predictions corresponding to a given
loss function. Another issue is that we currently use two dimensions (completeness and
incorrectness) to analyze our results, making it difficult to compare them with classical
multilabel methods producing determinate predictions. Note that how to meaningfully
do such a comparison is already non-trivial when considering usual classification and
0/1 loss [36], and that no principled solution currently exists when considering complex
outputs (here, vectors of relevant labels) or losses different from the 0/1.
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