A combinatorial non-commutative Hopf algebra of graphs - Archive ouverte HAL Access content directly
Journal Articles Discrete Mathematics and Theoretical Computer Science Year : 2014

A combinatorial non-commutative Hopf algebra of graphs

Abstract

A non-commutative, planar, Hopf algebra of planar rooted trees was defined independently by one of the authors in Foissy (2002) and by R. Holtkamp in Holtkamp (2003). In this paper we propose such a non-commutative Hopf algebra for graphs. In order to define a non-commutative product we use a quantum field theoretical (QFT) idea, namely the one of introducing discrete scales on each edge of the graph (which, within the QFT framework, corresponds to energy scales of the associated propagators). Finally, we analyze the associated quadri-coalgebra and codendrifrom structures.
Fichier principal
Vignette du fichier
2529-8837-1-PB.pdf (354.81 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive
Loading...

Dates and versions

hal-01179226 , version 1 (04-11-2015)

Identifiers

Cite

Adrian Tanasa, Gerard Duchamp, Loïc Foissy, Nguyen Hoang-Nghia, Dominique Manchon. A combinatorial non-commutative Hopf algebra of graphs. Discrete Mathematics and Theoretical Computer Science, 2014, Vol. 16 no. 1 (1), pp.355--370. ⟨10.46298/dmtcs.1250⟩. ⟨hal-01179226⟩
181 View
774 Download

Altmetric

Share

Gmail Facebook X LinkedIn More