An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2 - Archive ouverte HAL
Article Dans Une Revue Discrete Mathematics and Theoretical Computer Science Année : 2014

An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2

Julien Leroy
  • Fonction : Auteur
  • PersonId : 929174

Résumé

An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n + 1) − p(n) ≤ 2 S. Ferenczi proved that any minimal subshift with first difference of complexity bounded by 2 is S-adic with Card(S) ≤ 3 27. In this paper, we improve this result by giving an S-adic characterization of these subshifts with a set S of 5 morphisms, solving by this way the S-adic conjecture for this particular case.
Fichier principal
Vignette du fichier
dmtcs-16-1-15.pdf (444.75 Ko) Télécharger le fichier
Origine Accord explicite pour ce dépôt
Loading...

Dates et versions

hal-01179422 , version 1 (22-07-2015)

Licence

Identifiants

Citer

Julien Leroy. An S-adic characterization of minimal subshifts with first difference of complexity 1 ≤ p(n+1) - p(n) ≤ 2. Discrete Mathematics and Theoretical Computer Science, 2014, Vol. 16 no. 1 (1), pp.233-286. ⟨10.46298/dmtcs.1249⟩. ⟨hal-01179422⟩

Collections

TDS-MACS
84 Consultations
985 Téléchargements

Altmetric

Partager

More