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1 Introduction

Electric vehicles (EVs) are one of the most promising technologies to reduce greenhouse gas emissions
in the transportation sector [1]. Recently, the use of electric vehicles (EVs) in freight and passenger
transportation gives birth to a new family of vehicle routing problems (VRPs), the so-called electric
VRPs (e-VRPs). As their name suggests, e-VRPs extend classical VRPs to account (mainly) for two
constraining EV features: the short driving range and the long battery charging time. As a matter of
fact, routes performed by EVs usually need to include time-consuming detours to charging stations.

Most of the existing literature on e-VRPs relies on one of the following assumptions: i) vehicles
recharge to their battery to its maximum level every time they reach a charging station or ii) the
amount of battery charge is a linear function of the charging time. In practical situations, however, the
amount of charge (and thus the time spent at each charging point) is a decision variable and battery
charge levels are a concave function of the charging times. In this research we introduce the electric
vehicle routing problem with non-linear charging functions (e-VRP-NLCF). We propose a mixed-
integer linear programming (MILP) formulation that, running on a commercial solver, is able to
solve small instances of the problem. To tackle large-scale instances we propose a metaheuristic that
uses a MILP formulation to find the optimal charging policy. We report on extensive computational
experiments evaluating the performance of the proposed methods and analyzing the impact on the
solutions of di�erent charging policy assumptions.
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2 Problem description and mathematical model

Let I be the set of customers, F be the set of charging stations (CSs), and 0 be the depot where
every route starts and ends. The e-VRP-NLCF is defined on an undirected and complete graph
G = (V,E), where V = {0} fi I fi F Õ and F Õ contains copies of the CSs. For each CS i œ F , the
number of copies in F Õ corresponds to the number of times that i can be visited in a solution.

Each CS i œ F Õ has a charging mode (e.g., standard, fast, quick), which is associated to a charging
function gi(l) that represents the battery charge level when the EV is charged over l time units.
Function gi(l) is concave with an asymptote at battery capacity Q (expressed in KWh). According
to experimental analysis this function can be approximated by a piecewise linear function. As Figure
1a shows aik and cik represent the battery level and the charging time, for the breakpoint k œ B of
the CS i œ F Õ, where B = {1, .., b} is the set of breakpoints. The set E = {(i, j) : i, j œ V, i ”= j}
corresponds to edges connecting vertices of V . Each edge (i, j) has two associated nonnegative values:
a travel time tij and a distance dij . The customers are served using an unlimited fleet of EVs with
a consumption rate cr (expressed in KWh/km). The EV driving-range constraint is dictated by Q
and a tour duration constraint Tmax. It is assumed that the EVs leave the depot with a fully charged
battery, and that all CSs can handle an unlimited number of EVs simultaneously.
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Figure 1: Piecewise linear approximation for the charging function

In the e-VRP-NLCF the objective is to find a set of routes of minimum total time, which is defined
as the sum of the travel times and the recharging times, such that each customer is visited exactly
once; the level of the battery when the EV arrives at any vertex is nonnegative; each route satisfies
the maximum-duration limit; and, each route starts and ends at the depot.

In the formulation we use the following decision variables: let xij be a binary variable, equal to
1 if an EV travels from vertex i to j and 0 otherwise. Let yj be the battery level upon departure
from vertex j œ V . Let ·j be the departure time at vertex j œ V . Let qi and oi be the battery
levels when an EV arrives to and depart from CS i œ F Õ, and si and ei be their associated charging
times (see Figure 1b). Let �i = ei ≠ si be the time spent at CS i œ F Õ. Finally, let –ik, ⁄ik, wik

and zik be auxiliary variables for the piecewise linear approximation. The MILP formulation for the
e-VRP-NLCF follows:

min
ÿ
i,jœV

tijxij +
ÿ
iœF Õ

�i (1)

s.t
Odysseus 2015 - 10



e-VRP-NLCF

ÿ
jœV,i ”=j

xij = 1 ’i œ I (2)

ÿ
jœV,i ”=j

xij Æ 1 ’i œ F Õ (3)

ÿ
jœV,i ”=j

xji ≠
ÿ

jœV,i ”=j

xij = 0 ’i œ V (4)

cr · dijxij ≠ (1≠ xij)Q Æ yi ≠ yj Æ cr · dijxij + (1≠ xij)Q ’i œ V, ’j œ I (5)
cr · dijxij ≠ (1≠ xij)Q Æ yi ≠ qj Æ cr · dijxij + (1≠ xij)Q ’i œ V, ’j œ F Õ (6)
yi Ø cr · di0xi0 ’i œ V (7)
yi = oi ’i œ F Õ (8)
y0 = Q (9)
qi Æ oi ’i œ F Õ (10)
qi =
ÿ
kœB

–ikaik ’i œ F Õ (11)

si =
ÿ
kœB

–ikcik ’i œ F Õ (12)
ÿ
kœB

–ik =
ÿ
kœB

zik ’i œ F Õ (13)
ÿ
kœB

zik =
ÿ
jœV

xij ’i œ F Õ (14)

–ik Æ zik + zi,k+1 ’i œ F Õ,’k œ B \ b (15)
–ib Æ zib ’i œ F Õ (16)
oi =
ÿ
kœB

⁄ikaik ’i œ F Õ (17)

ei =
ÿ
kœB

⁄ikcik ’i œ F Õ (18)
ÿ
kœB

⁄ik =
ÿ
kœB

wik ’i œ F Õ (19)
ÿ
kœB

wik =
ÿ
jœV

xij ’i œ F Õ (20)

⁄ik Æ wik + wi,k+1 ’i œ F,Õ ’k œ B \ b (21)
⁄ib Æ wib ’i œ F Õ (22)
�i = ei ≠ si ’i œ F Õ (23)
·i + (tij + pj)xij ≠ Tmax(1≠ xij) Æ ·j ’i œ V, ’j œ I (24)
·i + �j + tijxij ≠ (Tmax + Smax)(1≠ xij) Æ ·j ’i œ V, ’j œ F Õ (25)
·j + tj,0 Æ Tmax ’j œ V (26)
·0 Æ Tmax (27)
xij œ {0, 1} ’i, j œ V (28)
·i Ø 0, yi Ø 0 ’i œ V (29)
zik œ {0, 1}, wik œ {0, 1},–ik Ø 0,⁄ik Ø 0 ’i œ F Õ,’k œ B (30)
qi Ø 0, oi Ø 0, si Ø 0, ei Ø 0,�i Ø 0 ’i œ F Õ (31)

The objective function (1) seeks to minimize the total time (travel times and charging times).
Constraints (2) ensure that each customer has exactly one successor. Constraints (3) ensure that
each CS will have at most one successor. Constraints (4) impose the flow conservation. Constraints
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(5) and (6) track the battery level at each vertex. Constraints (7) ensure that, when leaving a vertex,
the EV has enough remaining energy to reach either the depot or a CS. Constraints (8) reset the
battery tracking to oi upon departure from CS i œ F Õ. Constraints (9) ensure that the battery level is
Q at the depot. Constraints (10) relate the battery level when an EV arrives to and departs from any
CS. Constraints (11-16) define the battery level (and its corresponding charging time) when an EV
arrives to station i œ F Õ based on the piecewise linear charging function of gi(l). Similarly, constraints
(17-22) define the battery level (and its corresponding charging time) when an EV leaves the CS.
Constraints (23) define the time spent at any CS. Constraints (24) and (25) track the departure time
at each vertex, where Smax = maxiœF Õ{cib}. Constraints (26) and (27) ensure that the EVs return to
the depot no later than Tmax. Finally, constraints (28-31) define the domain of the decision variables.

3 A modified multi-space sampling heuristic

To solve the e-VRP-NLCF, we extend the modified multi-space sampling heuristic (mMSH) in-
troduced by Montoya et al. [2] for the Green VRP. This method has two phases: sampling and
assembling. In the sampling phase the algorithm uses a set of randomized TSP heuristics to draw
a biased sample from the set K of TSP-like tours (i.e., giant tours visiting all customers). Each
TSP-like tour is split onto a feasible e-VRP-NLCF solution following the route-first cluster-second
principle. To repair the energy infeasible routes, the splitting procedure uses a two phases heuristic
an MILP formulation. The routes in the best e-VRP-NLCF solutions are stored in a set �. In the
assembling phase mMSH maps set � to a solution s by solving a set partitioning formulation of the
e-VRP-NLCF.

4 Computational results

MILP solves to optimality 10 instances with at most 10 customers and obtains feasible solutions
for others 58 instances with at most 80 customers within 10,800 seconds. For the 10 instances with
proven optimal solution, mMSH has an average gap of 0.62%, and an average CPU time of 2.89
seconds. For the other 58 instances mMSH has an average gap with respect to the best integer
solution found with MILP of -1.88% and an average CPU time of 224.22 seconds. For the remaining
52 instances mMSH obtained feasible solutions on an average CPU time of 9,903.03 seconds.

We evaluated the impact of di�erent charging policy assumptions (i.e., full charging, linear charg-
ing, among others). Preliminary experiments show that the objective function increases in average
8.4% and some instances are infeasible.
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