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Multireflection grazing-incidence X-ray diffraction (MGIXD) was used to

determine the stress- and strain-free lattice parameter in the surface layer of

mechanically treated (polished and ground) tungsten and austenitic steel. It was

shown that reliable diffraction stress analysis is possible only when an

appropriate grain interaction model is applied to an anisotropic sample.

Therefore, verification of the X-ray stress factors (XSFs) was accomplished by

measuring relative lattice strains during an in situ tensile test. The results

obtained using the MGIXD and standard methods (� and ! geometries) show

that the Reuss and free-surface grain interaction models agree with the

experimental data. Moreover, a new interpretation of the MGIXD results was

proposed and applied for the first time to measure the probability of stacking

faults as a function of penetration depth for a polished and ground austenitic

sample. The XSF models verified in the tensile test were used in the analysis of

residual stress components.

1. Introduction

Stress state is a characteristic feature of materials which, along

with microstructure and texture, influences material proper-

ties. Thus, stress analysis is of great significance and has

become an important part of materials science. Both the

magnitude and the spatial distribution of residual stress (i.e.

stress remaining in a material after different treatments or

production techniques, such as casting, film deposition etc.)

influence the physical properties of solids and play an

important role in such processes as stress corrosion, damage

(Noyan & Cohen, 1987; Hauk, 1997; Reimers et al., 2008),

plastic deformation (Dakhlaoui et al., 2006; Wroński et al.,

2007), recovery and recrystallization (Humphreys et al., 2004;

Wawszczak et al., 2011).

The properties of a polycrystalline material are never

homogenous. Important heterogeneities of crystal structure,

microstructure and residual stress are expected close to the

sample surface, especially in the case of mechanically treated

materials or deposited coatings (Noyan & Cohen, 1987;

Ruppersberg et al., 1989; Hauk, 1997; Reimers et al., 2008).

Accordingly, methods enabling nondestructive characteriza-

tion of a material as a function of depth under the surface are

very important. One of these is the diffraction method, which

enables direct measurements of strains in precisely defined

sampling volumes in the material. Diffraction is frequently

used for the measurement of lattice elastic deformation and

distortion (i.e. macrostrains and microstrains) determined

from the displacement and broadening of the diffraction peak

(Noyan & Cohen, 1987; Hauk, 1997; Reimers et al., 2008;

Warren, 1990). In principle, the stress present in the near-

surface volume can be measured using the standard X-ray

sin2 method. In this approach, interplanar spacings are

determined using a single hkl reflection for different orienta-

tions of the scattering vector with respect to the sample

(Noyan & Cohen, 1987; Hauk, 1997; Reimers et al., 2008).

However, this method is not recommended for the analysis of

depth-dependent stress states because the penetration depth

of X-ray radiation varies significantly during measurement.

Therefore, a geometry based on the grazing-incidence X-ray

diffraction (GIXD) method has been applied to measure

residual stress (Predecki et al., 1993; Genzel et al., 1999;

Skrzypek & Baczmański, 2001; Skrzypek et al., 2001; Bacz-

mański et al., 2004; Welzel et al., 2005; Marciszko, Baczmański,

Wierzbanowski et al., 2013).

GIXD geometry is based on nonsymmetrical diffraction

and performed for a small incidence angle (�, the angle

between the incident beam and sample surface). In this case,

the penetration of X-ray radiation (limited by the absorption

of radiation in the studied material) depends mostly on the
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long path of the incident beam. For a constant value of the �
angle, the penetration depth of X-ray radiation is well defined

and does not change during the experiment; however, in order

to perform stress measurements, the orientation of the scat-

tering vector must be varied. Different methods have been

proposed to do this (Welzel et al., 2005):

(a) a single-reflection and single-wavelength method (only

one reflection and one wavelength), in which the sample must

be rotated so that � is constant but the orientation of the

scattering vector changes with respect to the sample (Genzel,

1994; van Acker et al., 1994; Genzel et al., 1999; Kumar et al.,

2006; Erbacher et al., 2007);

(b) a single-reflection and multiple-wavelength method

(one reflection for different wavelengths), in which appro-

priate wavelengths and � angles must be found to fulfil the

condition of a constant penetration depth for different

orientations of the scattering vector (Predecki et al., 1993);

(c) a multiple-reflection and single-wavelength method

(MGIXD), in which many reflections for the same wavelength

are measured and the � angle is fixed during measurements

(the orientation of the scattering vector changes owing to 2�
variation; Skrzypek et al., 2001; Skrzypek & Baczmański, 2001;

Baczmański et al., 2004; Marciszko, Baczmański, Wróbel et al.,

2013).

To study the stress state in a polycrystalline material, one

must determine the stress from the lattice strains measured

using the X-ray elastic constants (XECs) or, more generally,

the X-ray stress factors (XSFs).1 The simplest models, i.e. the

Voigt (1928) and Reuss (1929) methods for calculation of

XSFs, are based on the hypothesis of strain or stress homo-

geneity in the volume under consideration. These models have

been applied to quasi-isotropic and textured polycrystalline

materials as well (Dölle, 1979; Dölle & Cohen, 1980; Barral et

al., 1987; Brakman, 1987; Baczmański et al., 1994; Schuman et

al., 1994, Welzel et al., 2005).

In more advanced models, the interaction between grains is

taken into account in the calculations. For example, in the

Kröner (1961) method the grain is approximated by an ellip-

soidal inclusion (Eshelby, 1957) embedded in a homogenous

and isotropic medium. Moreover, two approaches have been

proposed to take into account the direction-dependent inter-

action between grains. The first was proposed by Witt & Vook

(1968) and developed by van Leeuwen et al. (1999) and Welzel

et al. (2003) for columnar grains in the surface layer. It was

assumed that these grains, with dimensions equal to the

thickness of the film, exhibit the same in-plane strain (a Voigt-

type behaviour), whereby they can deform freely in a direction

perpendicular to the surface (a Reuss-type behaviour).

Another model, called the free-surface model, was proposed

by Baczmański et al. (2008) for grains placed close to the

sample surface. As in the Vook–Witt model, it was assumed

that these grains can freely deform in the direction normal to

the surface (Reuss-type behaviour), while in-plane interaction

is approximated by a self-consistent model (Kröner-type

behaviour). It should be underlined that the latter approx-

imation describes the interaction occurring between grains in

the near-surface gauge volume penetrated by X-rays, espe-

cially in cases where the MGIXD method is used. This is why

the free-surface model was tested in this study.

In this paper, the MGIXD method is developed in order to

gain new information concerning the variation with depth of

the crystal structure and microstructure in samples exhibiting

stress in their surface layers. A new methodology for simul-

taneous determination of stress, the strain-free lattice para-

meter a0 and stacking fault probability was developed and

applied to study the mechanically treated surfaces of stainless

austenitic steel 316L with a low value of stacking fault energy

and face-centred cubic (f.c.c.) structure. These characteristics

cannot be obtained using other experimental methods applied

for stress measurement (e.g. hole drilling, ultrasonic or other

diffraction methods). It must be underlined that the devel-

opments of the MGIXD method presented here are possible

only if the anisotropy of XSFs for different hkl reflections and

in different directions with respect to the sample is known.

Therefore, the first part of this study concerns the experi-

mental verification of different models for XSF calculation.

The results obtained in this study enabled us to choose the

best model to use for calculation of XSFs and simultaneously

to identify the type of interaction occurring between grains

located close to the sample surface.

2. Principles of multireflection grazing-incidence X-ray
diffraction

In the standard sin2 method, the interplanar spacings

hd(�,  )i{hkl} are determined from diffraction peak positions

measured for different  angles and the constant � angle

describing the scattering vector’s orientation with respect to

the sample (Fig. 1). The hd(�,  )i{hkl} spacings are measured

along the direction of the scattering vector using the single

reflection hkl (Noyan & Cohen, 1987; Hauk, 1997).

As has been shown (see e.g. Welzel et al., 2005), the  angle

can be changed in two different ways: by tilting the diffraction

Figure 1
Orientation of the scattering vector with respect to sample frame X. The
 and � angles define the orientation of the L coordinate system (where
the L3 axis is parallel to the scattering vector and the L2 axis lies in the
plane of the sample surface).

1 Further details on XSF models are given in the supporting information,
which is available from the IUCr electronic archives (Reference: NB5129). For
additional literature related to this material, see Bollenrath et al. (1967),
Lipinski & Berveiller (1989) and Matthies & Humbert (1995).



plane (� geometry) or by rotating both

incident and diffracted beams in a

diffraction plane perpendicular to the

sample surface (! geometry). In both

cases the diffraction peak for the same

reflection hkl is measured; thus the 2�
angle remains approximately constant

(excluding small shifts caused by

lattice strains). Measurements of hd(�,

 )i{hkl} versus sin2 functions can be

repeated for different � angles.

The standard method for stress

measurement is not suitable for the

analysis of depth-dependent stress

states, because the penetration depth

of the X-ray radiation varies significantly during measurement

when the orientations of both the incident and the reflected

beams are varied. The effective penetration depth (i.e. the

depth at which 1 � 1/e of the incident beam intensity is

absorbed) can be calculated for the � and ! geometries

(Welzel et al., 2005):

� geometry : � ¼
cos sin �

2�
; ð1Þ

! geometry : � ¼
sin2� � sin2 

2� sin � cos 
; ð2Þ

where � is the linear attenuation coefficient.

Multireflection grazing-incidence X-ray diffraction

(MGIXD) geometry, also called multiple hkl grazing inci-

dence, is characterized by a small and constant incidence angle

� and different orientations of the scattering vector (variable

2�{hkl} angle for a constant wavelength; see Fig. 2) given by the

equation (van Acker et al., 1994; Skrzypek & Baczmański,

2001)

 fkhlg ¼ �fhklg � �; ð3Þ

where 2�{hkl} are the diffraction angles corresponding to those

reflections hkl for which diffraction peaks are measured. In

this geometry, the diffraction plane (defined by the incident

and diffracted beams) is always perpendicular to the sample

surface. Measurements of interplanar spacings are performed

in the near-surface volume, which is limited by the radiation

absorption and effective penetration depth of the X-ray beam

in the studied material as defined by the formula (Baczmański

et al., 2003)

� ¼
�

sin �
þ

�

sinð2�fhklg � �Þ

� ��1

: ð4Þ

As shown in Fig. 3, in the case of the MGIXD method, the

penetration depth is almost constant for a wide range of sin2 ,

and significant variation of � versus sin2 occurs for both

standard methods (i.e. for ! and � geometries). When the �
angle in the MGIXD method is small, the path of the incident

beam is long [a(z) >> b(z), where z is the depth under the

surface defined in Fig. 2] and equation (4) can be simplified:

� ¼ ðsin �Þ=�: ð5Þ

Here � does not depend on the �{hkl} angle and is constant

when interplanar spacings are measured for different orien-

tations of the scattering vector described by the  {hkl} angle. It

can be concluded that stress measurement can be performed

for a well defined penetration depth � by using the MGIXD

method. Moreover, it is possible to perform measurements at

different depths below the sample surface by choosing

appropriate values of the � angle [see equation (5)].

�

Figure 2
Geometry of the MGIXD method. The incidence angle � is fixed during measurement, while the
orientation of the scattering vector �K{hkl} is characterized by the angle  {hkl}. The depth under the
surface and penetration depth are denoted by z and �, respectively.

Figure 3
Penetration depth as a function of sin2 calculated from equations (1),
(2) and (4) for (a) austenitic steel (� = 554 cm�1, Fe K�1 radiation) and
(b) polished tungsten (� = 3311 cm�1, Cu K�1 radiation). In the standard
geometry, the 311 (2� = 123.5�) and 321 (2� = 131.3�) reflections were
used for austenitic steel and tungsten, respectively.



Analogously to the standard method (Noyan & Cohen,

1987; Hauk, 1997; Welzel et al., 2005), stress can be determined

from interplanar spacings measured for different  fhklg (i.e. a

constant � angle and various �fhklg angles). In the multi-

reflection method, the so-called equivalent lattice parameters

hað�; ; �Þical
fhklg are calculated and expressed using the

macrostress �ijð�Þ and the strain-free a0 lattice constant (Dölle

& Hauk, 1978; Dölle, 1979; Baczmański et al., 2003; Skrzypek

et al., 2001; Ortner, 2005, 2006):

hað�; ; �Þical
fhklg ¼ ½Fijðhkl; �;  Þ�ijð�Þ� a0 þ a0; ð6Þ

where Fij(hkl, �,  ) are the XSFs and � describes the sample

rotation around the surface normal (Fig. 1), while  fhklg

depends on the diffraction angle for a given hkl reflection [cf.

Fig. 2 and equation (3)]. In the equations above and below, the

Einstein summation convention is applied for the repeated

indices. For cubic crystal structure, experimental values of

equivalent lattice parameters are calculated from the

measured interplanar spacings hdð�; ; �Þifhklg:

hað�; ; �Þiexp
fhklg ¼ hdð�; ; �Þifhklgðh

2 þ k2 þ l2Þ
1=2: ð7Þ

In the case of the general stress state, and assuming2 that

�33ð�Þ ¼ 0, the other components of the stress tensor and a0

parameter can be determined by fitting hað�; ; �Þical
fhklg

[expressed by equation (6)] to the experimental values yielded

by equation (7). The components of the stress tensor and a0

parameter are independent values varied in the least-squares

fitting procedure, while the values of Fijðhkl; �;  Þ must be

known from the model or a previous measurement. The

calculations performed in this study were based on minimizing

the merit function called �2, defined as (Press et al., 1989)

�2
¼

1

N �M

XN

n¼1

hað�n;  nÞi
exp
fhklg � hað�n;  nÞi

cal
fhklg

	n

" #2

; ð8Þ

where hað�n;  nÞi
exp
fhklg and hað�n;  nÞi

cal
fhklg are the experimental

and calculated lattice parameters, 	n ¼ 	n½hað�; Þifhklg� is the

measurement uncertainty (standard deviation) of

hað�n;  nÞi
exp
f211g for the nth measurement, and N and M are the

number of measured points and fitting parameters, respec-

tively.

Applying the method described above to the sets of inter-

planar spacings measured for different incident � angles, the

dependence of stress and the a0 lattice parameter on pene-

tration depth � can be determined. With additional assump-

tions or approximations, the variations of these quantities

versus real depth under the sample surface can also be

calculated [for example, the inverse Laplace transform was

used by Genzel et al. (1999) and Klaus & Genzel (2013)];

however, this data treatment is beyond the scope of the

present work and only variation versus penetration depth is

presented in this paper.

3. The influence of elastic anisotropy and stacking
faults on the interpretation of MGIXD results

It should be underlined that, in the case of anisotropic single-

crystal elastic constants, reliable stress analysis is possible only

when an appropriate grain interaction model is applied to the

calculation of the XECs or XSFs (four different models are

briefly recalled in the supporting information). In the present

Figure 4
ODFs determined for (a) austenitic stainless steel and (b) polished
tungsten. Sections through the basic range 0 � ’1, �, ’2 � 90� of Euler
space (Bunge, 1982) with a step of 5� along the ’1 axis for austenitic steel
(a) and along the ’2 axis for tungsten (b) are presented.

2 This assumption results from the relaxation of surface normal stress in the
shallow volume of the material penetrated by X-rays and has been commonly
used in other methods of stress determination using X-ray diffraction (Hauk,
1997).



study, the best-fitting models to calculate the XSFs for poly-

crystalline materials characterized by low (tungsten) and high

(austenitic stainless steel) elastic anisotropy of crystallites

were identified and then applied to determine stress using the

MGIXD method. For austenitic stainless steel, the XSF

models were investigated during a tensile test (see x4); for the

other samples (polished tungsten, polished and ground

austenite stainless steel) the residual stress components were

analysed following surface treatment (the results are shown in

x5). Moreover, in the case of mechanically treated austenitic

samples, the influence of stacking faults on MGIXD

measurements was taken into account for the first time. As a

result, the probability of a stacking fault for {111} planes was

determined. Below is a description of the effects of elastic

anisotropy and the presence of stacking faults on ha(�,  )i{hkl}

versus sin2 plots measured using the MGIXD method.

3.1. Sample preparation and texture measurements

The studied austenitic sample (AISI316L) was machined

from a commercial hot-rolled and solution-annealed (at

1323 K) sheet; the cylindrical tungsten sample (diameter

16 mm, height 10 mm) was produced by metallurgical powder

technology followed by forging. At first, the influence of the

texture function on simulated lattice strains corresponding to

given macroscopic stress was studied. The {111}, {200} and

{220} pole figures were measured using Cu K� radiation for

hot-rolled austenitic steel (AISI316L); the {110}, {200} and

{211} pole figures for the polished

tungsten sample were determined

by Mn K� radiation. The pole

figures were measured on a stan-

dard texture goniometer, using

Bragg–Brentano geometry with a

point focus (a collimator with a

diameter of 1.5 mm). These

measurements do not take depth-

dependent gradients of the crys-

tallographic texture into account.

The orientation distribution

functions (ODFs; see Bunge, 1982)

in Fig. 4 were calculated from the

experimental pole figures using the

WIMV algorithm (Kallend et al.,

1990). In the case of the austenitic

sample, the Euler angles were

defined with respect to the sample

frame determined by the directions

characteristic for rolling, i.e.

x1 || TD (transverse direction),

x2 || RD (rolling direction) and

x3 || ND (normal direction)

(Fig. 4a). A fibre-type texture was

determined in the tungsten sample;

consequently the x1 and x2 axes

were defined arbitrarily in the

surface plane, while x3 was surface

normal (the same sample frame was later used to define the

orientation of the measured stress tensor).

3.2. Influence of elastic anisotropy on lattice strains

This section is aimed at showing the effect of elastic

anisotropy on stress analysis performed using the MGIXD

method for textured materials. To demonstrate the influence

of elastic anisotropy on the lattice strains, the predicted h"(�,

 )i{hkl} versus sin2 plots corresponding to uniaxial stress

�11 ¼ 500 MPa are shown in Fig. 5. The lattice strains h"(�,

 )i{hkl} were calculated from the equation

h"ð�; Þifhklg ¼
hdð�; Þifhklg � d0fhklg

d0fhklg

¼ F11ðhkl; �;  Þ �11;

ð9Þ

where d0fhklg is the strain-free interplanar spacing; the XSFs

were determined using four different grain interaction models

(see supporting information) for the single-crystal elastic

constants given in Table 1, assuming the random distribution

of orientations or texture functions presented in Fig. 4.

In analysing Figs. 5(a) and 5(b), it can be concluded that in

the case of elastically isotropic tungsten the same results were

obtained for different models with random grain orientations

as well as textures. As expected, the h"(�,  )i{hkl} versus sin2 
plots are linear because the XSFs do not depend on the hkl

reflection (cf. supporting information). Similar linear curves

were obtained using the standard method when a single hkl

�

Figure 5
Lattice strains calculated for different hkl reflections used in MGIXD, predicted for uniaxial tensile stress
�11 ¼ 500 MPa applied to (a), (b) tungsten and (c), (d) austenitic steel. The XSFs were calculated using
the single-crystal elastic constants given in Table 1 and assuming (a), (c) random texture or (b), (d) the
experimental texture functions presented in Fig. 4 (in the case of cold-rolled austenite, �11 is parallel to
TD).



reflection was used (cf. Noyan & Cohen, 1987; Hauk, 1997).

The nonlinearity of the plots of h"(�,  )i{hkl} versus sin2 
(Figs. 5c and 5d) is caused by the significant crystal anisotropy

of austenite, which leads to a strong dependence of the XSFs

on the hkl reflection. In this case, different models give

significantly different results, i.e. the strongest nonlinearities

are predicted by the Reuss model, while a linear plot is given

by the Voigt model. The crystallographic texture does not

change the values of the lattice strains for the studied auste-

nitic sample significantly, as can be seen by comparing

Figs. 5(c) and 5(d). It can be concluded that for both studied

samples the influence of texture on the experimental results is

not significant; in fact, only crystal anisotropy plays an

important role in the interpretation of the stress measure-

ments performed using the MGIXD method. Despite the

minor influence of texture on the results, the ODFs were taken

into account for all XSFs calculated in this work (thus the

characterizations of the obtained samples are closer to the real

state of the material). It can be also concluded that texture

gradients which may be present in the studied materials do not

significantly influence the interpretation of the measurements

performed in this study.

The simulations presented in this section prove that the

problem of crystal anisotropy is very important for correct

interpretation of the experimental data obtained using the

MGIXD method. Therefore, different models of XSF calcu-

lations must be verified by comparing them with the experi-

mental data obtained during the in situ tensile test for the

anisotropic austenitic sample.

3.3. Influence of stacking faults on measured lattice para-
meters

Residual stress is not the only reason for the diffraction

peak shift with respect to the position corresponding to the

perfect lattice. Stacking faults may also be the cause (Hauk,

1997). The first studies concerning this effect were done by

Paterson (1952), Warren & Warekois (1955) and Wagner

(1957, 1966), and the next by Velterop et al. (2000) and Jegou

et al. (2013), in which it was shown that stacking faults can

significantly change the position of diffraction lines. This is

especially important for f.c.c. crystals with low stacking fault

energy (e.g. austenitic steels). In this case, the magnitude of

the peak shift is proportional to the probability of finding the

stacking fault for two neighbouring {111} planes. In the

absence of second-order plastic incompatibility stress (Bacz-

mański et al., 2003), the following can be used (following

Warren & Warekois, 1955; Wagner, 1966; Baczmański, 2005):

hað�; Þifhklg ¼ ½Fijðhkl; �;  Þ�ij þ 
GðhklÞ�a0 þ a0; ð10Þ

with

GðhklÞ ffi
31=2

4�m

X
m

s L0

h2 þ k2 þ l2
; L0 ¼ hþ kþ l;

s ¼

þ1 for L0 ¼ 3M � 1;

0 for L0 ¼ 3M;

�1 for L0 ¼ 3M þ 1;

and M 2 Z:

8><
>:

ð10aÞ

Here GðhklÞ is the coefficient reflecting relative changes in the

determined interplanar spacings caused by stacking faults; the

sum is calculated over all symmetrically equivalent {hkl}

planes; m is the plane multiplicity; and 
 is the probability of

finding the deformation stacking fault for two neighbouring

planes {111}.

Strictly speaking, the 
 value refers to the stacking faults

produced during plastic deformation (so-called deformation

stacking faults). A transmission electron microscopy study

confirmed that stacking faults were present in the plastically

deformed stainless steel used in this study (Fig. 6), and their

influence on the measured lattice parameter must be taken

into account in the stress analysis. Both macrostress and

stacking faults cause nonlinearities in the ha(�,  )i{hkl} versus

sin2 plots, i.e. a deviation of the determined ha(�,  )i{hkl}

lattice parameter from a linear dependence on sin2 . These

effects are demonstrated in Fig. 7, where the ha(�,  )i{hkl}

versus sin2 plots were simulated using equation (10) for

applied tensile or compressive stress (see Figs. 7a, and 7b) or

in the presence of the stacking faults (Fig. 7c). Calculations

were done for experimental conditions corresponding to the

austenitic sample measured using the MGIXD method with

Cu K� radiation (assumed strain-free lattice parameter a0 =

3.595 Å, incident angle � = 10�). As shown in Figs. 7(a) and

7(b), macrostress changes the slope (illustrated by the linear

regression line) as well as causing the nonlinearity of the

ha(�,  )i{hkl} versus sin2 curve (departure of the values from

Figure 6
Stacking faults (marked by arrows) and dislocations in plastically
deformed austenitic stainless steel AISI316L (transmission electron
microscopy, bright field image).

Table 1
Single-crystal elastic constants (cij, GPa) and Zener’s anisotropy factor
(A) for the studied materials (Simmons & Wang, 1971).

Material c11 c12 c13 c33 c44 c66 A

Tungsten 501 198 198 501 151 151 1
Austenite (AISI316L) 197 122 122 197 124 124 3.3



the regression line). Also, the trend of nonlinearities changes

for tensile and compressive stress (cf. the 200 and 111 reflec-

tions). In contrast, the stacking faults mostly increase the

nonlinearity of these plots; nevertheless, the slope remains

approximately constant if uniform and isotropic fault prob-

ability is assumed and all of the reflections shown in Fig. 7(c)

are used in the analysis [see the linear regression line in

Fig. 7(c)]. It was confirmed that the change in slope becomes

more significant if one of the 200 and 111 reflections is

omitted. It should be underlined that a nonzero slope caused

by the presence of stacking faults can lead to an erroneous

value for determined stress if the influence of the faults is not

taken into account in the stress analysis or if an incorrect

model is used for the calculation of XSFs [especially in the

case of the Voigt model predicting a linear ha(�,  )i{hkl} versus

sin2 curve]. The erroneous stress value depends strongly on

the number and type of hkl reflections used in the stress

analysis. The aim of this study is not only to determine the

stacking fault probability in a sample exhibiting residual stress,

but also to take into account the effect of stacking faults on the

experimental data in order to calculate the correct values of

stress.

The different influences of stress and stacking faults on the

ha(�,  )i{hkl} versus sin2 curve enable the separation of two

effects with different origins. To take both effects into account

in the analysis, the hað�; Þifhklg lattice parameters expressed

by equation (10) should be fitted to the experimental data

using the least-squares procedure (Press et al., 1989). In the

calculations, the values of stress �ij as well as the 
 parameter

are varied in order to obtain the best agreement between the

theoretical and the experimental nonlinear ha(�,  )i{hkl}

versus sin2 curves. The adjusted 
 parameter is the prob-

ability of finding the stacking fault for the neighbouring planes

{111}. As a result of the presented method, the stress and the

probability of stacking faults can be determined simulta-

neously.

It should be mentioned that the idea of fitting used in this

work is similar to that applied to the determination of second-

order plastic incompatibility stress, where an additional

adjusting parameter was also used by Baczmański et al. (1994,

2003, 2008, 2009) and Wroński et al. (2007). In the general case

of a severely deformed sample containing not only stacking

faults but also significant levels of anisotropic second-order

plastic incompatibility stress, an additional term should be

added to equation (10) (consequently, an additional para-

meter responsible for this stress must be adjusted in the fitting

procedure). To avoid the problem of ill-conditioned fitting,

only samples exhibiting a negligible shift in the diffraction

peak caused by plastic incompatibility stress were used in this

study. For these samples, the nonlinearities of ha(�,  )i{hkl}

versus sin2 can be correctly fitted using equation (10), where

elastic anisotropy (i.e. second-order stress of elastic origin)

and the presence of stacking faults are taken into account. In

previous studies, it was shown that monotonic deformation of

textured material, e.g. uniaxial tension or cold rolling, is

necessary to generate significant values of anisotropic plastic

incompatibility stress causing nonlinearities of the

hd(�,  )i{hkl} versus sin2 plots determined using a single hkl

reflection (e.g. Baczmański et al., 2008, 2009; Wroński et al.,

2007; Wawszczak et al., 2011). However, this does not apply to

the mechanical polishing or grinding treatments performed in

this study, where the deformation is not monotonic and

nonlinearities of the hd(�,  )i{hkl} versus sin2 plots, measured

for one hkl reflection, are not usually generated. Moreover,

tensile macrostress created during grinding has a thermal

origin (as for the samples used in this study) (Malkin & Guo,

2007), and the thermal process does not introduce second-

order incompatibility stress in one-phase cubic material

(thermal expansion coefficients are isotropic for cubic crys-

tallites).

Figure 7
Simulated function hað�; Þifhklg versus sin2 for an austenitic sample
(assuming a0 = 3.595 Å, � = 10� and Cu K� radiation) for (a) uniaxial
tensile stress �11 ¼ 500 MPa, (b) uniaxial compressive stress
�11 ¼ �500 MPa and (c) stacking fault probability 
 = 10�2. XSFs were
calculated using the free-surface model with the elastic constants given in
Table 1 and assuming a random texture. A dashed line is fitted to the
simulated values using linear regression.



4. Experimental verification of XSFs for the austenitic
sample

The correct choice of model for the calculation of XSFs is

significant for materials exhibiting high elastic anisotropy. In

order to select the appropriate model, either the theoretical

hað�; Þifhklg versus sin2 curve was compared with the

experimental results (Baczmański et al., 2008) or the XSFs

were directly measured in situ for the sample subjected to

external load (Baczmański et al., 1994). In this study, another

method was used to verify model XSFs: the lattice strains were

measured in situ during the tensile test in the elastic range of

the deformation and the model XSFs were used to determine

the stress applied to the sample. It was confirmed that the

given model enables the value of the applied stress to be

recalculated from the diffraction data.

The MGIXD method and the standard method (�mode 311

reflection) were used to measure stress in the austenitic

stainless steel (AISI316L) sample under different known

values of tensile uniaxial stress �11 applied along TD. In this

case, the sample frame (Fig. 1) was defined by the axes

x1 || TD, x2 || RD and x3 || ND. Measurements were performed

on a Seifert PTS MZ VI diffractometer with Fe K� radiation

and a parallel plate collimator (Söller collimator) in reflected

beam optics (parallel beam configuration). Prior to measure-

ment, a sample surface layer of 200 mm was removed by

electropolishing.

First, the values of the residual stress �init
11 and �init

22 in the TD

and RD of the initial (nonloaded) sample were determined

using both the standard (�mode) and MGIXD methods. With

the application of analysis based on equation (6), small levels

of compressive [�init
11 ’ �27 (24) MPa] and tensile [�init

22 ’

25 (23) MPa] stress with � = 20� were measured [MGIXD

method with � = 20� and Kröner-type XSFs calculated with

the texture shown in Fig. 4(a)]. The differences between the

results of the MGIXD and standard methods as well as

between the values of stress obtained using the different

models of XSFs were smaller than 10 MPa, i.e. within the

uncertainty range.

In order to avoid the influence of residual stress and/or

systematic errors in the determined peak positions during

verification of the XSFs, measurements were performed for a

nonloaded sample and a sample under applied uniaxial stress.

To do this, a bone-shaped sample was machined from hot-

rolled austenitic steel (AISI316L) and the load was applied

along TD. The relative differences between the lattice para-

meters for the loaded [i.e. hað�; Þiload
fhklg] and nonloaded

samples [i.e. initial: hað�; Þiinit
fhklg] were determined:

h"ð�; Þirel
fhklg ¼

hað�; Þiload
fhklg � hað�; Þi

init
fhklg

hað�; Þiinit
fhklg

: ð11Þ

To calculate the strain " from equation (11), the exact value of

the strain-free lattice parameter is not necessary. Moreover,

the effect of residual stress and/or systematic errors in the

determined peak positions is avoided when the relative strain

is determined (Brakman, 1988; Baczmański et al., 1994).

Taking into account the reasonable assumption that the

structure and number of stacking faults do not change during

elastic deformation, we can also state that shifts in the

hað�; Þiinit
fhklg and hað�; Þiload

fhklg values caused by the faults are

the same in both the initial and loaded samples. Therefore, the

presence of stacking faults influences neither the relative

strains calculated according to equation (11) nor, conse-

quently, the results of our verification based on the relative

values of the strains. It can be concluded that in the elastic

(linear) deformation range the values of the relative strains

determined in our experiment correspond directly to the

applied stress �11 and are not influenced either by residual

macrostress and second-order stress or by stacking faults

present in the initial sample.

In order to determine the stress state in the sample

(corresponding directly to the applied stress �11) the principal

components of biaxial stress were determined using the least-

squares fitting based directly on the relationship (Baczmański

et al., 1994)

h"ð�; Þirel
fhklg ¼ F11ðhkl; �;  Þ�rec

11 þ F22ðhkl; �;  Þ�rec
22 ; ð12Þ

where F11ðhkl; �;  Þ and F22ðhkl; �;  Þ are the XSFs predicted

by the given model of grain interaction and the values of �rec
11

and �rec
22 are adjusted in the fitting procedure (‘rec’ means that

the known values of stress applied to the sample were recal-

culated from the diffraction data).

The main challenge of this part of the study was to verify

which type of XSF enables recalculation of the value of the

applied stress �11 from the measured relative lattice strains

[equation (11)] and to verify the agreement of the model

results with the experimental data. The best models were

selected according to two criteria:

(a) the minimum value of the goodness parameter �2:

�2
¼

1

N �M

XN

n¼1

h"ð�n;  nÞi
exp
fhklg � "hð�n;  nÞi

cal
fhklg

	n

" #2

; ð13Þ

where ‘exp’ and ‘cal’ denote experimental relative strain and

that calculated by the fitting procedure, respectively [the other

quantities are defined as in equation (8)];

(b) the minimum difference between the values of stress

applied to the sample (�11 6¼ 0 and �22 = 0) and those

recalculated from the measured relative lattice strains (�rec
11

and �rec
22 ).

Although the above criteria concern the same verification

test for XSFs, an important difference between them should

be emphasized. The first is more sensitive to elastic anisotropy,

i.e. if the anisotropy of the XSFs is not correctly predicted by

the tested model, the theoretical nonlinearities of the

hað�; Þifhklg versus sin2 plot will not agree with the experi-

mental ones and consequently the value of the �2 parameter

will increase. The second criterion verifies whether the model

mean/overall elastic properties (average over many grains

contributing to different hkl reflections) agree with the real

ones. If this condition is fulfilled, the applied values of stress

are correctly recalculated from the X-ray data using the model

XSFs.



The models of XSF calculation that best fulfilled the above

criteria described the grains’ interaction and consequently the

intergranular stress generated between elastically anisotropic

crystallites. These models were then used to determine resi-

dual stress, lattice parameter (a0) and stacking fault prob-

ability (
).

In our experiment, the austenite stainless steel sample was

subjected to controlled tension (�11 = 50, 180, 300, 180, 50 and

0 MPa) during loading and unloading in a tensile machine

placed in a diffractometer. The applied values of stress �11

were below the yield stress (determining the linear range of

deformation) of the AISI316L sample, which was over

380 MPa. In the case of the MGIXD method, the h"ð�; Þirel
fhklg

relative strains were measured for � = 20� (corresponding to a

penetration depth of � = 3.5 mm), while in the standard

method, the � geometry with the 311 reflection was applied

(mean penetration depth � = 7.7 mm). The surface roughness

of the sample did not influence either of our measurements,

Figure 8
Relative lattice strains h"ð�; Þirel

fhklg versus sin2 (incident angle � = 20�) for two stages of loading and for a completely unloaded austenitic sample.
Experimental results are fitted using equation (12) with XSFs calculated using the four tested models.

Figure 9
Comparison of the values of �2 obtained from analysis of the MGIXD
measurements performed during uniaxial loading and unloading of the
austenitic sample. The results for the four grain interaction models are
shown.



because the penetration depth � was more than 30 times

greater than the mean roughness parameter Ra = 0.11 mm, as

measured by a Veeco WYKO NT 930 optical profilometer.

The experimental relative lattice strain h"ð�; Þirel
fhklg versus

sin2 plots determined according to equation (11) and the

curves fitted using equation (12) are presented in Fig. 8. The

resutls corresponding to the four grain

interaction models and different

applied loads are shown. As was

demonstrated in the previous section

(see x3), the nonlinearity of the sin2 
plots in Fig. 8 is associated with strong

elastic anisotropy in the sample.

From the sin2 plots in Fig. 8, it can

be seen that the Reuss, Kröner and

free-surface models came very close to

the experimental values. The linear

dependence of the lattice strains versus

sin2 predicted by the Voigt model did

not agree with the lattice strains

measured for the austenite stainless

steel with strong elastic anisotropy.

A quantitative comparison of the

fitting quality is given by the �2 para-

meter [equation (13)], the values for

which are compared in Fig. 9 for all

applied loads and for the four tested

models. For perfectly predicted values

of the XSFs, the �2 parameter should

depend only on experimental uncer-

tainties and should not increase even

for large values of applied stress (an

increase/decrease in �2 indicates an

increase/decrease in the differences

between the theoretical and experi-

mental values). In this case, the

measured relative lattice strain caused

by applied stress changes by the same

value as the theoretically predicted

one; consequently their differences do

not change [i.e. the difference

h"ð�n;  nÞi
exp
fhklg � h"ð�n;  nÞi

cal
fhklg in

equation (13) is the same for various

applied loads]. However, if the XSF

values are incorrectly calculated by the

model, the difference between the

theoretical and the experimental

lattice strains [i.e. h"ð�n;  nÞi
exp
fhklg �

h"ð�n;  nÞi
cal
fhklg] and the value of �2

should significantly increase with an

increase in the applied load.

Comparing the values of �2 and their

dependence on the applied load, it can

be concluded that the Reuss and free-

surface models correctly describe the

elastic anisotropy of the XSFs (Fig. 9).

For these models, the value of �2 is

small and remains almost constant for

all applied external stress. In contrast,

the �2 values obtained for the Kröner

Figure 10
Comparison of the recalculated values of stress �rec

11 and �rec
22 (points) with applied stress �11 6¼ 0 and

�22 = 0 MPa (dashed line, for which �rec
ii ¼ �ii is assumed). Results of loading and unloading of the

sample are shown versus �11 (point �11 = 0 MPa corresponds to the state after complete unloading)
for different grain interaction models. The measurements were performed using (a) the MGIXD
method and (b) the standard method (� mode with the 311 reflection).



and Voigt models were large and increased with applied stress.

This effect was especially significant in the case of the Voigt

model, in which the linear dependence of the lattice strains

versus sin2 was predicted by the model.

To confirm whether the second criterion of the model

verification was fulfilled, the stress (�rec
11 ) in the direction of the

load and the stress (�rec
22 ) perpendicular to the load were

determined from the measured relative lattice strains using

different XSF models. In Fig. 10 the recalculated values of

stress (�rec
11 and �rec

22 ) versus applied �11 stress are presented for

the loaded and unloaded samples. The results of measure-

ments applying the MGIXD method are shown in Fig. 10(a),

while the results for the standard geometry are presented in

Fig. 10(b). It can be seen that the loading and unloading

processes are completely reversible (almost the same recal-

culated values of stress were obtained for identical applied

stress during loading and unloading). This confirms that the

measurements were performed within the elastic range of

deformation. Moreover, the �rec
11 stress measured after

complete sample unloading is very close to a value of zero

(within the uncertainty range, cf. the results for �11 = 0 MPa in

Fig. 10). The stress state in the sample was successfully

determined from diffraction data, i.e. the measured value of

the stress �rec
11 approaches the applied stress �11, while �rec

22 is

always close to zero for both the standard and MGIXD

methods in the case of the Reuss and free-surface models. The

�rec
11 stress calculated using the Kröner method deviates

slightly from the �11 value, and a large disagreement between

the recalculated (�rec
11 ) and applied values of stress was found

when the XSFs were calculated according to the Voigt

approach. It can also be seen that in the case of the incorrect

model (especially for the Voigt model) a large deviation

between the applied and measured values of stress occurs for

the standard stress measurements (Fig. 10b), while in the case

of MGIDX this deviation is smaller, but a large uncertainty of

the determined values was obtained (Fig. 10a). The analysis of

the recalculated values of stress performed above confirms the

conclusions based on comparison of the �2 values obtained by

using different methods.

Finally, the influence of the texture function on the deter-

mined values of stress was studied. For this purpose, the �rec
11

and �rec
22 determined using the XSFs predicted by the different

models, taking into account the experimental texture (Fig. 4a)

or assuming random texture (cf. Table 2), were compared. It

was found that the influence of texture on the recalculated

values of stress is not significant (much smaller than the

experimental uncertainties) and that the choice of deforma-

tion model plays a key role in stress analysis performed for the

studied austenitic stainless steel (AISI316L). It can also be

seen that the uncertainties of the determined stress were

significantly smaller when the texture function was used to

calculate XSFs.

Summarizing the presented results concerning the quality of

strain fitting, as well as the values of recalculated stress, it

appears that the Reuss and free-surface models can be

considered the best approximations for XSF calculation in the

case of elastically anisotropic materials, such as the austenitic

stainless steel studied in the present paper.

5. Measurements of residual stress
Samples with significant surface residual stress but not

subjected to external load were investigated in this part of the

study. For simplicity, only samples with negligible �res
13 and �res

23

residual stress components were selected. The XSFs were

calculated from the single-crystal elastic constants given in

Table 1 and using the textures presented in Fig. 4.

The first studied sample was a cylindrical sample of high-

purity tungsten [the sample for which crystallographic texture

is presented in Fig. 4(b)]. To generate stress in the surface

layer, a cross section of the bar was manually polished (2000

grit paper, nondirectional polishing), resulting in a roughness

of Ra = 0.16 mm.

The influence of stacking faults on stress analysis was

investigated for austenitic hot-rolled stainless steel

(AISI316L) samples, the surfaces of which were subjected to

various mechanical treatments. The surface of the first sample

was ground in one direction with a workpiece speed of

1 m min�1 and depth of cut of 1 mm. The second sample was

manually polished with 2000 grit paper in two perpendicular

directions in order to generate stress in the surface layer. The

average roughness of the surface was Ra = 0.3 mm for the

ground and Ra = 0.13 mm for the mechanically polished

sample.

It should be stated that the surface roughness influences the

results of stress measurements, changing the peak position and

decreasing the intensity of the measured diffraction peak

(Marques et al., 2006). To avoid this problem, it was recom-

mended in previous studies that stress should be measured for

a penetration depth � (or average penetration depth) greater

than twice the Ra value in the case of standard methods

(Hauk, 1997) or greater than Ra in the case of grazing-inci-

dence measurements (Marques et al., 2006). In this study, these

criteria were fulfilled for all performed measurements. The

residual stress components were measured using MGIXD for

minimum penetration depths equal to 0.24 mm for mechani-

Table 2
Values of stress recalculated from relative lattice strains for the AISI316L
sample under a load �11 = 300 MPa using different XSF models.

Results taking experimental texture (Fig. 4a) into account are compared with
assumptions of random lattice orientations. Values in parentheses are
uncertainties on the least significant digits.

MGIXD method Standard method

Model �rec
11 (MPa) �rec

22 (MPa) �2 �rec
11 (MPa) �rec

22 (MPa) �2

With texture from Fig. 4(a)
Reuss 266 (10) �35 (10) 0.6 295 (9) 3 (8) 4.0
Free surface 295 (15) �33 (14) 1.0 314 (8) �17 (8) 3.1
Kröner 335 (33) 16 (32) 3.2 381 (12) �1 (11) 4.8
Voigt 371 (80) 58 (76) 11.5 458 (16) �8 (16) 6.0

Random orientations
Reuss 263 (18) �32 (18) 1.9 268 (10) �10 (10) 6.0
Free surface 288 (23) �25 (23) 2.5 291 (9) �21 (9) 4.9
Kröner 322 (33) 15 (33) 3.5 349 (13) �14 (13) 6.0
Voigt 349 (76) 53 (76) 11.5 428 (16) �16 (16) 6.0



cally polished tungsten and 0.55 mm for ground and 1.41 mm

for mechanically polished austenite. In the standard method,

the mean penetration over the measured range of sin2 was

6.13 mm for ground austenitic steel and 0.9 mm for polished

tungsten.

5.1. Mechanically polished tungsten sample
First, an elastically isotropic sample (A = 1; Table 1) of high-

purity tungsten (W) was investigated with Cu K� radiation on

a PANalytical X’Pert MRD diffractometer. A parallel beam

configuration was used, with a Göbel mirror for incident beam

optics and a parallel plate collimator (Söller collimator) for

reflected beam optics. The MGIXD method for different

incident � angles and the standard method (! and � geome-

tries with the 321 reflection) were used to measure lattice

strains. In order to calculate stress, a fitting procedure based

on equation (6) was applied, and two components, �res
11 ’ �

res
22 ,

of the biaxial stress tensor as well as the a0 strain-free lattice

parameter were determined (Table 3). In the analysis, the

XSFs were calculated with the Kröner model from the single-

crystal elastic constants given in Table 1, using the ODF shown

in Fig. 4(b). However, it should be mentioned that, in the case

of the isotropic W sample, neither the choice of model nor the

crystallographic texture influenced the theoretical values of

the XSFs. The hað�; Þifhklg versus sin2 plots for the standard

methods (! and � modes) and for the MGIXD method (with

different incident angles �) are shown in Fig. 11. It should be

noted that the results obtained with the four XSF models are

linear and that the fitted plots overlap each other.

Whether MGIXD or the standard methods are used, the

values of determined stress for any of the chosen grain

interaction models do not differ significantly. In the case of the

Table 3
Values of stress and the a0 lattice parameter determined in a polished W sample using the MGIXD (different � angles) and standard methods (! and �
modes).

All four grain interaction models led to the same results. Penetration depth was calculated as an average over the sin2 range

MGIXD method

� = 5�,
� = 0.24 mm

� = 10�,
� = 0.43 mm

� = 15�,
� = 0.58 mm

� = 20�,
� = 0.70 mm

Standard method !,
321 reflection,
� = 0.9 mm

Standard method �,
321 reflection,
� = 1 mm

�res
11 (MPa) �859 (36) �810 (32) �779 (49) �743 (67) �661 (23) �657 (17)
�res

22 (MPa) �998 (36) �917 (32) �914 (47) �879 (67) �787 (23) �774 (16)
a0 (Å) 3.1644 (1) 3.1647 (1) 3.1651 (1) 3.1648 (1) 3.1648 (1) 3.1647 (1)

Figure 11
Experimental points and theoretical hað�; Þifhklg versus sin2 plots for a polished tungsten sample. Measurements presented for the standard !
geometry (a), the standard � geometry (b), and the MGIXD method with incident angles � = 5� (c) and � = 15� (d) [uncertainty of peak position
	ð2�Þ ¼ 0:01� was assumed].



elastically isotropic tungsten sample, the hað�; Þifhklg versus

sin2 plots are linear for all considered models (Fig. 11). This

is certainly due to the perfect elastic isotropy of W crystals and

consequently equal values of XSFs for all reflections.

The stress in the mechanically polished W is compressive

and biaxial and approximately fulfils the relationship

�res
11 ’ �

res
22 (see Table 3). The stress value determined by the

MGIXD method slowly decreases with penetration depth and

agrees perfectly with the results of both

standard methods. The values of stress

obtained with the standard methods

were calculated for an average value of

penetration depth for all  inclination

angles. A small curvature of the sin2 
plots due to a stress gradient is

observed in Fig. 11 for the standard �
and ! geometries. Indeed, it can be

seen that the slope of the sin2 plots is

smaller at the higher penetration

depths (low  values) than at the

shallower depths (high  values). The

measured value of the strain-free lattice

parameter a0 does not change signifi-

cantly with depth and is nearly constant

for the different models used in the

analysis (see Table 3).

It can be concluded that, although

the results of the MGIXD method

exhibit greater uncertainty (especially

due to small values of the 2� angle for

low hkl reflections) in comparison with

the standard methods, one indisputable

advantage of grazing-incidence geo-

metry is its capacity to perform stress

measurement at strictly defined depths.

In the sample studied above, which

exhibited a small stress gradient, the

stress evolution versus penetration

depth was determined using MGIXD

and reasonable values were obtained

(the results are comparable to those

obtained from standard methods).

However, in the case of very strong

gradients, only grazing methods enable

reliable stress measurement, whereas

the interpretation of the standard

method requires additional assump-

tions concerning stress evolution under

the surface.

5.2. Mechanically treated austenitic
sample

The presented methodology of stress

and stacking fault analysis requires

knowledge of the XSFs for the aniso-

tropic material. Different models for

XSF calculation had already been verified by measuring lattice

strains during the tensile test (x4). It was found that the values

of stress recalculated from the measured relative lattice strains

agreed with the values of applied stress when the free-surface

and Reuss models were used for calculation of the XSFs.

Therefore, these models were also used in the analysis of

residual stress performed for the austenitic sample. The XSFs

were calculated from single-crystal elastic constants (Table 1),

Figure 12
The ha(�,  )i{hkl} lattice parameters fitted to the experimental points for the AISI316L sample using
equation (10) and different types of XSF models. (a) Cu K� radiation and (b) Fe K� radiation were
used, and the plots for � = 0� and for � = 90� are shown. The results of the fitting are listed in Table 3;
the uncertainty of the peak position is equal to 	ð2�Þ ¼ 0:01�.



taking into account experimentally

determined crystallographic texture

(Fig. 4a).

In this study, the influence of

stacking faults on the determined

ha(�,  )i{hkl} parameters was taken

into account in the stress analysis.

An interpretation of the grazing-

incidence experiment based on

equation (10) was performed and

the probability of stacking faults was

estimated.

5.2.1. Ground surface of auste-
nitic stainless steel. In order to

increase the available range of

penetration depth, measurements

were performed (for � = 0� and � =

90�) using three wavelengths of

X-ray radiation (Cu K� on a

PANalytical X’Pert MRD, Fe K�
and Mn K� on Seifert PTS MZ VI

diffractometers) for which the coef-

ficients of absorption in the studied ground AISI316L steel

were different. In the case of the MGIXD method, Cu K� and

Fe K� radiation were applied, while the standard measure-

ment (! geometry for the 311 reflection) was done with

Mn K� radiation. Examples of stress analysis results for

ground AISI316L steel are shown in Table 4 and in Fig. 12 (the

sample frame is defined by the axes x1 || TD, x2 || RD and

x3 || ND). It can be concluded that

the determined values of stress

change only insignificantly when the

influence of stacking faults is taken

into account in the fitting procedure

(
 6¼ 0 in Table 4). As expected, the

presence of stacking faults mostly

affects the magnitude of the non-

linearities but does not significantly

modify the slope of the ha(�,  )i{hkl}

versus sin2 plot.

Different types of X-ray stress

factors were used to determine stress

from the experimental data (Table 4

and Fig. 12). The best fit quality

(smallest values of �2 and small

degree of uncertainty of the deter-

mined stress) was found for the free-

surface model; only slightly poorer

results were obtained for the Reuss

model. In the case of the Kröner and

Voigt models, the value of the �2

parameter significantly increased;

moreover, the fitted plots did not

match the experimental points even

when an additional 
 parameter was

used in the fitting procedure

(Fig. 12).

The values of determined stress (�res
11 and �res

22 ) and the

strain-free lattice parameter (a0), as well as the probability of

finding stacking faults (
), as a function of penetration depth

(�) are shown in Fig. 13. It should be noted that good

consistency was obtained for all measured quantities within

the depth ranges available for Cu K� and Fe K� radiation.

Also, stress measured using the standard method with Mn K�

Figure 13
Stress (�res

11 and �res
22 ), lattice parameter (a0) and the probability of finding stacking faults (
) plotted

versus penetration depth � for the ground sample AISI316L. The free-surface model was used to
calculate the XSFs. For comparison, the values of stress obtained with the (a) Kröner and (b) Reuss
models are shown.

Table 4
Comparison of macrostress (�res

ii ), stacking fault probability (
) and the �2 parameter determined for
ground AISI316L austenite using different XSF models.

Results of fitting assuming �res
33 = 0

Sample and X-ray
radiation;
incident angle;
penetration depth

Analysis of
stacking
fault effect

�res
ii (MPa),

 (10�2),
�2 Voigt Kröner Free surface Reuss

Ground AISI316L;
Cu K� radiation;
� = 10�;
� = 0.55 mm

No �res
11 824 (81) 707 (41) 603 (32) 545 (34)
�res

22 259 (81) 211 (41) 143 (31) 144 (34)
�2 30 10 8 12

Yes �res
11 821 (98) 707 (35) 608 (13) 554 (13)
�res

22 256 (98) 210 (35) 149 (13) 154 (13)

 0.2 (6) 0.6 (3) 0.9 (1) 1.0 (1)
�2 33 8 2 2

Ground AISI316L;
Fe K� radiation;
� = 10�;
� = 2.6 mm

No �res
11 610 (150) 563 (88) 490 (59) 452 (60)
�res

22 190 (150) 120 (88) 39 (59) 31 (60)
�2 55 28 18 22

Yes �res
11 610 (170) 551 (91) 491 (43) 459 (45)
�res

22 190 (170) 110 (91) 43 (43) 39 (45)

 0.4 (8) 0.4 (5) 0.7 (3) 0.8 (4)
�2 64 29 9 12



radiation (mean value � ’ 6 mm for

the 311 reflection) confirmed the

decreasing trend of stress versus

penetration depth dependences

determined using the MGIXD

method. As shown in Fig. 13

(results of the free-surface model),

the value of the measured stress-

free parameter a0 = 3.5945 (10) Å

is almost constant versus the pene-

tration depth, while the probability

of finding stacking faults (
)

progressively decreases with the

depth below the sample surface. It

should be emphasized that when

Cu K� radiation was used the value of 
 was determined close

to the sample surface with reasonable uncertainty; however,

when measured deeper with Fe K� radiation, great uncer-

tainty of the 
 value was obtained. In general, the uncertain-

ties of all quantities determined using Fe K� radiation are

larger than those measured with Cu K� radiation. This is

because a narrower range of sin2 and a smaller number of

reflections are available for Fe K� than for Cu K� radiation

(cf. Figs. 12a and 12b).

5.2.2. Polished surface of austenitic stainless steel. Stress

measurements for polished AISI316L steel were performed

using Fe K� radiation (Seifert PTS

MZ VI) for � = 0� and � = 90�.

Examples of the results are shown

in Table 5 (the sample frame was

defined in the same way as for the

ground sample). Similarly to the

ground sample, it was found that

stacking faults taken into account

in the stress analysis do not signif-

icantly change the stress values

determined using the XSFs calcu-

lated by the Kröner, free-surface

and Reuss models (Table 5). For

these models, a relatively good fit

quality was obtained, characterized

by low values of �2. Only in the

case of the Voigt model was the

value of the �2 parameter signifi-

cantly high; consequently this

model cannot be used to analyse

the stress state in a polished

sample. However, despite the low

�2 values, the values of stress

determined using the Kröner

model did not agree with those

obtained from the free-surface and

Reuss models (Table 5). This means

that the criterion of fit quality

cannot be used to select the correct

approach and the model must be

verified using the in situ tensile test,

as was done in this study. From the previous results, it was

concluded that the free-surface and Reuss models of XSF

calculation agreed with the experimental results obtained

from the tensile test. Therefore, the values of stress deter-

mined for the polished austenitic sample with these two

models (whose results are not significantly different) can be

assumed to be the correct ones (Fig. 14b).

It was found that the stress in the polished sample is

compressive and almost constant for the studied depth, and

that the �res
11 and �res

22 components differ from each other. The

value of the stress-free parameter, a0 = 3.5933 (20) Å, does not

�

Figure 14
Stress (�res

11 and �res
22 ), lattice parameter (a0) and the probability of finding stacking faults (
) determined

from equation (10), plotted versus penetration depth � for the polished AISI316L sample. The free-
surface model was used to calculate the XSFs. For comparison, the values of stress obtained with the (a)
Kröner and (b) Reuss models are shown.

Table 5
Comparison of macrostress (�res

ii ), stacking fault probability (
) and the �2 parameter determined for
polished AISI316L austenite using different XSF models.

Results of fitting assuming �res
33 = 0

Sample and X-ray
radiation;
incident angle;
penetration depth

Analysis of
stacking
fault effect

�res
ii (MPa),

 (10�2),
�2 Voigt Kröner Free surface Reuss

Polished AISI316L,
Fe K� radiation;
� = 10�;
� = 2.6 mm

No �res
11 �270 (190) �280 (120) �215 (78) �219 (67)
�res

22 �580 (180) �590 (110) �533 (74) �507 (64)
�2 84 44 29 24

Yes �res
11 �420 (120) �316 (57) �210 (53) �210 (48)
�res

22 �720 (110) �628 (54) �528 (51) �498 (46)

 1.9 (5) 1.4 (3) 0.9 (3) 0.8 (3)
�2 27 9.8 13 12



change significantly versus penetration depth and its value is

close to that determined for the ground sample (Fig. 14c).

As shown in Fig. 14(d), the probability of stacking faults (
)

in polished austenite is similar to that determined for the

ground sample. Similar values of 
 were found from the fitting

procedure [based on equation (10)] when the XSFs were

calculated using the free-surface and Reuss methods (Fig. 15).

For these approaches, the values of the �2 parameter are

rather low (Table 5), but the uncertainty of 
 is relatively large.

In the case of XSFs calculated by the Kröner model, a higher

value of the 
 parameter, with very similar uncertainty, was

found. Again, the poorest results and a very poor fit were

obtained when using the Voigt model (Table 5).

The MGIXD method was used to investigate the influence

of stacking faults on the determined values of ha(�,  )i{hkl} in

polished austenite. As shown in Fig. 16, the presence of

stacking faults again affected the nonlinearities of the

ha(�,  )i{hkl} versus sin2 plot. It is interesting to note the

difference between ha(�,  )i{hkl} versus sin2 plots obtained

for the studied samples subjected to different surface treat-

ments. In the case of the ground sample, tensile stress caused

nonlinearities (Fig. 12) similar to those observed during the

tensile test (Fig. 8) and those simulated for a stress of 500 MPa

(cf. Fig. 7a). Because of the elastic anisotropy of the crystals,

the value of the ha(�,  )i{111} parameter is greater, while the

value of ha(�,  )i{200} is less than the corresponding value on

the linear regression line (cf. Fig. 7a). It was found that the

shifts in the measured ha(�,  )i{111} and ha(�,  )i{200} values

were always greater than those that could be obtained using

the elastic models (even the Reuss model predicting the

largest possible nonlinearities). The opposite shifts in the

ha(�,  )i{111} and ha(�,  )i{200} values were caused by stacking

faults (Fig. 7c). Therefore, the theoretical nonlinearities of the

ha(�,  )i{hkl} versus sin2 plot decrease and the calculated

equivalent lattice parameters approach experimental results

when the 
 value is fitted in equation (10) (cf. Fig. 16). In the

polished sample, compressive stress decreases the

ha(�,  )i{111} value and increases the ha(�,  )i{200} value (cf.

Fig. 15) in comparison with the values on the regression line

(cf. Fig. 7b). Thus, the effect of elastic anisotropy and the

presence of stacking faults shift the values of the ha(�,  )i{hkl}

parameters significantly in the same direction, increasing the

magnitude of nonlinearities (as seen in Fig. 16, the model

nonlinearities caused by compressive stress and assuming 
 =

0 are too small in comparison with the experimental ones).

Finally, the influence of crystallographic texture on the

determined stress, a0 parameter and 
 value was also studied

for the ground and polished samples. It was found that this

influence is not significant and is at least five times smaller

than the experimental uncertainty for all determined values.

Since the influence of texture was insignificant, the depth-

dependent texture gradients should not significantly affect the

results obtained for the studied austenitic samples either.

Analysing the results of stress measurement performed for

the polished and ground austenitic samples as well as the

results of the tensile test (x4), it can be concluded that the

Reuss and free-surface grain interaction models lead to the

best agreement of the predicted lattice strains with the

experimental data. It should be

underlined that the application of

the free-surface model for the

calculation of the XSFs used in the

grazing-incidence method can be

argued for based on the shallow

penetration of the material by

X-rays. In this case, grains close to

the surface can freely deform in the

normal direction, i.e. the assump-

tion of the free-surface model is

fulfilled. These models best reflect

the elastic anisotropy of the studied

samples. It should be also stated

that, in previous studies, Kröner-

type XECs/XSFs were positively

verified for quasi-isotropic mate-

rials (without texture; e.g. Hauk,

1997) or in some cases for textured

samples (Sprauel et al., 1989).

However, it was also shown that, in

the case of strongly textured

samples, the anisotropy of XSFs can

be better predicted by the Reuss

(Hauk, 1997) or free-surface models

(Baczmański et al., 2008). In

general, the choice of the correct

model for the calculation of the

Figure 15
The ha(�,  )i{hkl} lattice parameters fitted to the experimental points for the polished AISI316L sample
(Fe K� radiation and � = 10�) using equation (10) and different types of XSF models. Plots for (a), (c) �
= 0� and for (b), (d) � = 90� are shown. The results of the fitting are listed in Table 5; the uncertainty of
the peak position is 	ð2�Þ ¼ 0:01�.



XSFs is not obvious, especially in the case of a strongly

anisotropic sample and/or a small penetration depth of

radiation. Therefore, in the case of the MGIXD method

(rather small penetration depth), the verification of the model

should be performed for an in situ loaded sample, as was done

in the present study.

6. Summary

In summary, it can be stated that the MGIXD method is an

indispensable tool for studying the depth-dependent distri-

bution of stress, the strain-free lattice parameter (a0) and the

probability of stacking faults (
) in the surface layers of

polycrystalline materials. Nevertheless, the applicability of this

method is limited by certain factors, such as the anisotropy of

elastic constants. In the case of significant elastic anisotropy

(as in austenitic steel), XSF verification should be performed

by measuring the relative lattice strains during an in situ

tensile test. In this study, the Reuss and free-surface models

were positively verified and used for the analysis of residual

stress. It was also confirmed that, in the case of isotropic

single-crystal constants (as in tungsten), the choice of XSF

model does not influence the results of stress analysis.

When the XSFs are known and experimentally verified, new

potential information concerning properties of surface layers

can be obtained. Here, mechanically polished and ground

AISI316L, an austenitic alloy with low stacking fault energy,

was studied. It was shown that, in spite of great uncertainty,

the variation of the probability of finding stacking faults with

the depth below the surface can be determined. Also, a

significantly better fit of theoretical data to experimental

results can be obtained if the effect of stacking faults is taken

into account in the analysis.

Figure 16
The ha(�,  )i{hkl} lattice parameters fitted to the experimental points using equation (10) (assuming 
 6¼ 0 – continuous line or 
 = 0 – dashed line) for the
(a) ground and (b) polished AISI316L samples. The free-surface model was used to calculate the XSFs. The uncertainty of the peak position is
	ð2�Þ ¼ 0:01�.
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