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1 Introduction

The vehicle routing problem with stochastic travel and service times (VRPSTT) is defined on a com-
plete graph G = (V , E), where V = {0, v1, v2, . . . , vn} is the vertex set and E = {e = (vi, vj) : vi, vj ∈
V , vi 6= vj} is the edge set. Vertices vi ∈ V \ {0} represent the customers and vertex 0 represents the
depot. An edge weight t̃e, associated with edge e = (vi, vj), represents the random travel time along
edge e. Each customer vi ∈ V \ {0} has a random service time s̃vi and a known demand dvi for a
given product. Both travel and service times are assumed to follow known distributions. Customers
are served by an unlimited fleet of homogeneous vehicles located at the depot, each with a maximum
capacity Q and a maximum route duration T . The objective is to design a route set R of minimum
total expected duration E

[
T̃ (R)

]
=
∑

r∈RE
[
T̃r

]
, where T̃ (R) is the total (random) duration of the

route set, T̃r is the (random) duration of route r, and E [·] denotes the expected value. Each route
r ∈ R is an ordered set r =

(
0, v(1), . . . , v(i), . . . , v(nr), 0

)
, where v(i) ∈ V \ {0} is the i-th customer

visited in the route, nr is the number of customers serviced by the route, and (v(i), v(i+1)) ∈ E (with
v(0) = v(nr+1) = 0). We will refer to route r, depending on the context, either as the sequence of
vertices or edges in the route. In the baseline version of the problem, aside from the classical capacity
constraint, each route r ∈ R satisfies a duration constraint stating that:

P
(
T̃r ≤ T

)
≥ β ∀r ∈ R (1)

where the left-hand side is the probability that the route completes before T and β ∈ [0, 1] is
a minimum acceptance threshold. The latter represents the decisions maker’s aversion towards
violations to the duration constraint. Note that the total duration of a route T̃r is the convolution
of several random variables representing the travel and service times in the route.

One of the main challenges when solving the VRPSTT is selecting the appropriate distributions to
model random variables. First, the selected distributions should be able to accurately model travel
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and service times. Second, computing their convolutions should not add heavy computational burden
for optimization algorithms. The most widely-used approach in the stochastic VRP literature is to
model random variables using families of additive distributions such as the normal or gamma distri-
butions [4, 3, 2, 1, 10, 11]. Using these distributions, computing the convolution of random variables
can be done efficiently. On the other hand, recent studies suggest that often these distributions
inaccurately model travel times [5, 9].

Computing the convolutions of travel and service times when the distributions are non-additive is
not a trivial task. To overcome this difficulty, researchers have developed approaches based on Monte
Carlo simulation [3, 6] and queuing theory [12, 13]. In this talk we present a new approach based on
Phase-type (PH) distributions. Using this family of distributions one can closely approximate any
positive, continuous distribution with arbitrary precision and compute their convolutions in an exact
and efficient manner. We show how PH distributions can be used to build a route evaluator that can
be embedded into any optimization (search) algorithm for the VRPSTT. To assess the benefits of
our approach, we compare the performance of our PH route evaluator with route evaluators based
on normal distributions and Monte-Carlo simulation.

2 Building the PH route evaluator

2.1 Why PH distributions?

PH distributions are dense in the set of continuous density functions with support on [0,∞), meaning
that there exists a PH distribution arbitrarily close to any positive distribution. Finding such a
PH distribution is a process known as fitting, for which there exist efficient algorithms. In other
words, since travel and service times are always positive, they can be accurately modeled using PH
distributions. From the computational point of view, PH distributions have two properties that make
them a good fit for optimization algorithms: i) the convolution of PH distributions is again a PH
distribution; and, ii) the distribution function, the expected value, and higher-order moments of a
PH distribution can be found in closed form.

2.2 The route evaluator

Search algorithms for the VRPSTT can be decoupled into two components: the routing engine and
the route evaluator. The routing engine is responsible for exploring the solution space, unveiling new
routes to make up a solution. On the other hand, the route evaluator is responsible for extracting
the performance metrics of a route such as the probability of satisfying the duration constraint in
(1). In our approach, the route evaluator builds the PH distribution of the total duration of the
route (PHr) and uses it to extract the performance metrics.

Figure 1 illustrates the interaction between our route evaluator and the routing engine. During
the pre-processing phase, the route evaluator fits a PH distribution to each random variable (travel
time or service time) in the problem instance. Then, during the optimization phase, the routing
engine invokes the route evaluator every time the evaluation of a route r is needed. The route
evaluator computes and returns PHr as the convolution of the PH distributions fitted (during the
pre-processing phase) to the travel and service times that appear in the route.
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Figure 1: Route evaluator general structure
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3 Computational experiments

Since no publicly available benchmark exists for the VRPSTT, we adapted four instances from the
classical Christofides, Mingozzi, and Toth Capacitated VRP instances. For each instance we built
six versions with different travel and service time distributions. These distributions were selected
to model different real-world scenarios. For instance, we built a version of each instance in which
travel times are lognormally distributed, trying to reproduce the travel times of congested links in
uninterrupted traffic.

To compare our approach to alternatives from the literature we implemented three route evalua-
tors: the proposed PH evaluator; an evaluator that assumes that all random variables are normally
distributed; and, an evaluator that computes the performance metrics using Monte Carlo simulation.
We embedded each of these evaluators in the multi-space sampling heuristic (MSH) proposed by
Mendoza and Villegas for the VRP with stochastic demands [7]. The algorithm follows a two-phase
solution strategy. In the first phase, it samples multiple solution representation spaces; while in the
second it assembles the best possible solution using parts of the sampled elements. The approach
operates as follows. At each iteration k, the algorithm selects a sampling heuristic from a set H of
randomized traveling salesman problem (TSP) heuristics and uses it to build a giant tour pk visiting
all customers. Then, the algorithm makes a call to a splitting procedure, similar to the one introduced
by Prins [8], to retrieve a tuple 〈Ωk, sk〉, where Ωk is the set of all feasible routes (in terms of not
exceeding the vehicle capacity Q and satisfying the constraints in C) that can be extracted from pk

without altering the order of the customers, and sk is the best solution that can be built using routes
from Ωk. The routes in Ωk join a set of sampled routes Ω (i.e., Ω ← Ω ∪ Ωk), while sk is used to
update an upper bound f(s∗) on the objective function of the final solution, where s∗ is the best
solution found so far. After a total of K iterations, the heuristic proceeds to the assembly phase,
which consists in solving a set partitioning (column-oriented) formulation of the underlying routing
problem over Ω, using f(s∗) as an upper bound.

To analyze the performance delivered by MSH running with the three route evaluators, we evaluate
each solution over 1M realizations of the stochastic travel and service times. Our results suggest that
assuming normal distributions is a valid alternative when the underlying travel times do not exhibit
large skewness. However, in practice, more often than not, travel times have a positive skewness and
normal distributions tend to lead to poor routing decisions. According to our experiments, using
Monte-Carlo simulation to evaluate routes leads to overly optimistic solutions that do not satisfy the
duration constraints in practice. On the other hand, using PH distributions leads to solutions that are
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consistently more reliable and have similar total expected duration. In conclusion PH distributions
are the most accurate choice when modeling travel and service times for all distributions used in our
experiments.

References

[1] N. Chen, M. H. HÃă, A. Langevin, and M. Gendreau. Optimizing road network daily main-
tenance operations with stochastic service and travel times. Transportation Research Part E:
Logistics and Transportation Review, 64(0):88 – 102, 2014.

[2] M. A. Figliozzi. The impacts of congestion on commercial vehicle tour characteristics and costs.
Transportation Research Part E: Logistics and Transportation Review, 46(4):496 – 506, 2010.

[3] A. S. Kenyon and D. P. Morton. Stochastic vehicle routing with random travel times. Trans-
portation Science, 37(1):69–82, 2003.

[4] G. Laporte, F. Louveaux, and H. Mercure. The vehicle routing problem with stochastic travel
times. Transportation Science, 26(3):161–170, 1992.

[5] C. Lecluyse, T. Van Woensel, and H. Peremans. Vehicle routing with stochastic time-dependent
travel times. 4OR: A Quarterly Journal of Operations Research, 7:363–377, 2009.

[6] X. Li, P. Tian, and S. C. H. Leung. Vehicle routing problems with time windows and stochastic
travel and service times: Models and algorithm. International Journal of Production Economics,
125:137–145, 2010.

[7] J. E. Mendoza and J. G.. Villegas. A multi-space sampling heuristic for the vehicle routing
problem with stochastic demands. Optimization Letters, 7(7):1503–1516, 2013.

[8] C. Prins. A simple and effective evolutionary algorithm for the vehicle routing problem. Com-
puters & Operations Research, 31(1):1985 – 2002, 2004.

[9] S. Susilawati, M. Taylor, and S. Somenahalli. Distributions of travel time variability on urban
roads. Journal of Advanced Transportation, 47(8):720–736, 2013.
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