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Introduction

The goal of this paper is to study the asymptotic behavior as ε → 0 of the value function of an optimal control problem in R 2 in which the running cost and dynamics may jump across a periodic oscillatory interface Γ ε , when the oscillations of Γ ε have a small amplitude and period, both of the order of ε. The interface Γ ε separates two unbounded regions of R 2 , Ω L ε and Ω R ε . To characterize the optimal control problem, one has to specify the admissible dynamics at a point x ∈ Γ ε : in our setting, no mixture is allowed at the interface, i.e. the admissible dynamics are the ones corresponding to the subdomain Ω L ε and entering Ω L ε , or corresponding to the subdomain Ω R ε and entering Ω R ε . Hence the situation differs from those studied in the articles of G. Barles, A. Briani and E. Chasseigne [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF]A Bellman approach for regional optimal control problems in R N[END_REF] and of G. Barles, A. Briani, E. Chasseigne and N. Tchou [START_REF] Barles | Homogenization Results for a Deterministic Multi-domains Periodic Control Problem[END_REF], in which mixing is allowed at the interface. The optimal control problem under consideration has been first studied in [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]: the value function is characterized as the viscosity solution of a Hamilton-Jacobi equation with special transmission conditions on Γ ε ; a comparison principle for this problem is proved in [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF] with arguments from the theory of optimal control similar to those introduced in [START_REF] Barles | A Bellman approach for two-domains optimal control problems in R N[END_REF][START_REF]A Bellman approach for regional optimal control problems in R N[END_REF]. In parallel to [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF], Imbert and Monneau have studied similar problems from the viewpoint of PDEs, see [START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF], and have obtained comparison results for quasi-convex Hamiltonians. In particular, [START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF] contains a characterization of the viscosity solution of the transmission problem with a reduced set of test-functions; this characterization will be used in the present work. Note that [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF][START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF] can be seen as extensions of articles devoted to the analysis of Hamilton-Jacobi equations on networks, see [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF][START_REF] Imbert | A Hamilton-Jacobi approach to junction problems and application to traffic flows[END_REF][START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], because the notion of interface used there can be seen as a generalization of the notion of vertex (or junction) for a network. We will see that as ε tends to 0, the value function converges to the solution of an effective problem related to a flat interface Γ, with Hamilton-Jacobi equations in the half-planes limited by Γ and a transmission condition on Γ. Whereas the partial differential equation far from the interface is unchanged, the main difficulty consists in finding the effective transmission condition on Γ. Naturally, the latter depends on the dynamics and running cost but also keeps memory of the vanishing oscillations. The present work is closely related to two recent articles, [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], about singularly perturbed problems leading to effective Hamilton-Jacobi equations on networks. Indeed, an effective Hamiltonian corresponding to trajectories staying close to the junction was first obtained in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] as the limit of a sequence of ergodic constants corresponding to larger and larger bounded subdomains. This construction was then used in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] in a different case. Let us briefly describe the singular perturbation problems studied in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF]: in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF], some of the authors of the present paper study a family of star-shaped planar domains D ε made of N non intersecting semi-infinite strips of thickness ε and of a central region whose diameter is proportional to ε. As ε → 0, the domains D ε tend to a network G made of N half-lines sharing an endpoint O, named the vertex or junction point. For infinite horizon optimal control problems in which the state is constrained to remain in the closure of D ε , the value function tends to the solution of a Hamilton-Jacobi equation on G, with an effective transmission condition at O. In [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], Galise, Imbert and Monneau study a family of Hamilton-Jacobi equations in a simple network composed of two half-lines with a perturbation of the Hamiltonian localized in a small region close to the junction. In the proof of convergence, we will see that the main technical point lies in the construction of correctors and in their use in the perturbed test-function method of Evans, see [START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF]. As in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], an important difficulty comes from the unboundedness of the domain in which the correctors are defined. The strategies for passing to the limit in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] differ: the method proposed in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] consists of contructing an infinite family of correctors related to the vertex, while in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], only one corrector related to the vertex is needed thanks to the use of the above mentioned reduced set of test-functions. Arguably, the strategy proposed in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] is more natural and that in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] is simpler. For this reason, the technique implemented in the present work for proving the convergence to the effective problem will be closer to the one proposed in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF]. Note that similar techniques are used in the very recent work [START_REF] Forcadel | A junction condition by specified homogenization of a discrete model with a local perturbation and application to traffic flow[END_REF], which deals with applications to traffic flows. The question of the correctors in unbounded domains has recently been addressed by P-L. Lions in his lectures at Collège de France, [START_REF] Lions | Cours du Collège de France[END_REF], precisely in january and february 2014: the lectures dealt with recent and still unpublished results obtained in collaboration with T. Souganidis on the asymptotic behavior of solutions of Hamilton-Jacobi equations in a periodic setting with some localized defects. Finally, we stress the fact that the technique proposed in the present work is not specific to the transmission condition imposed on Γ ε .

The paper is organized as follows: in the remaining part of § 1, we set the problem and give the main result. In Section 2, we show that the problem is equivalent to a more convenient one, set in a straightened fixed geometry. In § 3, we study the asymptotic behavior far from the interface and introduce some ingredients that will be useful to define the effective transmission condition. In § 4, we define the effective cost/Hamiltonian for moving along the effective interface, and related correctors. This is of course a key step in the study of the asymptotic behavior. Section 5 deals with further properties of the correctors, in particular their growth at infinity. The comparison result for the effective problem is stated in § 6, and the proof of the main convergence theorem is written in § 7.

The geometry

Let (e 1 , e 2 ) be an orthonormal basis of R 2 : e 1 = 1 0 , e 2 = 0 1 . Let g : R → R be a C 2function, periodic with period 1. For any ε > 0, let (Ω L ε , Γ ε , Ω R ε ) be the partition of R 2 defined as follows:

Γ ε = (x 1 , x 2 ) ∈ R 2 : x 1 = εg x 2 ε , (1.1) 
Ω L ε = (x 1 , x 2 ) ∈ R 2 : x 1 < εg x 2 ε , (1.2) Ω R ε = (x 1 , x 2 ) ∈ R 2 : x 1 > εg x 2 ε . (1.3) Note that ∂Ω L ε = ∂Ω R ε = Γ ε . For x ∈ Γ ε , the vector n ε (x) = 1 -g ( x 2 ε ) (1.4)
is normal to Γ ε and oriented from Ω L ε to Ω R ε . Defining also

σ i = 1 if i = R, -1 if i = L, (1.5) 
the vector σ i n ε (x) is normal to Γ ε at the point x ∈ Γ ε and points toward Ω i ε . The geometry obtained at the limit when ε → 0 can also be found by taking g = 0 in the definitions above: let (Ω L , Γ, Ω R ) be the partition of R 2 defined by

Γ = (x 1 , x 2 ) ∈ R 2 : x 1 = 0 , (1.6 
)

Ω L = (x 1 , x 2 ) ∈ R 2 : x 1 < 0) , (1.7 
)

Ω R = (x 1 , x 2 ) ∈ R 2 : x 1 > 0) . (1.8)
One sees that ∂Ω L = ∂Ω R = Γ and that for all x ∈ Γ, the unit normal vector to Γ at x pointing toward Ω R is n(x) = e 1 . The two kinds of geometry are represented in Figure 1.

• x n ε (x) Γ ε Ω L ε Ω R ε (a) Γ Ω L Ω R (b)
Figure 1: (a): Γ ε is an oscillating interface with an amplitude and period of ε . (b): the geometry obtained at the limit when ε → 0

1.2 The optimal control problem in Ω L ε ∪ Ω R ε ∪ Γ ε
We consider infinite-horizon optimal control problems which have different dynamics and running costs in the regions Ω i ε , i = L, R. The sets of controls associated to the index i = L, R will be called A i ; similarly, the notations f i and i will be used for the dynamics and running costs. The following assumptions will be made in all the work

Standing Assumptions

[H0] A is a metric space (one can take A = R m ). For i = L, R, A i is a non empty compact subset of A and f i : R 2 × A i → R 2 is a continuous bounded function. The sets A i are disjoint. Moreover, there exists L f > 0 such that for any i = L, R, x, y ∈ R 2 and a ∈ A i ,

|f i (x, a) -f i (y, a)| ≤ L f |x -y|. Define M f = max i=L,R sup x∈R 2 ,a∈A i |f i (x, a)|.
The notation F i (x) will be used for the set

F i (x) = {f i (x, a), a ∈ A i }.
[H1] For i = L, R, the function i : R 2 ×A i → R is continuous and bounded. There is a modulus of continuity ω such that for any i = L, R, x, y ∈ R 2 and a ∈ A i ,

| i (x, a) -i (y, a)| ≤ ω (|x -y|). Define M = max i=L,R sup x∈R 2 ,a∈A i | i (x, a)|.
[H2] For any i = L, R and x ∈ R 2 , the non empty set FL i (x) = {(f i (x, a), i (x, a)), a ∈ A i } is closed and convex.

[H3] There is a real number δ 0 > 0 such that for i = L, R and all x ∈ Γ ε , B(0, δ 0 ) ⊂ F i (x).

We stress the fact that all the results below hold provided the latter assumptions are satisfied, although, in order to avoid tedious repetitions, we will not mention them explicitly in the statements. We refer to [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF] and [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF] for comments on the assumptions and the genericity of the model.

The optimal control problem

Let the closed set M ε be defined as follows:

M ε = (x, a); x ∈ R 2 , a ∈ A i if x ∈ Ω i ε , i = L, R, and a ∈ A L ∪ A R if x ∈ Γ ε . (1.9)
The dynamics f ε is a function defined in M ε with values in R 2 :

∀(x, a) ∈ M ε , f ε (x, a) = f i (x, a) if x ∈ Ω i ε , f i (x, a) if x ∈ Γ ε and a ∈ A i .
The function f ε is continuous on M ε because the sets A i are disjoint. Similarly, let the running cost ε : M ε → R be given by

∀(x, a) ∈ M ε , ε (x, a) = i (x, a) if x ∈ Ω i ε , i (x, a) if x ∈ Γ ε and a ∈ A i .
For x ∈ R 2 , the set of admissible trajectories starting from x is

T x,ε =    (y x , a) ∈ L ∞ loc (R + ; M ε ) : y x ∈ Lip(R + ; R 2 ), y x (t) = x + t 0 f ε (y x (s), a(s))ds ∀t ∈ R +    . (1.10)
The cost associated to the trajectory (y x , a) ∈ T x,ε is

J ε (x; (y x , a)) = ∞ 0 ε (y x (t), a(t))e -λt dt, (1.11) 
with λ > 0. The value function of the infinite horizon optimal control problem is

v ε (x) = inf (yx,a)∈Tx,ε J ε (x; (y x , a)).
(1.12)

Proposition 1.1. The value function v ε is bounded and continuous in R 2 .

Proof. This result is classical and can be proved with the same arguments as in [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications[END_REF].

The Hamilton-Jacobi equation

Similar optimal control problems have recently been studied in [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF][START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF][START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF]. It turns out that v ε can be characterized as the viscosity solution of a Hamilton-Jacobi equation with a discontinuous Hamiltonian, (once the notion of viscosity solution has been specially tailored to cope with the above mentioned discontinuity). We briefly recall the definitions used e.g. in [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF].

1.3.1 Test-functions Definition 1.2. For ε > 0, the function φ : R 2 → R is an admissible (ε)-test-function if φ is continuous in R 2 and for any i ∈ {L, R}, φ| Ω i ε ∈ C 1 (Ω i ε ). The set of admissible test-functions is noted R ε . If φ ∈ R ε , x ∈ Γ ε and i ∈ {L, R}, we set Dφ i (x) = lim x →x x ∈Ω i ε Dφ(x ).

Hamiltonians

For i = L, R, let the Hamiltonians H i : R 2 × R 2 → R and H Γε : Γ ε × R 2 × R 2 → R be defined by H i (x, p) = max a∈A i (-p • f i (x, a) -i (x, a)), (1.13) 
H Γε (x, p L , p R ) = max{ H +,L Γε (x, p L ), H +,R Γε (x, p R )}, (1.14) 
where, with n ε (x) and σ i defined in § 1.1,

H +,i Γε (x, p) = max a∈A i s.t. σ i f i (x,a)•nε(x)≥0 (-p • f i (x, a) -i (x, a)), ∀x ∈ Γ ε , ∀p ∈ R 2 .
(1.15)

Definition of viscosity solutions

We now recall the definition of a viscosity solution of

λu + H ε (x, Du) = 0. (1.16) Definition 1.3. • An upper semi-continuous function u : R 2 → R is a subsolution of (1.16) if for any x ∈ R 2 , any φ ∈ R ε s.t. u -φ has a local maximum point at x, then λu(x) + H i (x, Dφ i (x)) ≤ 0, if x ∈ Ω i ε , (1.17) λu(x) + H Γε (x, Dφ L (x), Dφ R (x)) ≤ 0, if x ∈ Γ ε , (1.18) 
see Definition § 1.1 for the meaning of Dφ i (x) if x ∈ Γ ε .

• A lower semi-continuous function u : R 2 → R is a supersolution of (1.16) if for any x ∈ R 2 , any φ ∈ R ε s.t. u -φ has a local minimum point at x, then

λu(x) + H i (x, Dφ i (x)) ≥ 0, if x ∈ Ω i ε , (1.19) λu(x) + H Γε (x, Dφ L (x), Dφ R (x)) ≥ 0 if x ∈ Γ ε .
(1.20)

• A continuous function u : R 2 → R is a viscosity solution of (1.16) if it is both a viscosity sub and supersolution of (1.16).

1.3.4 Characterization of v ε as a viscosity solution of (1.16)

The following theorem will be proved below, see Theorem 2.7, by finding an equivalent optimal control problem in a straightened fixed geometry and using results proved in [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]:

Theorem 1.4. The value function v ε defined in (1.12) is the unique bounded viscosity solution of (1.16).

Main result and organization of the paper

We now state our main result:

Theorem 1.5. As ε → 0, v ε converges uniformly to v the unique bounded viscosity solution of

λv(z) + H i (z, Dv(z)) = 0 if z ∈ Ω i , (1.21) λv(z) + max E(z 2 , ∂ z 2 v(z)), H Γ (z, Dv L (z), Dv R (z)) = 0 if z = (0, z 2 ) ∈ Γ, (1.22)
which we note for short λv + H(x, Dv) = 0.

(1.23)

The Hamiltonians H i , H Γ and E are respectively defined in (1.13), (3.7) below, and (4.18) below.

Let us list the notions which are needed by Theorem 1.5 and give a few comments:

1. Problem (1.23) is a transmission problem across the interface Γ, with the effective transmission condition (1.22). The notion of viscosity solutions of (1.23) is similar to the one proposed in Definition 1.3, replacing Γ ε with Γ.

2. Note that the Hamilton-Jacobi equations in Ω L and Ω R are directly inherited from (1.17): this is quite natural, since the interface Γ ε oscillates with an amplitude of the order of ε, which therefore vanishes as ε → 0.

3. The Hamiltonian H Γ appearing in the effective transmission condition at the junction is defined in § 3.2, precisely in (3.7); it is built by considering only the dynamics related to Ω i which point from Γ toward Ω i , for i = L, R.

4. The effective Hamiltonian E is the only ingredient in the effective problem that keeps track of the oscillations of Γ ε , i.e. of the function g. It is constructed in § 4, see (4.18), as the limit of a sequence of ergodic constants related to larger and larger bounded subdomains. This is reminiscent of a construction first performed in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] for singularly perturbed problems in optimal control leading to Hamilton-Jacobi equations posed on a network. A similar construction can also be found in [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF].

5. The references [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] and [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF] propose two different possible strategies for proving Theorem 1.5: in this work, the chosen strategy is reminiscent of [START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], because it relies on the construction of a single corrector, whereas the method proposed in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF] requires the construction of an infinite family of correctors. This will be done in § 4 and the slopes at infinity of the correctors will be studied in § 5.

Straightening the geometry

It will be convenient to use a change of variables depending on ε and set the problem in a straightened and fixed geometry.

A change of variables

The following change of variables can be used to write the optimal control problem in a fixed ge-

ometry: for x ∈ R 2 , take z = G(x) = x 1 -εg( x 2 ε ) x 2
. We see that

G -1 (x) = x 1 + εg( x 2 ε ) x 2 .
The oscillatory interface Γ ε is mapped onto Γ = {z : z 1 = 0} by G. The Jacobian of G is

J ε (x) = 1 -g ( x 2 ε ) 0 1 , (2.1) 
and it inverse is

J -1 ε (x) = 1 g x 2 ε 0 1 .
The following properties will be useful: for any x ∈ R 2 ,

J ε (G -1 (x)) = J ε (x) and J -1 ε (G -1 (x)) = J -1 ε (x), (2.2) 
sup

X∈R 2 ,|X|≤1 |J ε (x)X| ≤ √ 2(1+ g ∞ ) and sup X∈R 2 ,|X|≤1 |J -1 ε (x)X| ≤ √ 2(1+ g ∞ ), (2.3) 
where | • | stands for the euclidean norm. Note that (2.2) holds because G and G -1 leave x 2 unchanged, and J ε only depends on x 2 .

The optimal control problem in the straightened geometry

For i = L, R, we define the new dynamics f i ε and running costs ˜ i ε as

f i ε : Ωi × A i → R 2 (z, a) → J ε (z)f i G -1 (z), a , (2.4) 
˜ i ε : Ωi × A i → R (z, a) → i G -1 (z), a . (2.5) 
We deduce the following properties from the standing assumptions [H0]-[H3]:

[ H0] ε For i = L, R and ε > 0, the function f i ε is continuous and bounded. Moreover, there exists Lf (ε) > 0 and Mf > 0 such that for any z, z ∈ Ωi and a ∈ A i ,

| f i ε (z, a) -f i ε (z , a)| ≤ Lf (ε)|z -z | and | f i ε (z, a)| ≤ Mf .
[ H1] ε For i = L, R and ε > 0, the function ˜ i ε is continuous and bounded. Moreover, if we set ω

(t) = ω ( √ 2(1+ g ∞ )t), then for any z, z ∈ Ωi and a ∈ A i , | ˜ i ε (z, a) -˜ i ε (z , a)| ≤ ω (|z -z |),
and [ H2] ε For any i = L, R, ε > 0 and x ∈ Ωi , the non empty set FL

| ˜ i ε (x,
i ε (x) = {( f i ε (x, a), ˜ i ε (x, a)), a ∈ A i } is closed and convex. [ H3] ε For any i = L, R and ε > 0, if we set δ0 = δ 0 √ 2(1+ g ∞) , then for any z ∈ Γ, B(0, δ0 ) ⊂ F i ε (z) = { f i ε (z, a), a ∈ A i }.
Properties [ H0] ε and [ H1] ε result from direct calculations. Property [ H2] ε comes from the fact that linear maps preserve the convexity property. In order to prove [ H3] ε , take i = L, R, z = (0, z 2 ) ∈ Γ and p ∈ B(0, δ0 ). We look for a

∈ A i such that f i ε (z, a) = p. Using (2.3), we see that |J -1 ε (z)p| ≤ √ 2(1+ g ∞ ) δ0 ≤ δ 0 . Thus from [H3], since G -1 (z) ∈ Γ ε , there exists ā ∈ A i such that f i G -1 (z), ā = J -1
ε (z)p, and we obtain that f i ε (z, ā) = p. Let us now define the counterparts of M ε , f ε and ε :

M = (x, a); x ∈ R 2 , a ∈ A i if x ∈ Ω i , and a ∈ A L ∪ A R if x ∈ Γ , (2.6) 
∀(z, a) ∈ M, fε (z, a) = f i ε (z, a) if x ∈ Ω i , f i ε (z, a) if x ∈ Γ and a ∈ A i , (2.7) 
∀(z, a) ∈ M, ˜ ε (z, a) = ˜ i ε (z, a) if x ∈ Ω i , ˜ i ε (z, a) if x ∈ Γ and a ∈ A i . (2.8)
For x ∈ R 2 , the set of admissible trajectories starting from x is

T x,ε =    (y x , a) ∈ L ∞ loc (R + ; M) : y x ∈ Lip(R + ; R 2 ), y x (t) = x + t 0 fε (y x (s), a(s))ds ∀t ∈ R +    . (2.9) Note that ∀z ∈ R 2 , (y z , a) ∈ T z,ε ⇔ G -1 (y z (•)), a ∈ T G -1 (z),ε . The new optimal control problem consists in finding ṽε (z) = inf (yz,a)∈ Tz,ε ∞ 0 ˜ ε (y z (t), a(t))e -λt dt.
(2.10)

Remark 2.1 (Relationship between v ε and ṽε ). For any z ∈ R 2 ,

ṽε (z) = v ε (G -1 (z)) = v ε z 1 + εg z 2 ε , z 2 .

2.3

The Hamilton-Jacobi equation in the straightened geometry

Hamiltonians

If i ∈ {L, R}, the Hamiltonians Hi ε : R 2 × R 2 → R are defined by Hi ε (z, p) = max a∈A i -f i ε (z, a) • p -˜ i ε (z, a) = max a∈A i -J ε (z)f i (G -1 (z), a) • p -i (G -1 (z), a) . (2.11) More explicitly, Hi ε (z, p) = max a∈A i - 1 -g ( z 2 ε ) 0 1 f i ((z 1 + εg( z 2 ε ), z 2 ), a) • p -i ((z 1 + εg( z 2 ε ), z 2 ), a) . If z ∈ Γ, the Hamiltonian HΓ,ε : Γ × R 2 × R 2 → R is defined by HΓ,ε (z, p L , p R ) = max H+,L Γ,ε (z, p L ), H+,R Γ,ε (z, p R ) , (2.12) 
where for 

i = 1, 2, z ∈ R 2 , p i ∈ R 2 , and σ i is defined in § 1.1, H+,i Γ,ε (z, p) = max a ∈ A i s.t. σ i f i ε (z, a) • e 1 ≥ 0 (-f i ε (z, a) • p -˜ i ε (z, a)). Note that if z ∈ Γ, then n ε (G -1 (z)) = J ε (z) T e 1 ,
i = L, R, φ|Ωi ∈ C 1 ( Ωi ). The set of the admissible test-functions is denoted R. If φ ∈ R, x ∈ Γ and i ∈ {L, R}, we set Dφ i (x) = lim x →x x ∈Ω i Dφ(x ).
Of course, the partial derivatives of φ|ΩL and φ|ΩR with respect to

x 2 coincide on Γ.

We then define the sub/super-solutions and solutions of

λu + Hε (z, Du) = 0 (2.13)
as in Definition 1.3, using the set of test-functions R, the Hamiltonians Hi

ε (z, p) if z ∈ Ω i and HΓ,ε (z, p L , p R ) if z ∈ Γ.
Remark 2.3. Let u : R 2 → R be an upper semi-continuous (resp. lower semi-continuous) function and ũ : R 2 → R be defined by ũ(z) = u(G -1 (z)). Then u is a subsolution (resp. supersolution) of (1.16) if and only if ũ is a subsolution (resp. supersolution) of (2.13).

Existence and uniqueness

We have seen in Remark 2.1 that the optimal control problems (1.12) and (2.10) are equivalent; similarly Remark 2.3 tells us that the notions of viscosity solutions of (1.16) and (2.13) are equivalent. Therefore, it is enough to focus on (2.10) and (2.13).

Lemma 2.4. There exists r > 0 such that any bounded viscosity subsolution u of (1.16)

(resp. (2.13)) is Lipschitz continuous in B(Γ ε , r) (resp. B(Γ, r)) with Lipschitz constant L u ≤ λ u ∞+M δ 0 (resp. L u ≤ √ 2 (λ u ∞+M )(1+ g ∞) δ 0
), where for X a closed subset of R 2 , B(X, r) denotes the set {y ∈ R 2 : dist(y, X) < r}.

Proof. For a subsolution u of (2.13), the result is exactly [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]

, Lemma 2.6]. If u is a subsolution of (1.16), then ũ(z) = u(G -1 (z)) is a subsolution of (2.13), and is therefore Lipschitz continuous in a neighborhood of Γ. Since u = ũ • G, u is Lipschitz continuous in a neighborhood of Γ ε .
Theorem 2.5 (Local comparison principle). Let u be a bounded viscosity subsolution of (1.16) (resp. (2.13)), and v be a bounded viscosity supersolution of (1.16) (resp. (2.13)). For any z ∈ R 2 , there exists r > 0 such that

(u -v) + L ∞ (B(z,r)) ≤ (u -v) + L ∞ (∂B(z,r)) .
(2.14)

Proof. Let us focus on (2.13). If z ∈ Ω i , then we can choose r > 0 small enough so that B(z, r) ⊂ Ω i and the result is classical. If z ∈ Γ, the result stems from a direct application of [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]Theorem 3.3]. Indeed, all the assumptions required by [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]Theorem 3.3] 3 Asymptotic behavior in Ω L and Ω R Our goal is to understand the asymptotic behavior of the sequence (v ε ) ε as ε tends to 0. In this section, we are going to see that the Hamilton-Jacobi equations remain unchanged in Ω L and Ω R ; this is not surprising because the amplitude of the oscillations of the interface vanishes as ε → 0. Then, we are going to introduce some of the ingredients of the effective boundary conditions on Γ. From Remark 2.1, the sequence (v ε ) ε converges if and only if the sequence (ṽ ε ) ε converges. Moreover, if they converge, the two sequences have the same limit. It will be convenient to focus on the asymptotic behavior of the sequence (ṽ ε ) ε , since the geometry is fixed. It is now classical to consider the relaxed semi-limits ṽ(z) = lim sup

ε * ṽε (z) = lim sup z →z,ε→0 ṽε (z ) and ṽ(z) = lim inf * ε ṽε (z) = lim inf z →z,ε→0 ṽε (z ). (3.1)
Note that ṽ and ṽ are well defined, since (ṽ ε ) ε is uniformly bounded by M λ , see (2.10).

3.1 For the Hamilton-Jacobi equations in Ω L and Ω R , nothing changes Proposition 3.1. For i = L, R, the functions ṽ(z) and ṽ(z) are respectively a bounded subsolution and a bounded supersolution in

Ω i of λu(z) + H i (z, Du(z)) = 0, (3.2)
where the Hamiltonian H i is given by (1.13).

Proof. The proof is classical but we give it for completeness. We only prove that ṽ(•) is a subsolution of (3.2) in Ω L , the proof that ṽ(•) is a supersolution being similar. Take z = (z 1 , z2 ) ∈ Ω L , φ ∈ C 1 (Ω L ) and r 0 > 0 such that B(z, r 0 ) ⊂ Ω L and 0 = (ṽ -φ)(z) > (ṽ -φ)(z) for any z ∈ B(z, r 0 ) \ {z}. We wish to prove that λφ(z) + H L (z, Dφ(z)) ≤ 0. Suppose by contradiction that there exists η > 0 such that

λφ(z) + H L (z, Dφ(z)) = η. (3.3) Let us define φ ε (z) = φ(z) + ε∂ z 1 φ(z)g( z 2 ε ) -δ.
We claim that for ε > 0, δ > 0 and r > 0 small enough, φ ε (z) is a supersolution of

λφ ε (z) + HL ε (z, Dφ ε (z)) ≥ η 2 , (3.4) 
in B(z, r), where HL ε is defined at (2.11). Indeed, φ ε is a regular function which satisfies

HL ε (z, Dφ ε (z)) = H L G -1 (z), Dφ(z) + g ( z 2 ε ) (∂ z 1 φ(z) -∂ z 1 φ(z)) e 2 .
Using the regularity of φ, L and f L and the boundedness of g and g , this implies that

HL ε (z, Dφ ε (z))) = H L (z, Dφ(z)) + o |z-z|→0 (1) + o |ε|→0 (1). (3.5)
Then the claim (3.4) follows from (3.5) and (3.3). The value of r can always be decreased so that 0 < r < r 0 yielding that max ∂B(z,r) (ṽ -φ)(z) < 0. Fixing r, for ε small enough, max ∂B(z,r) (ṽ ε -φ ε )(z) ≤ 0. The local comparison principle in Theorem 2.5 implies that for any z ∈ B(z, r), (ṽ ε -φ ε )(z) ≤ 0. Letting ε → 0, ṽ(z) ≤ φ(z) -δ for any z ∈ B(z, r). This leads to ṽ(z) ≤ φ(z) -δ < ṽ(z), which cannot happen.

An ingredient in the effective transmission condition on Γ: the Hamiltonian H Γ inherited from the half-planes

For i ∈ {L, R}, let us define the Hamiltonian H +,i and H -,i : R 2 × R 2 → R by

H ±,i (z, p) = max a∈A i s.t. ±σ i f i (z,a).e 1 ≥0 (-p.f i (z, a) -i (z, a)). (3.6) 
and

H Γ : Γ × R 2 × R 2 → R by H Γ (z, p L , p R ) = max H +,L (z, p L ), H +,R (z, p R ) . (3.7) 
As in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF][START_REF] Galise | A junction condition by specified homogenization and application to traffic lights[END_REF], we introduce the functions

E i 0 : R × R → R, i = L, R and E 0 : R × R → R: E i 0 (z 2 , p 2 ) = min H i ((0, z 2 ), p 2 e 2 + qe 1 ), q ∈ R , (3.8) 
E 0 (z 2 , p 2 ) = max E L 0 (z 2 , p 2 ), E R 0 (z 2 , p 2 ) . (3.9)
The following lemma, which is the same as [16, Lemma 2.1], deals with some monotonicity properties of H ±,i : Lemma 3.2.

1. For any (0, z 2 ) ∈ Γ, p ∈ R 2 , p 1 → H +,L ((0, z 2 ), p + p 1 e 1 ) and p 1 → H -,R ((0, z 2 ), p + p 1 e 1 ) are nondecreasing; p 1 → H -,L ((0, z 2 ), p + p 1 e 1 ) and p 1 → H +,R ((0, z 2 ), p + p 1 e 1 ) are nonincreasing.

2. For z 2 , p 2 ∈ R, there exist two unique real numbers p -,L 0 (z 2 , p 2 ) ≤ p +,L 0 (z 2 , p 2 ) such that

H -,L ((0, z 2 ), p 2 e 2 + pe 1 ) = H L ((0, z 2 ), p 2 e 2 + pe 1 ) if p ≤ p -,L 0 (z, p 2 ), E L 0 (z 2 , p 2 ) if p > p -,L 0 (z, p 2 ), H +,L ((0, z 2 ), p 2 e 2 + pe 1 ) = E L 0 (z 2 , p 2 ) if p ≤ p +L 0 (z, p 2 ), H L ((0, z 2 ), p 2 e 2 + pe 1 ) if p > p +,L 0 (z, p 2 ).
3. For z 2 , p 2 ∈ R, there exist two unique real numbers p

+,R 0 (z 2 , p 2 ) ≤ p -,R 0 (z 2 , p 2 ) such that H -,R ((0, z 2 ), p 2 e 2 + pe 1 ) = E R 0 (z 2 , p 2 ) if p ≤ p -,R 0 (z, p 2 ), H R ((0, z 2 ), p 2 e 2 + pe 1 ) if p > p -,R 0 (z, p 2 ), H +,R ((0, z 2 ), p 2 e 2 + pe 1 ) = H R ((0, z 2 ), p 2 e 2 + pe 1 ) if p ≤ p +,R 0 (z, p 2 ), E R 0 (z 2 , p 2 ) if p > p +,R 0 (z, p 2 ).

A new Hamiltonian involved in the effective transmission condition

In this section, we construct the effective Hamiltonian corresponding to effective dynamics staying on the interface Γ, by using similar ideas as those proposed in [START_REF] Achdou | Hamilton-Jacobi equations on networks as limits of singularly perturbed problems in optimal control: dimension reduction[END_REF]. We will define an effective Hamiltonian E on Γ as the limit of a sequence of ergodic constants for state-constrained problems in larger and larger truncated domains. We will also construct correctors associated to the effective Hamiltonian. The noteworthy difficulty is that the correctors need to be defined in an unbounded domain.

Fast and slow variables

Let us introduce the fast variable y 2 = z 2 ε . Neglecting the contribution of εg(y 2 ) in the Hamiltonians Hi ε previously defined in (2.11), we obtain the new Hamiltonians Hi :

R 2 × R 2 × R → R:
Hi (z, p, y 2 ) := max

a∈A i -J(y 2 )f i (z, a) • p -i (z, a) , (4.1) 
where

J(y 2 ) = 1 -g (y 2 ) 0 1 . (4.2) 
As above, using σ i introduced in § 1.1, we also define H+,i and H-,i :

R 2 × R 2 × R → R by H±,i (z, p, y 2 ) = max a ∈ A i s.t. ±σ i J(y 2 )f i (z, a) • e 1 ≥ 0 -J(y 2 )f i (z, a) • p -i (z, a) . (4.3) Lemma 4.1. With L f , M f , M and δ 0 appearing in Assumptions [H0]-[H3], for any z ∈ R 2 , y 2 ∈ R and p, p ∈ R 2 , | Hi (z, p, y 2 ) -Hi (z, p , y 2 )| ≤ M f |p -p |, i = L, R, (4.4) 
and there exists a constant M > 0 (which can be computed from L f , M f , δ 0 and g ∞ ) and a modulus of continuity ω (which can be deduced from ω , M L f , δ 0 and g ∞ ) such that for any

z, z ∈ R 2 , y 2 ∈ R and p ∈ R 2 , | Hi (z, p, y 2 ) -Hi (z , p, y 2 ) |≤ M |p||z -z | + ω(|z -z |). (4.5)
Similar estimates hold for H+,i and H-,i .

Proof. The proof is standard for the Hamiltonians Hi . Adapting the proofs of Lemmas 3.5 and 3.6 in [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF], we see that similar estimates hold for H+,i and H-,i : the proofs are not direct and rely on the convexity of {( J(y 2 )f i (z, a), i (z, a)), a ∈ A i }, on the fact that the dynamics J(y 2 )f i (z, admits a viscosity solution is λ i (z, p) = H i (z, p); indeed, for this choice of λ i (z, p), it is easy to check that χ(y 2 ) = p 1 g(y 2 ) is a solution of (4.6) and the uniqueness of λ i (z, p) such that (4.6) has a solution is well known, see e.g. [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF][START_REF] Evans | The perturbed test function method for viscosity solutions of nonlinear PDE[END_REF].

Remark 4.3. For any (0, z 2 ) ∈ Γ, p ∈ R 2 and y 2 ∈ R, the functions p 1 → H±,i ((0, z 2 ), p + p 1 e 1 , y 2 ) have the same monotonicity properties as those stated in point 1 in Lemma 3.2 for p 1 → H ±,i ((0, z 2 ), p + p 1 e 1 ). Similarly, one can prove the counterparts of points 2 and 3 in Lemma 3.2 involving H±,i ((0, z 2 ), p + p 1 e 1 , y 2 ), Hi ((0, z 2 ), p + p 1 e 1 , y 2 ) and Ẽi 0 (z 2 , p 2 , y 2 ) = min Hi ((0, z 2 ), p 2 e 2 + qe 1 , y 2 ), q ∈ R .

Ergodic constants for state-constrained problems in truncated domains

State-constrained problem in truncated domains

Let us fix z = (0, z 2 ) ∈ Γ and p 2 ∈ R. For ρ > 0, we consider the truncated cell problem:

                   HL ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ ρ (z 2 , p 2 ) in (-ρ, 0) × R, HR ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ ρ (z 2 , p 2 ) in (0, ρ) × R, max i=L,R H+,i ((0, z 2 ), Du i (y) + p 2 e 2 , y 2 ) = λ ρ (z 2 , p 2 ) on Γ, H-,L ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ ρ (z 2 , p 2 ) on {-ρ} × R, H-,R ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ ρ (z 2 , p 2 ) on {ρ} × R, u is 1-periodic w.r.t. y 2 , (4.7)
where the Hamiltonians Hi , H+,i and H-,i are respectively defined in (4.1) and (4.3). The notions of viscosity subsolution, supersolution and solution of (4.7) are defined in the same way as in Definition 1.3 using the set of test-functions

R ρ = ψ| [-ρ,ρ]×R , ψ ∈ R , (4.8) 
with R defined in Definition 2.2. The following stability property allows one to construct a solution of (4.7):

Lemma 4.4 (A stability result). Let (u η ) η be a sequence of uniformly Lipschitz continuous solutions of the perturbed equation

                   ηu(y) + HL ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ η in (-ρ, 0) × R, ηu(y) + HR ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ η in (0, ρ) × R, ηu(y) + max i=L,R H+,i ((0, z 2 ), Du i (y) + p 2 e 2 , y 2 ) = λ η on Γ, ηu(y) + H-,L ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ η on {-ρ} × R, ηu(y) + H-,R ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) = λ η on {ρ} × R, u is 1-periodic w.r.t. y 2 , (4.9)
such that λ η tends to λ as η tends to 0 and u η converges to u 0 uniformly in [-ρ, ρ] × R. Then u 0 is a viscosity solution of (4.7) (replacing λ ρ (z 2 , p 2 ) with λ).

Proof. The proof of Lemma 4.4 follows the lines of the proofs of Theorem 6.1 and Theorem 6.2 in [START_REF] Achdou | Hamilton-Jacobi equations for optimal control on junctions and networks[END_REF]. Actually, the proof is even simpler in the present case since the involved Hamiltonians do not depend of η. We give it in Appendix A for the reader's convenience.

The following comparison principle for (4.9) yields the uniqueness of the constant λ ρ (z 2 , z 2 ) for which the cell-problem (4.7) admits a solution: Lemma 4.5 (A comparison result). For η > 0, let u be a bounded subsolution of (4.9) and v be a bounded supersolution of (4.9).

Then u ≤ v in [-ρ, ρ] × R.
Proof. As for Theorem 2.6, this result can be obtained by applying [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]Theorem 3.4].

Lemma 4.6. There is a unique λ ρ (z 2 , p 2 ) ∈ R such that (4.7) admits a bounded solution. For this choice of λ ρ (z 2 , p 2 ), there exists a solution χ ρ (z 2 , p 2 , •) which is Lipschitz continuous with Lipschitz constant L depending on p 2 only (independent of ρ).

Proof. With the set M defined in (2.6), let us consider the new freezed dynamics f z 2 : M → R 2 and running costs z 2 ,p 2 : M → R 2 :

f z 2 (y, a) =        1 -g (y 2 ) 0 1 f L ((0, z 2 ), a) if y 1 ≤ 0, a ∈ A L , 1 -g (y 2 ) 0 1 f R ((0, z 2 ), a) if y 1 ≥ 0, a ∈ A R , (4.10) 
z 2 ,p 2 (y, a) = f L 2 ((0, z 2 ), a)p 2 + L ((0, z 2 ), a) if y 1 ≤ 0, a ∈ A L , f R 2 ((0, z 2 ), a)p 2 + R ((0, z 2 ), a) if y 1 ≥ 0, a ∈ A R , (4.11) 
where f 2 stands for the second component of f . Let T z 2 ,x,ρ be the set of admissible trajectories starting from y ∈ (-ρ, ρ) × R and constrained to [-ρ, ρ] × R:

T z 2 ,y,ρ =    (ζ y , a) ∈ L ∞ loc (R + ; M) : ζ y ∈ Lip(R + ; [-ρ, ρ] × R), ζ y (t) = y + t 0 f z 2 (ζ y (s), a(s))ds ∀t ∈ R +    . (4.12)
For any η > 0, the cost associated to the trajectory (ζ y , a) ∈ T z 2 ,y,ρ is

J η ρ (z 2 , p 2 , y; (ζ y , a)) = ∞ 0 z 2 ,p 2 (ζ y (t), a(t))e -ηt dt, (4.13) 
and we introduce the optimal control problem: 

v η ρ (
= δ 0 √ 2(1+ g ∞)
, then B(0, δ 0 ) ⊂ {f z 2 (y, a), a ∈ A i } for any From Ascoli-Arzela's theorem, up to the extraction a subsequence, χ η ρ (z 2 , p 2 , •) and -ηv η ρ (z 2 , p 2 , •) converge uniformly respectively to a Lipschitz function χ ρ (z 2 , p 2 , •) defined on [-ρ, ρ] × R (with Lipschitz constant L) and to a constant λ ρ (z 2 , p 2 ) as η → 0. On the other hand, with the arguments contained in [START_REF] Achdou | Hamilton-Jacobi equations constrained on networks[END_REF][START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF][START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF], it can be proved that v η ρ (z 2 , p 2 , •) is a viscosity solution of (4.9) with λ η = 0. Hence, χ η ρ (z 2 , p 2 , •) is a sequence of viscosity solutions of (4.9) for λ η = -ηv η ρ (z 2 , p 2 , (0, 0)), and λ η → λ ρ (z 2 , p 2 ) as η tends to 0. From the stability result in Lemma 4.4, the function χ ρ (z 2 , p 2 , •) is a viscosity solution of (4.7). Finally, uniqueness can be proved in a classical way using the comparison principle in Lemma 4.5 and the boundedness of χ ρ .

i = L, R, y ∈ [-ρ, ρ] × R.

Passage to the limit as ρ → +∞

By definition of T z 2 ,y,ρ , it is clear that if ρ 1 ≤ ρ 2 , then T z 2 ,y,ρ 1 ⊂ T z 2 ,y,ρ 2 . Then, thanks to (4.14) and (4. [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]), we see that -ηv η ρ 1 ≤ -ηv η ρ 2 ≤ K, and letting η → 0, we obtain that Proof. Proceed exactly in the same way as in the proof of Lemma 4.4. Theorem 4.9 (Existence of a global corrector). There exists χ(z 2 , p 2 , •) a Lipschitz continuous viscosity solution of (4.19) with the same Lipschitz constant L as in (4.15) and such that χ(z 2 , p 2 , (0, 0)) = 0.

λ ρ 1 (z 2 , p 2 ) ≤ λ ρ 2 (z 2 , p 2 ) ≤ K. ( 4 
Proof. Let χ ρ (z 2 , p 2 , •) be the sequence of solutions of (4.7) given by Lemma 4.6. Recall that χ ρ (z 2 , p 2 , •) is Lipschitz continuous with Lipschitz constant L independent of ρ and periodic with respect to y 2 . By taking χ ρ (z 2 , p 2 , •) -χ ρ (z 2 , p 2 , (0, 0)) instead of χ ρ (z 2 , p 2 , •), we may assume that χ ρ (z 2 , p 2 , (0, 0)) = 0. Thus, χ ρ (z 2 , p 2 , •) is locally bounded and thanks to Ascoli-Arzela's theorem, up to the extraction a subsequence, χ ρ (z 2 , p 2 , •) converges locally uniformy to a function χ(z 2 , p 2 , •), which is Lipschitz continuous and periodic with respect to y 2 and satisfies χ(z 2 , p 2 , (0, 0)) = 0. Thanks to the stability result in Lemma 4.8, χ(z 2 , p 2 , •) is a viscosity solution of (4.19).

4.2.3

Comparison between E 0 and E respectively defined in (3.9) and (4.18)

For ε > 0, let us call W ε (z 2 , p 2 , y) = εχ(z 2 , p 2 , y ε ).
The following result is reminiscent of [10, Theorem 4.6,iii]: Lemma 4.10. For any z 2 , p 2 ∈ R, there exists a subsequence ε n such that W εn (z 2 , p 2 , •) converges locally uniformly to a Lipschitz function y → W (z 2 , p 2 , y), with the Lipschitz constant L appearing in (4.15). This function is constant with respect to y 2 and satisfies W (z 2 , p 2 , 0) = 0. It is a viscosity solution of For i = L, R, assume that ȳ ∈ Ω i , φ ∈ C 1 (Ω i ) and r 0 < 0 are such that B(ȳ, r 0 ) ⊂ Ω i and that

H i ((0, z 2 ), Du(y) + p 2 e 2 ) = E(z 2 , p 2 ) in Ω i . ( 4 
W (z 2 , p 2 , y) -φ(y) < W (z 2 , p 2 , ȳ) -φ(ȳ) = 0 for y ∈ B(ȳ, r 0 ) \ {ȳ}.
We wish to prove that

H i ((0, z 2 ), Dφ(ȳ) + p 2 e 2 ) ≤ E(z 2 , p 2 ).
Let us argue by contradiction and assume that there exists θ > 0 such that

H i ((0, z 2 ), Dφ(ȳ) + p 2 e 2 ) = E(z 2 , p 2 ) + θ. (4.22)
Take φ ε (y) = φ(y) + ε∂ y 1 φ(ȳ)g( y 2 ε ) -δ, where δ > 0 is a fixed positive number. We claim that for ε > 0 and r > 0 small enough, φ ε is a viscosity supersolution of Hi ((0, z 2 ), Du(y) 

+ p 2 e 2 , y 2 ε ) ≥ E(z 2 , p 2 ) + θ 2 in B(ȳ,
ε ) = H i (0, z 2 ), Dφ(y) + g ( y 2 ε )(∂ y 1 φ(ȳ) -∂ y 1 φ(y))e 2 ,
and we deduce (4.23) from (4.22) and the regularity properties of the Hamiltonian H i . Hence, W ε (z 2 , p 2 , •) is a subsolution of (4.21) and φ ε is a supersolution of (4.23) in B(ȳ, r). Moreover for r > 0 small enough, max y∈∂B(ȳ,r) (W (z 2 , p 2 , y) -φ(y)) < 0. Hence, for ε > 0 small enough max y∈∂B(ȳ,r) (W ε (z 2 , p 2 , y) -φ ε (y)) ≤ 0. Thanks to a standard comparison principle (which holds thanks to the fact that θ 2 > 0) max y∈B(ȳ,r)

(W ε (z 2 , p 2 , y) -φ ε (y)) ≤ 0. (4.24)
Letting ε → 0 in (4.24), we deduce that

W (z 2 , p 2 , ȳ) ≤ φ(ȳ) -δ,
which is in contradiction with the assumption.

Using Lemma 4.10, it is possible to compare E 0 (z 2 , p 2 ) and E(z 2 , p 2 ) respectively defined in (3.9) and (4.18): Proposition 4.11. For any z 2 , p 2 ∈ R, From Proposition 4.11 and the coercivity of the Hamiltonian H i , the following numbers are well defined for all z 2 , p 2 ∈ R:

E(z 2 , p 2 ) ≥ E 0 (z 2 , p 2 ). ( 4 
Π L (z 2 , p 2 ) = max p ∈ R : H L ((0, z 2 ), p 2 e 2 + pe 1 ) = H -,L ((0, z 2 ), p 2 e 2 + pe 1 ) = E(z 2 , p 2 ) (4.26) Π L (z 2 , p 2 ) = min p ∈ R : H L ((0, z 2 ), p 2 e 2 + pe 1 ) = H -,L ((0, z 2 ), p 2 e 2 + pe 1 ) = E(z 2 , p 2 ) (4.27) Π R (z 2 , p 2 ) = min p ∈ R : H R ((0, z 2 ), p 2 e 2 + pe 1 ) = H -,R ((0, z 2 ), p 2 e 2 + pe 1 ) = E(z 2 , p 2 ) (4.28) Π R (z 2 , p 2 ) = max p ∈ R : H R ((0, z 2 ), p 2 e 2 + pe 1 ) = H -,R ((0, z 2 ), p 2 e 2 + pe 1 ) = E(z 2 , p 2 ) (4.29)
Remark 4.12. In § 5, see in particular Corollaries 5.5 and 5.6 below, we will see that the function W which is defined in Lemma 4.10 and provides information on the growth of y → χ(z 2 , p 2 , y)

as |y 1 | → ∞, satisfies Π L (z 2 , p 2 )y 1 1 Ω L + Π R (z 2 , p 2 )y 1 1 Ω R ≤ W (z 2 , p 2 , y) ≤ Π L (z 2 , p 2 )y 1 1 Ω L + Π R (z 2 , p 2 )y 1 1 Ω R .
These growth properties at infinity show that χ(z 2 , p 2 , •) is precisely the corrector associated to the reduced set of test-functions proposed by Imbert and Monneau in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF][START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF], see § 7.1 below.

Remark 4.13. From the convexity of the Hamiltonians H i and H -,i , we deduce that if

E i 0 (z 2 , p 2 ) < E(z 2 , p 2 ), then Π i (z 2 , p 2 ) = Π i (z 2 , p 2 ).
In this case, we will use the notation

Π i (z 2 , p 2 ) = Π i (z 2 , p 2 ) = Π i (z 2 , p 2 ). (4.30)
where Π R (z 2 , p 2 ) is given by (4.30) and χ ρ (z 2 , p 2 , •) is a solution of (4.7) given by Lemma 4.6.

Similarly, let z 2 , p 2 ∈ R be such that E(z 2 , p 2 ) > E L 0 (z 2 , p 2 ). There exists ρ * > 0, δ * > 0, m(•) : R + → R + and M * as above, such that for all δ ∈ (0,

δ * ], ρ ≥ ρ * , y = (y 1 , y 2 ) ∈ [-ρ, -ρ * ] × R, h 1 ∈ [0, ρ + y 1 ] and h 2 ∈ R, χ ρ (z 2 , p 2 , y -h 1 e 1 + h 2 e 2 ) -χ ρ (z 2 , p 2 , y) ≥ -(Π L (z 2 , p 2 ) + m(δ))h 1 -M * .
(5.4)

Proof. Let us focus on (5.3) since the proof of (5.4) is similar. Recall that ρ → λ ρ (z 2 , p 2 ) is nondecreasing and tends to E(z 2 , p 2 ) as ρ → +∞. Choose ρ * = ρ * (z 2 , p 2 ) > 0 such that for any

ρ ≥ ρ * , E(z 2 , p 2 ) > λ ρ (z 2 , p 2 ) > E R 0 (z 2 , p 2 ). Then, choose δ * = δ * (z 2 , p 2 ) > 0 such that for any δ ∈ (0, δ * ], λ ρ (z 2 , p 2 ) -δ > E R 0 (z 2 , p 2 ).
q → H -,R ((0, z 2 ), p 2 e 2 + qe 1 ) 

E(z 2 , p 2 ) E R 0 (z 2 , p 2 ) λ ρ * (z 2 , p 2 ) λ ρ * (z 2 , p 2 ) -δ * λ ρ (z 2 , p 2 ) -δ Π R (z 2 , p 2 ) q δ q δ *
} × R χ ρ (z 2 , p 2 , y) -χ ρ (z 2 , p 2 , ȳ) ≥ -L. Therefore, y → χ ρ (z 2 , p 2 , y) -χ ρ (z 2 , p 2 , ȳ) is a supersolution of        HR ((0, z 2 ), Dv(y) + p 2 e 2 , y 2 ) ≥ λ ρ (z 2 , p 2 ), y ∈ (ȳ 1 , ρ) × R, H-,R ((0, z 2 ), Dv(y) + p 2 e 2 , y 2 ) ≥ λ ρ (z 2 , p 2 ), y ∈ {ρ} × R, v(y) ≥ -L, y ∈ {ȳ 1 } × R, v is 1-periodic w.r.t. y 2 .
(5.5) Since ρ ≥ ρ * and δ ∈ (0, δ * ], there exists a unique q δ ∈ R, see Figure 2, such that λ ρ (z 2 , p 2 ) -δ = H R ((0, z 2 ), p 2 e 2 + q δ e 1 ) = H -,R ((0, z 2 ), p 2 e 2 + q δ e 1 ).

(5.6)

We observe that q δ * ≤ q δ ≤ Π R (z 2 , p 2 ) and that q δ tends to Π R (z 2 , p 2 ) as δ tends to 0. Choose m(δ) = Π R (z 2 , p 2 ) -q δ ≥ 0 and consider the function w R : w R (y) = q δ (y 1 + g(y 2 )), which is of class C 2 . From the choice of q δ , for any

y ∈ R 2 , H-,R (z 2 , Dw R (y) + p 2 e 2 , y 2 ) ≤ HR (z 2 , Dw R (y) + p 2 e 2 , y 2 ) = λ ρ (z 2 , p 2 ) -δ, (5.7) 
and for any y

∈ {ȳ 1 } × R, w R (y) -q δ ȳ1 ≤ |q δ | g ∞ ≤ max |q δ * |, |Π R (z 2 , p 2 )| g ∞ = C = C(z 2 , p 2 ).
Therefore, as stated in Remark 5.2, the subsolution property holds up to the boundary y 1 = ρ and the function u

R : y ∈ [ȳ 1 , R] × R → w R (y) -q δ ȳ1 -C -L is a subsolution of        HR ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) ≤ λ ρ (z 2 , p 2 ) -δ y ∈ (ȳ 1 , ρ) × R, H-,R ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) ≤ λ ρ (z 2 , p 2 ) -δ, y ∈ {ρ} × R, u(y) ≤ -L, y ∈ {ȳ 1 } × R, u is 1-periodic w.r.t. y 2 .
(5.8) Finally, since χ ρ (z 2 , p 2 , y) -χ ρ (z 2 , p 2 , ȳ) is a supersolution of (5.5) and u R is a subsolution of (5.8), the comparison principle in Lemma 5.1 yields: for all y

∈ [ȳ 1 , ρ] × R χ ρ (z 2 , p 2 , y) -χ ρ (z 2 , p 2 , ȳ) ≥ u R (y) = q δ ((y 1 -ȳ1 ) + g(y 2 )) -C -L ≥ (Π R (z 2 , p 2 ) -m(δ))(y 1 -ȳ1 ) -M * , (5.9) 
where M * is a constant depending only of z 2 and p 2 . Note that the constants which appear in (5.9) are independent of ρ > 0.

The following corollary deals with the global corrector χ:

Corollary 5.5. With Π i (z 2 , p 2 ) defined in (4.30), i = L, R, 1. If E(z 2 , p 2 ) > E R 0 (z 2 , p 2 ), then, with ρ * > 0 and M * ∈ R as in the first point of Proposition 5.4, for all y ∈ [ρ * , +∞) × R, h 1 ≥ 0 and h 2 ∈ R, χ(z 2 , p 2 , y + h 1 e 1 + h 2 e 2 ) -χ(z 2 , p 2 , y) ≥ Π R (z 2 , p 2 )h 1 -M * .
(5.10)

2. If E(z 2 , p 2 ) > E L 0 (z 2 , p 2 )
, then, with ρ * > 0 and M * ∈ R as in the second point of Proposition 5.4, for all y ∈ (-∞, -ρ * ] × R, h 1 ≥ 0 and h 2 ∈ R,

χ(z 2 , p 2 , y -h 1 e 1 + h 2 e 2 ) -χ(z 2 , p 2 , y) ≥ -Π L (z 2 , p 2 )h 1 -M * .
(

Proof. The proof follows easily from Proposition 5.4 and the local uniform convergence of the sequence χ ρ (z 2 , p 2 , •) toward χ(z 2 , p 2 , •).

Corollary 5.6. For any z 2 , p 2 ∈ R, the function y → W (z 2 , p 2 , y) defined in Lemma 4.10 satisfies

Π R (z 2 , p 2 ) ≤ ∂ y 1 W (z 2 , p 2 , y) ≤ Π R (z 2 , p 2 ) for a.a. y ∈ (0, +∞) × R, (5.12) 
Π L (z 2 , p 2 ) ≤ ∂ y 1 W (z 2 , p 2 , y) ≤ Π L (z 2 , p 2 ) for a.a. y ∈ (-∞, 0) × R, (5.13) 
and for all y:

Π L (z 2 , p 2 )y 1 1 Ω L + Π R (z 2 , p 2 )y 1 1 Ω R ≤ W (z 2 , p 2 , y) ≤ Π L (z 2 , p 2 )y 1 1 Ω L + Π R (z 2 , p 2 )y 1 1 Ω R . (5.14)
Proof. From Lemma 4.10, we see that y → W (z 2 , p 2 , y) is Lipschitz continuous w.r.t. y 1 and independent of y 2 , and satisfies

H R ((0, z 2 ), ∂ y 1 W (z 2 , p 2 , y)e 1 + p 2 e 2 ) = E(z 2 , p 2 ) a.e. in Ω R . (5.15) 
Consider first the case when E(z 2 , p 2 ) > E R 0 (z 2 , p 2 ); from the convexity and coercivity of H R , the observations above yield that almost everywhere in y, ∂ y 1 W (z 2 , p 2 , y) can be either Π R (z 2 , p 2 ) (the unique real number such that H -,R ((0, z 2 ), qe 1 + p 2 e 2 ) = E(z 2 , p 2 )), or the unique real number q (depending on (z 2 , p 2 )) such that H +,R ((0, z 2 ), qe 1 + p 2 e 2 ) = E(z 2 , p 2 ). Note that q < Π R (z 2 , p 2 ). But from Corollary 5.5 and the local uniform convergence of W ε (z 2 , p 2 , •) toward W (z 2 , p 2 , •), we see that that for any y 1 > 0 and h 1 ≥ 0,

W (z 2 , p 2 , y + h 1 e 1 ) -W (z 2 , p 2 , y) ≥ Π R (z 2 , p 2 )h 1 , which implies that almost everywhere, ∂ y 1 W (z 2 , p 2 , y) ≥ Π R (z 2 , p 2 ) > q. Therefore, ∂ y 1 W (z 2 , p 2 , •) = Π R (z 2 , p 2 ) almost everywhere.
In the case when E(z 2 , p 2 ) = E R 0 (z 2 , p 2 ), we deduce from (5.15) that almost everywhere in y,

Π R (z 2 , p 2 ) ≤ ∂ y 1 W (z 2 , p 2 , y) ≤ Π R (z 2 , p 2 ).
We have proved (5.12). The proof of (5.13) is identical. Finally, (5.14) comes from (5.12), (5.13) and from the fact that W (z 2 , p 2 , 0) = 0.

A comparison principle for (1.23)

To prove the main result of the paper, i.e. Theorem 1.5, we need a comparison principle for (1.21)- (1.22). Before proving such a result, we need to establish some useful properties of E arising in (1.22).

Properties of E(•, •)

In the theory of homogenization of Hamilton-Jacobi equations, it is quite standard to observe that the effective Hamiltonian inherits some properties from the original problem, see the pioneering work [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF]. Lemma 6.1. For any z 2 ∈ R, the function

p 2 → E(z 2 , p 2 ) is convex. For any z 2 , z 2 , p 2 , p 2 ∈ R, | E(z 2 , p 2 ) -E(z 2 , p 2 ) |≤ M f |p 2 -p 2 |, (6.1) 
| E(z 2 , p 2 ) -E(z 2 , p 2 ) |≤ C(1 + |p 2 |)|z 2 -z 2 | + ω(|z 2 -z 2 |), (6.2) 
δ 0 |p 2 | -M ≤ E(z 2 , p 2 ) ≤ M f |p 2 | + M , (6.3) 
where the constants M f , M , δ 0 have been introduced in Assumptions [H0]-[H3], the modulus of continuity ω has been introduced in Lemma 4.1 and C is a positive constant. Moreover, p 2 → E(z 2 , p 2 ) is affine in a neighborhood of ±∞. More precisely, for any

z 2 ∈ R, there exist ˆ (z 2 ), ˇ (z 2 ) ∈ [-M , M ], f (z 2 ), f (z 2 ) ∈ [δ 0 , M f ] and K(z 2 ), Ǩ(z 2 ) > 0 such p 2 ≥ K(z 2 ) ⇒ E(z 2 , p 2 ) = f (z 2 )p 2 + ˆ (z 2 ), (6.4 
)

p 2 ≤ -Ǩ(z 2 ) ⇒ E(z 2 , p 2 ) = -f (z 2 )p 2 + ˇ (z 2 ). (6.5)
Proof. The proof contains arguments that are quite similar to those contained in [START_REF] Lions | Homogenization of Hamilton-Jacobi equations[END_REF], but technical difficulties arise from the discontinuities of the Hamiltonians at y 1 = 0.

Proof of (6.1) For z 2 , p 2 , p 2 ∈ R, consider y → v η ρ (z 2 , p 2 , y) and y → v η ρ (z 2 , p 2 , y) given by (4.14). These functions are the viscosity solutions of (4.9) with λ η = 0. Take ȳ ∈ R 2 and ϕ ∈ R ρ (see (4.8)) and assume that y → v η ρ (z 2 , p 2 , y) + M f η |p 2 -p 2 | -ϕ(y) has a local minimum at ȳ. We focus on the case when ȳ = (0, ȳ2 ) ∈ Γ, since all the other cases are simpler. Therefore ηv η ρ (z 2 , p 2 , ȳ) + max i∈{L,R} H+,i ((0, z 2 ), Dϕ i (ȳ) + p 2 e 2 , ȳ2 ) ≥ 0. Assume for instance that the latter maximum is achieved by i = R, then

η v η ρ (z 2 , p 2 , ȳ) + M f η |p 2 -p 2 | + H+,R ((0, z 2 ), Dϕ R (ȳ) + p 2 e 2 , ȳ2 ) ≥ M f |p 2 -p 2 | + H+,R ((0, z 2 ), Dϕ R (ȳ) + p 2 e 2 , ȳ2
) -H+,R ((0, z 2 ), Dϕ R (ȳ) + p 2 e 2 , ȳ2 ), and from (4.4)

η v η ρ (z 2 , p 2 , ȳ) + M f η |p 2 -p 2 | + H+,R ((0, z 2 ), Dϕ R (ȳ) + p 2 e 2 , ȳ2 ) ≥ 0.
This shows that y → v η ρ (z 2 , p 2 , y) 

+ M f η |p 2 -p 2 |
+ M f η |p 2 -p 2 | ≥ v η ρ (z 2 , p 2 ,
•) and (6.1) is obtained by exchanging the roles of p 2 and p 2 and passing to the limit as η → 0 then as ρ → +∞.

Proof of (6.2) For z 2 , z 2 , p 2 ∈ R, consider y → v η ρ (z 2 , p 2 , y) and y → v η ρ (z 2 , p 2 , y) given by (4.14). These functions are viscosity solutions of (4.9) with λ η = 0. Assume that 0

= v η ρ (z 2 , p 2 , ȳ) -ϕ(ȳ) be a local minimum of v η ρ (z 2 , p 2 , •) -ϕ(•) for ȳ ∈ R 2 and ϕ ∈ R ρ .
As above, we focus on the case when ȳ ∈ Γ because the other cases are simpler. It is not restrictive to assume that ϕ L and ϕ R are smooth (at least C 3 ). Since y → v η ρ (z 2 , p 2 , y) is Lipschitz continuous with a constant L(p 2 ) = L 1 + L 2 |p 2 |, see (4.15), we see that

|∂ y 2 ϕ L (ȳ)| = |∂ y 2 ϕ R (ȳ)| ≤ L(p 2 ), ∂ y 1 ϕ L (ȳ) ≥ -L(p 2 ), ∂ y 1 ϕ R (ȳ) ≤ L(p 2 ). (6.6)
It is always possible to modify ϕ and obtain a test-function ψ such that |∂ y 1 ψ i (ȳ)| ≤ 2L(p 2 ), |∂ y 2 ψ i (ȳ)| ≤ L(p 2 ), i = L, R and that v η ρ (z 2 , p 2 , •) -ψ(•) has a local minimum at ȳ. Indeed, we make out two cases:

1. if |∂ y 1 ϕ i (ȳ)| ≤ 2L(p 2 ) for i = L, R, then we choose ψ = ϕ. 2. If ∂ y 1 ϕ L (ȳ) > 2L(p 2 ) or ∂ yw1 ϕ R (ȳ) < -2L(p 2 ), let us introduce ψ(y) =        ϕ(y) -(2L(p 2 ) + ∂ y 1 ϕ R (ȳ))y 1 -A|y -ȳ| 2 if y ∈ [0, ρ] × R and ∂ y 1 ϕ R (ȳ) < -2L(p 2 ), ϕ(y) -A|y -ȳ| 2 if y ∈ [0, ρ] × R and |∂ y 1 ϕ R (ȳ)| ≤ 2L(p 2 ), ϕ(y) + (2L(p 2 ) -∂ y 1 ϕ L (ȳ))y 1 -A|y -ȳ| 2 if y ∈ [-ρ, 0] × R and ∂ y 1 ϕ L (ȳ) > 2L(p 2 ), ϕ(y) -A|y -ȳ| 2 if y ∈ [-ρ, 0] × R and |∂ y 1 ϕ L (ȳ)| ≤ 2L(p 2 ). Note that |∂ y 1 ψ i (ȳ)| ≤ 2L(p 2 ), i = L, R and that ∂ y 1 ϕ L (ȳ) ≥ ∂ y 1 ψ L (ȳ), and ∂ y 1 ϕ R (ȳ) ≤ ∂ y 1 ψ R (ȳ). (6.7)
We claim that for A large enough, v η ρ (z 2 , p 2 , •) -ψ(•) has a local minimum at ȳ. Indeed, fix r > 0 such that v η ρ (z 2 , p 2 , y) -ϕ(y) ≥ v η ρ (z 2 , p 2 , ȳ) -ϕ(ȳ) = 0 for y ∈ B(ȳ, r). Assuming for example that ∂ y 1 ϕ R (ȳ) < -2L(p 2 ) (the case when |∂ y 1 ϕ R (ȳ)| ≤ 2L(p 2 ) is obvious), we see that for y ∈ B(ȳ, r) with y 1 > 0,

v η ρ (z 2 , p 2 , y) -ψ(y) ≥v η ρ (z 2 , p 2 , y) -v η ρ (z 2 , p 2 , (0, y 2 )) + ϕ(0, y 2 ) -ϕ(y) + 2L(p 2 ) + ∂ y 1 ϕ R (ȳ) y 1 + A|y -ȳ| 2 .
(6.8)

For a constant c > 0 depending on φ and r, ϕ(0, y 2 ) -ϕ(y) ≥ -

y 1 ∂ y 1 ϕ R (0, y 2 ) -cy 2 1 ≥ -y 1 ∂ y 1 ϕ R (ȳ) -c(y 2 1 + y 1 |y 2 -ȳ2 |).
On the other hand, v η ρ (z 2 , p 2 , y) -v η ρ (z 2 , p 2 , (0, y 2 )) ≥ -L(p 2 )y 1 . From the latter two observations and (6.8), we deduce that v η ρ (z 2 , p 2 , y) -ψ(y) ≥ L(p 2 )y 1 -c(y

2 1 + y 1 |y 2 -ȳ2 |) + A|y -ȳ| 2 . Therefore for A large enough, v η ρ (z 2 , p 2 , y) -ψ(y) ≥ 0 = v η ρ (z 2 , p 2 , ȳ) -ψ(ȳ), y ∈ B(ȳ, r),
and the claim is proved.

In both cases, we see that ηv η ρ (z 2 , p 2 , ȳ) + max i∈{L,R} H+,i ((0, z 2 ), Dψ i (ȳ) + p 2 e 2 , ȳ2 ) ≥ 0;

assuming that the latter maximum is achieved by i = R for example, this yields

η v η ρ (z 2 , p 2 , ȳ) + C η (1 + |p 2 |)|z 2 -z 2 | + 1 η ω(|z 2 -z 2 |) + H+,R ((0, z 2 ), Dψ R (ȳ) + p 2 e 2 , ȳ2 ) ≥ C(1 + |p 2 |)|z 2 -z 2 | -M |p 2 e 2 + Dψ R (ȳ)||z 2 -z 2 |.
Thanks to (6.6) and from the construction of ψ,

|p 2 e 2 + Dψ i (ȳ)| ≤ |p 2 | + 3L(p 2 ), i = L, R. (6.9) 
Hence, choosing C ≥ M max(3L 1 , 1 + 3L 2 ) yields

η v η ρ (z 2 , p 2 , ȳ) + C η (1 + |p 2 |)|z 2 -z 2 | + 1 η ω(|z 2 -z 2 |) + H+,R ((0, z 2 ), Dψ R (ȳ) + p 2 e 2 , ȳ2 ) ≥ 0.
But from (6.7) and the nonincreasing character of H+,R , we see that

η v η ρ (z 2 , p 2 , ȳ) + C η (1 + |p 2 |)|z 2 -z 2 | + 1 η ω(|z 2 -z 2 |) + H+,R ((0, z 2 ), Dϕ R (ȳ) + p 2 e 2 , ȳ2 ) ≥ 0. Therefore, v η ρ (z 2 , p 2 , •) + C η (1 + |p 2 |)|z 2 -z 2 | + 1 η ω(|z 2 -z 2 |
) is a supersolution of the equation satisfied by v η ρ (z 2 , p 2 , •) and we conclude using the comparison principle Lemma 4.5, passing to the limit as η → 0 and ρ → +∞, and finally exchanging the roles of z 2 and z 2 .

Proof of (6.3) Proof that p 2 → E(z 2 , p 2 ) is affine in a neighborhood of ±∞ We focus on (6.4) since the proof of (6.5) is similar. For z 2 ∈ R, y ∈ [-ρ, ρ] × R and p 2 , η, ρ > 0, let us define f η ρ (z 2 , y) = sup (γy,a)∈Tz 2 ,y,ρ -∞ 0 f 2 ((0, z 2 ), a(t))e -ηt dt , with T z 2 ,y,ρ given in (4.12). From (4.11) and (4.14), we deduce that

Choosing ā ∈ A i such that f i ((0, z 2 ), ā) = -δ 0 e 2 if p 2 ≥ 0 or f i ((0, z 2 ), ā) = +δ 0 e 2 otherwise, (see [H3]), implies H i ((0, z 2 ), p 2 e 2 + p 1 e 1 ) ≥ δ 0 |p 2 | -M for all p 1 ∈ R. This yields that E 0 (z 2 , p 2 ) ≥ δ 0 |p 2 | -M ,
η f η ρ (z 2 , y)p 2 -M ≤ -ηv η ρ (z 2 , p 2 , y) ≤ η f η ρ (z 2 , y)p 2 + M . (6.10) 
From the assumptions, it is easy to check that

|η f η ρ (z 2 , y)| ≤ M f , (6.11) 
| f η ρ (z 2 , y) -f η ρ (z 2 , y )| ≤ C|y -y |, (6.12) 
for some positive constant C, and that y → f η ρ (z 2 , y) is periodic with period 1 in the variable y 2 . From Ascoli-Arzela theorem, up to the extraction of subsequences, we may assume that f η ρ (z 2 , •) -f η ρ (z 2 , 0) tends to a Lipschitz function (with Lipschitz constant C) and that η f η ρ (z 2 , •) tends to a constant fρ (z 2 ) as η → 0. With the same arguments as in § 4.2.2, we may prove that fρ (z 2 ) is nondecreasing and uniformly bounded with respect to ρ. Therefore, we may define f (z 2 ) = lim ρ→+∞ fρ (z 2 ).

Passing to the limit in (6.10) as η → 0 then as ρ → +∞, we deduce that

f (z 2 )p 2 -M ≤ E(z 2 , p 2 ) ≤ f (z 2 )p 2 + M . (6.13)
Finally, from (6.13) and the convexity of p 2 → E(z 2 , p 2 ), we infer that there exists ˆ (z 2 ) ∈ [-M , M ] and K(z 2 ) > 0 such that for any

p 2 ≥ K(z 2 ) E(z 2 , p 2 ) = f (z 2 )p 2 + ˆ (z 2 ).
Finally, the bound f (z 2 ) ≥ δ 0 comes from (6.3), and it is straightforward to check that f (z 2 ) ≤ M f .

The comparison principles

Since we are not able to control the constants K(z 2 ) and Ǩ(z 2 ) arising in Lemma 6.1, we cannot directly use the comparison principle which is available in [16, Theorem 2.5]. To apply the latter, it will be useful to first modify E(z 2 , p 2 ) for |p 2 | larger than some fixed number K independent of z 2 . The following lemma deals with such modified Hamiltonians. Lemma 6.2. For a positive number K, the Hamiltonian E K (z 2 , p 2 ) defined by

E K (z 2 , p 2 ) =    E(z 2 , p 2 ) if |p 2 | ≤ K, E(z 2 , K) + M f (p 2 -K) if p 2 > K, E(z 2 , -K) -M f (p 2 + K) if p 2 < -K, (6.14) is convex in the variable p 2 and E K (z 2 , p 2 ) = max b∈[-M f ,M f ] (bp 2 -E K (z 2 , b)) , (6.15) 
where

E K : R 2 → R ∪ {+∞} is the Fenchel transform E K (z 2 , b) = sup q∈R (bq -E K (z 2 , q)). For z 2 , z 2 ∈ R and b, b ∈ [-M f , M f ], |E K (z 2 , b)| ≤ C K , (6.16 
)

|E K (z 2 , b) -E K (z 2 , b )| ≤ K|b -b |, (6.17) |E K (z 2 , b) -E K (z 2 , b)| ≤ ω K (t) = C(1 + K)|z 2 -z 2 | + ω(|z 2 -z 2 |), (6.18) 
where in (6.16), C K is a positive constant, and, in (6.18), the constant C and the modulus of continuity ω are those appearing in (6.2). 

→ R 2 , (z 2 , p 2 ) → Π L (z 2 , p 2 ), Π R (z 2 , p 2 ) be such that, for all (z 2 , p 2 ) Π L (z 2 , p 2 ) ≤ Π L (z 2 , p 2 ) ≤ Π L (z 2 , p 2 ), Π R (z 2 , p 2 ) ≤ Π R (z 2 , p 2 ) ≤ Π R (z 2 , p 2 ). (7.1) 
For z = (0, z2 ) ∈ Γ, the reduced set of test-functions R Π (z) associated to the map Π is the set of the functions ϕ ∈ C 0 (R 2 ) such that there exists a C 1 function ψ : R → R with

ϕ(z) = ψ(z 2 ) + Π R z2 , ψ (z 2 ) 1 z∈Ω R + Π L z2 , ψ (z 2 ) 1 z∈Ω L z 1 . (7.2)
The following theorem is reminiscent of [ 

Proof of Theorem 1.5

As seen in § 3, the result will be proved if we show that the sequence (ṽ ε ) ε corresponding to the straightened geometry converges to v. We will actually prove that ṽ and ṽ defined in (3.1) are respectively a subsolution and a supersolution of (1.23). From Theorem 6.4, this will imply that ṽ = ṽ = v = lim ε→0 ṽε . Moreover, from Proposition 3.1, we just have to check the transmission condition (1.22).

We restrict ourselves to checking that ṽ is a subsolution of (1.23), since the proof that ṽ is a supersolution of (1.23) is similar. Take z = (0, z2 ) ∈ Γ. We are going to use Theorem 7.2 with the special choice for the map Π : R 2 → R 2 : Π(z 2 , p 2 ) = Π L (z 2 , p 2 ), Π R (z 2 , p 2 ) . Take a test-function ϕ ∈ R Π (z), i.e. of the form

ϕ(z) = ψ(z 2 ) + Π R (z 2 , ψ (z 2 ))1 z∈Ω R + Π L (z 2 , ψ (z 2 ))1 z∈Ω L z 1 , (7.4) 
for a C 1 function ψ : R → R, such that ṽ -ϕ has a strict local maximum at z and that ṽ(z) = ϕ(z).

Let us proceed by contradiction and assume that λϕ(z) + max E(z 2 , ∂ z 2 ϕ(z)), H Γ (z, Dϕ L (z), Dϕ R (z)) = θ > 0. Let χ(z 2 , ψ (z 2 ), •) be a solution of (4.19) such that χ(z 2 , ψ (z 2 ), (0, 0)) = 0, see Theorem 4.9, and W (z 2 , ψ (z 2 ), z 1 ) = lim ε→0 εχ(z 2 , ψ (z 2 ), z ε ).

Step 1 We claim that for ε > 0 and r > 0 small enough, the function ϕ ε :

ϕ ε (z) = ψ(z 2 ) + εχ(z 2 , ψ (z 2 ), z ε )
is a viscosity supersolution of λϕ ε (z) + Hi ε (z, Dϕ ε (z)) ≥ θ 2 if z ∈ Ω i ∩ B((0, z2 ), r), λϕ ε (z) + HΓ,ε (z, D (ϕ ε ) L (z), D (ϕ ε ) R (z)) ≥ θ 2 if z ∈ Γ ∩ B((0, z2 ), r), (7.7) where the Hamiltonians Hi ε and HΓ,ε are defined by (2.11) and (2.12). Indeed, if ξ is a test-function in R such that ϕ ε -ξ has a local minimum at z ∈ B((0, z2 ), r), then, from the definition of ϕ ε , y → χ(z 2 , ψ (z 2 ), y) - Recall that the function y → εχ(z 2 , ψ (z 2 ), y ε ) converges locally uniformly to y → W (z 2 , ψ (z 2 ), y), which is a Lipschitz continuous function, independent of y 2 and such that W (z 2 , ψ (z 2 ), 0) = 0. Therefore, for ε and r small enough, λϕ ε (z ) + Hi ε (z , Dξ(z )) ≥ θ 2 . If z ε ∈ Γ, then, for some i ∈ {L, R}, H+,i (z 2 , Dξ i (z )-ψ (z 2 )e 2 +ψ (z 2 )e 2 , z 2 ε ) ≥ E(z 2 , ψ (z 2 )). Since the Hamiltonian H+,i enjoys the same regularity properties as Hi , see Lemma 4.1, it is possible to use the same arguments as in the case z ε ∈ Ω i . For r and ε small enough, λϕ ε (z ) + H+,i Γ,ε (z , Dξ(z )) ≥ θ 2 . The claim that ϕ ε is a supersolution of (7.7) is proved.

Step 2 Let us prove that there exist some positive constants K r > 0 and ε 0 > 0 such that ṽε (z) + K r ≤ ϕ ε (z), ∀z ∈ ∂B(z, r), ∀ε ∈ (0, ε 0 ). (7.8) Indeed, since ṽ -ϕ has a strict local maximum at z and since ṽ(z) = ϕ(z), there exists a positive constant Kr > 0 such that ṽ(z) + Kr ≤ ϕ(z) for any z ∈ ∂B(z, r). Since ṽ = lim sup ε * ṽε , there exists ε0 > 0 such that ṽε (z) + Kr 2 ≤ ϕ(z) for any 0 < ε < ε0 and z ∈ ∂B(z, r). But z → ϕ ε (z) converges locally uniformly to z → ψ(z 2 ) + W (z 2 , ψ (z 2 ), z) as ε tends to 0. Hence, thanks to (5.14) in Corollary 5.6, ψ(z 2 ) + W (z 2 , ψ (z 2 ), z) ≥ ψ(z 2 ) + Π R (z 2 , ψ (z 2 ))1 z∈Ω R + Π L (z 2 , ψ (z 2 ))1 z∈Ω L z 1 , and we get (7.8) for some constants K r > 0 and ε 0 > 0.

Since the right side of (B.4) is bounded, we may assume up to the extraction of a subsequence that (x ε , y ε ) → (x , x ) as ε tends to 0. From the continuity of u and v, lim ε→0 u(x ε ) -v(y ε ) ≤ u(x ) -v(x ) ≤ m. For the subsequence, (B.4) implies that

| x ε -y ε ε -γ(ξ) | 2 + | y ε -ξ | 2 ≤ 3η 2 + o ε (1), (B.5)
Since ξ 1 > ρ 1 ,(B.5) implies that y ε 1 > ρ 1 for η and ε small enough. To prove that ρ 1 < x ε 1 < ρ 2 , we observe that there exists θ > 0 such that for any x, y ∈ [ρ 1 , ρ 2 ] × R, | γ(x) -γ(y) |≤ c 2 if |x -y| ≤ θ. For η and ε small enough so that the right hand side of (B.5) is smaller than min{θ 2 , c 2 4 }, we check that |y ε -ξ| ≤ θ and consequently |γ(y ε ) -γ(ξ)| ≤ c 2 . Then (B.5) yields that | x ε -y ε -εγ(y ε ) |≤ εc, and therefore that x ε ∈ (ρ 1 , ρ 2 ) × R and the claim is proved.

Let us choose the test-functions

ϕ 1 (x) = | x -y ε ε -γ(ξ) | 2 , ϕ 2 (y) = -| x ε -y ε -γ(ξ) | 2 -| y -ξ | 2 .
Since u is a subsolution of (5. because v is a supersolution of (5.1) and v -ϕ 2 has a local minimum at y ε . Since H-,R ≤ HR , (B.9) implies (B.7) and we may conclude as in the first case.

  a)| ≤ M , the constants M and the modulus of continuity ω (•) being introduced in [H1].
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 12 (ξ(εy) -ψ(εy 2 )) has a local minimum at z ε . Let us now use the fact that y → χ(z 2 , ψ (z 2 ), y) is a supersolution of (4.19):If z ε ∈ Ω i , for i = L or R, then Hi ((0, z2 ), Dξ(z ) -ψ (z 2 )e 2 + ψ (z 2 )e 2 , z ) ≥ E(z 2 , ψ (z 2 )). From the regularity properties of Hi , see Lemma 4.1,Hi ((0, z2 ), Dξ(z ) -ψ (z 2 )e 2 + ψ (z 2 )e 2 , z 2 ε ) = Hi ε (z , Dξ(z )) + o ε→0 (1) + o r→0 (1), thus λϕ ε (z ) + Hi ε (z , Dξ(z )) ≥E(z 2 , ψ (z 2 )) + λ ψ(z 2 ) + εχ z2 , ψ (z 2 ), z ε + o ε→0 (1) + o r→0(1).From(7.6), this implies that λϕ ε (z ) + Hi ε (z , Dξ(z )) ≥ θ + λεχ z2 , ψ (z 2 ), z ε + o ε→0 (1) + o r→0 (1).
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 22 and u -ϕ 1 has local maximum at x ε , HR (0, z 2 ), 2 εx ε -y ε ε -γ(ξ) + p 2 e 2 , x ε 2 ≤ λ -ε 0 . (B.6)For the supersolution inequality, we make out two cases:• If y ε ∈ (ρ 1 , ρ 2 ) × R, then HR (0, z 2 ), 2 ε x ε -y ε ε -γ(ξ) -2 (y ε -ξ) + p 2 e 2 , y ε 2 ≥ λ, (B.7)because v is a supersolution of (5.1) and v -ϕ 2 has a local minimum at y ε . Subtracting (B.6) from (B.7), we getHR (0, z 2 ), 2 ε x ε -y ε ε -γ(ξ) -2 (y ε -ξ) + p 2 e 2 , y ε 2 -HR (0, z 2 ), 2 ε x ε -y ε ε -γ(ξ) + p 2 e 2 , x ε ε 0 . (B.8)Thus, thanks to Lemmas B.1 and 4.1,ε 0 ≤ M |x ε 2 -y ε 2 | + 2M f |y ε -ξ|, in contradiction with (B.5) for η and ε small enough. • If y ε ∈ {ρ 2 } × R, then H-,R (0, z 2 ), 2 εx ε -y ε ε -γ(ξ) -2 (y ε -ξ) + p 2 e 2 , y ε 2 ≥ λ (B.9)

  Definition of viscosity solutions in the straightened geometry Definition 2.2. The function φ : R 2 → R is an admissible test-function for the fixed geometry if φ is continuous in R 2 and for any

	by (2.2). Hence, H+,i Γ,ε is the counterpart of
	H +,i Γ,ε .
	2.3.2

  are satisfied thanks to the properties [ H0] ε -[ H3] ε . The result for (1.16) can be deduced from the latter thanks to Remark 2.3. The result for equation (2.13) stems from a direct application of[START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF] Theorem 3.4]. Then we deduce the result for equation(1.16) thanks to Remark 2.3. Theorem 2.7. The value function v ε (resp. ṽε ) defined in (1.12) (resp. (2.10)) is the unique bounded viscosity solution of (1.16) (resp. (2.13)).

	Proof. Uniqueness is a direct consequence of Theorem 2.6 for both equations (1.16) and (2.13).

Theorem 2.6 (Global comparison principle). Let u be a bounded viscosity subsolution of (1.16) (resp. (2.13)), and v be a bounded viscosity supersolution of (1.16) (resp. (2.13)). Then u ≤ v.

Proof. Existence for equation (2.13) is proved in the same way as in

[

16, Theorem 2.3]. Then, existence for (1.16) is deduced from Remark 2.3. Remark 2.8. Under suitable assumptions, see §4 in [16], all the above results hold if we modify (1.16) (resp.(2.13)) by adding to H Γε (resp. HΓ,ε ) a Hamiltonian H 0 ε (resp. H0 ε ) correponding to trajectories staying on the junctions.

  •) satisfy a strong controlability property similar to [H3] uniformly w.r.t. z, and on continuity properties of (z, a) → J(y 2 )f i (z, a) and (z, a) → i (z, a) similar to [H0] and [H1].Remark 4.2. Take z ∈ Ω i and p ∈ R 2 . The unique real number λ i (z, p) such that the following one dimensional cell problem in the variable y 2

Hi (z, p + χ (y 2 )e 2 , y 2 ) = λ i (z, p), χ is 1-periodic w.r.t. y 2 ,

(4.6)

  z 2 , p 2 , y) = inf

	(ζy,a)∈Tz 2 ,y,ρ	J η ρ (z 2 , p 2 , y; (ζ y , a)).	(4.14)
	Thanks to [H3], we see that if δ 0		

  This strong controlability property can be proved in the same manner as [ H3] ε in § 2.2. From this, it follows that for any y, y ∈[-ρ, ρ] × R, ) = L 1 + L 2 |p 2 | with L 1 , L 2 depending on M f , M δ 0 and g ∞ but not on p 2 .

	|v η ρ (z 2 , p 2 , y) -v η ρ (z 2 , p 2 , y )| ≤ L(p 2 )|y -y |.	(4.15)
	for some L(p 2 Introducing χ η ρ (z 2 , p 2 , y) = v η ρ (z 2 , p 2 , y) -v η ρ (z 2 , p 2 , (0, 0)), we deduce from (4.14) and (4.15) that
	there exists a constant K = K(p 2 ) such that	
	|ηv η ρ (z 2 , p 2 , y)| ≤ K, and |χ η ρ (z 2 , p 2 , y)| ≤ K.	(4.16)

  Let u ρ be a sequence of uniformly Lipschitz continuous solutions of the truncated cell-problem (4.7) which converges to u locally uniformly on R 2 . Then u is a viscosity solution of the global cell-problem (4.19).

	    	Hi ((0, z u is 1-periodic w.r.t. y 2 ,
		(4.19)
	The following stability result is useful for proving the existence of a viscosity solution u of the
	cell-problem (4.19):
	Lemma 4.8.

.17) Definition 4.7. We define the effective tangential Hamiltonian E(z 2 , p 2 ) as

E(z 2 , p 2 ) = lim ρ→∞ λ ρ (z 2 , p 2 ). (4.18) For z 2 , p 2 ∈ R fixed, we consider the global cell-problem 2 ), Du(y) + p 2 e 2 , y 2 ) = E(z 2 , p 2 ) in Ω i ,

max H+,L ((0, z 2 ), Du L (y) + p 2 e 2 , y 2 ), H+,R ((0, z 2 ), Du R (y) + p 2 e 2 , y 2 ) = E(z 2 , p 2 ) on Γ,

  Dφ ε (y) + p 2 e 2 , y 2

	Indeed φ ε is a regular function which satisfies	
	Hi ((0, z 2 ),	
	r).	(4.23)

  is a supersolution of the equation satisfied by y → v η ρ (z 2 , p 2 , y). The comparison principle in Lemma 4.5 yields v η ρ (z 2 , p 2 , •)

  and the lower bound in (6.3) is obtained thanks to Proposition 4.11. The upper bound is obtained by bounding -ηv η ρ by M + M f |p 2 | from above, and passing to the limit as η → 0 and ρ → +∞.

	Proof ot the convexity property It is well known that p 2 → J η ρ (z 2 , p 2 , y; (γ y , a)) (see (4.13)) is an affine function. This implies that p 2 → -ηv η ρ (z 2 , p 2 , y) is convex, (see (4.14) for the definition of v η

ρ (z 2 , p 2 , y)). The convexity of p 2 → E(z 2 , p 2 ) is then obtained by letting η → 0 then ρ → ∞.

  Definition 7.1. Recall that Π i and Π i , i = L, R, have been introduced in (4.26)-(4.29). Let

Π : R 2

  11, Theorem 2.6]. Theorem 7.2. Let u : R 2 → R be a subsolution (resp. supersolution) of (1.21) and a map Π : R 2→ R 2 , (z 2 , p 2 ) → Π L (z 2 , p 2 ), Π R (z 2 , p 2 ) such that (7.1) holds for all (z 2 , p 2 ) ∈ R 2 .The function u is a subsolution (resp. supersolution) of (1.22) if and only if for any z = (0, z 2 ) ∈ Γ and for all ϕ ∈ R

Π (z) such that u -ϕ has a local maximum (resp. local minimum) at z,

λu(z) + max E(z 2 , ∂ z 2 ϕ(z)), H Γ (z, Dϕ L (z), Dϕ R (z)) ≤ 0, (resp. ≥ 0),

(7.3)

where the meaning of Dϕ L and Dϕ R is given in Definition 1.2.

Proof. The proof follows the lines of that of

[START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] Theorem 2.6

] and is given in Appendix C for the reader's convenience. It is worth to note that Lemma 3.2 is important in order to use the arguments contained in the proof of

[START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] Theorem 2.6

].
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Further properties of the correctors

In this section, we prove further growth properties of the correctors, which will be useful in the proof of convergence in § 7 below, see Remark 4.12. We start by stating a useful comparison principle related to a mixed boundary value problem: Lemma 5.1. Take 0 < ρ 1 < ρ 2 , z 2 , p 2 , λ ∈ R, a continuous function U 0 : R → R and ε 0 > 0. Let v be a continuous viscosity supersolution of

HR ((0, z 2 ), Dv(y) + p 2 e 2 , y 2 ) ≥ λ, y = (y 1 , y 2 ) ∈ (ρ 1 , ρ 2 ) × R, H-,R ((0, z 2 ), Dv(y) + p 2 e 2 , y 2 ) ≥ λ, y = (y 1 , y 2 ) ∈ {ρ 2 } × R, v(y) ≥ U 0 (y 2 ), y = (y 1 , y 2 ) ∈ {ρ 1 } × R, v is 1-periodic w.r.t. y 2 , (5.1) and u be a continuous viscosity subsolution of

HR ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) ≤ λ -ε 0 , y = (y 1 , y 2 ) ∈ (ρ 1 , ρ 2 ) × R, H-,R ((0, z 2 ), Du(y) + p 2 e 2 , y 2 ) ≤ λ -ε 0 , y = (y 1 , y 2 ) ∈ {ρ 2 } × R, u(y) ≤ U 0 (y 2 ), y = (y 1 , y 2 ) ∈ {ρ 1 } × R, u is 1-periodic w.r.t. y 2 , (5.2)

where the inequalities on y 1 = ρ 1 are understood pointwise. Then, u ≤ v in [ρ 1 , ρ 2 ] × R.

Proof. The proof is rather classical, see [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications[END_REF]. For the convenience of the reader, it is written in Appendix B.

Remark 5.2. From [11, Proposition 2.14], we know that a bounded lsc function v is a supersolution of (5.1) if and only if it is a supersolution of    HR ((0, z 2 ), Dv(y)

and that a bounded usc function u is a subsolution of (5.2) if and only if it is a subsolution of

In other words, the boundary conditions on y 1 = ρ 2 correspond to state constraints. 

Proof. The convexity of p 2 → E K (z 2 , p 2 ) comes from the convexity of p 2 → E(z 2 , p 2 ) and from (6.1). From (6.1), it is also clear that

(6.19) From (6.3), we check that for

It is standard to deduce (6.17) and (6.18) from (6.19) and (6.2). Lemma 6.2 allows us to prove the following comparison principle: Proposition 6.3. Let u and w be respectively a bounded subsolution and a bounded supersolution of

Proof. By virtue of Lemma 6.2, it is possible to apply [16, Theorem 2.5], more precisely the general comparison principle discussed in [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]Remark 2.11], since we do not assume the continuity of u.

Theorem 6.4. Let u : R 2 → R and v : R 2 → R be respectively a bounded subsolution and a bounded supersolution of (1.23).

Proof. Since u is a subsolution of (1.23), it is also a subsolution of

Thanks to Assumptions [H0]-[H3]

, we can apply [START_REF] Oudet | Hamilton-Jacobi equations for optimal control on multidimensional junctions[END_REF]Lemma 2.6] to u:

we deduce that u is a subsolution of (6.21).

On the other hand, since

The proof is achieved by applying Proposition 6.3 to the pair (u, v).

7 Proof of the main result

A reduced set of test-functions

From [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF] and [START_REF]Quasi-convex Hamilton-Jacobi equations posed on junctions: the multi-dimensional case[END_REF], we may use an equivalent definition for the viscosity solution of (1.23).

Step 3 From the previous steps and the local comparison principle in Theorem 2.5, we find that for r and ε small enough,

Taking z = z and letting ε → 0, we obtain

which cannot happen. The proof is completed.

Remark 7.3. For the proof of the supersolution inequality, the test-function ϕ should be chosen of the form

where ψ ∈ C 1 (R) and for i = L, R, Π i (z 2 , ψ (z 2 )) are defined in (4.27) and (4.29).

A Proof of Lemma 4.4

We may focus on the case when ȳ = (0, ȳ2 ) ∈ Γ, because the cases ȳ1 = ±ρ can be treated with similar but simpler arguments. We wish to prove that

We may assume that for all η ∈ [0, 1], the function u η -ϕ is Lipschitz continuous in [-ρ, ρ] × R with a Lipschitz constant L independent of η. Fix i = L, R, we define the distance d i to Ωi by

Clearly, d i ∈ R ρ . Take C = L + 1. The function y → u 0 (y) -ϕ(y) -Cd i (y) has a strict local maximum at ȳ. Thanks to the local uniform convergence of u η to u 0 , there exists r ∈ (0, ρ) and a sequence of points y η ∈ B(ȳ, r) such that

Up to the extraction of a subsequence, we may assume that y η → ȳ as η tends to 0. Note that y η ∈ Ωi . Indeed, if it was not the case, then calling

and

Up to the extraction of subsequences, we can make out two cases: Case 1: y η ∈ Γ. We obtain ηu η (y η ) + max i=L,R H+,i ((0, z 2 ), Du i (y η ) + p 2 e 2 , y η 2 ) ≤ λ η , and then (A.1) by letting η → 0. Case 2: y η ∈ Ω i . We obtain that ηu η (y η ) + Hi ((0, z 2 ), Dϕ(y η ) + p 2 e 2 , y η

2 ) ≤ λ η , and then by letting η → 0 that Hi ((0, z 2 ), Dϕ(ȳ) + p 2 e 2 , ȳ2 ) ≤ λ, from the continuity of the Hamiltonian Hi . Finally, since Hi -H+,i ≥ 0, which yields that H+,i ((0, z 2 ), Dϕ i (ȳ) + p 2 e 2 ȳ2 ) ≤ λ. Since the arguments above can be applied for i = L and i = R, we have obtained (A.1).

Supersolutions Let ϕ ∈ R ρ be a test-function and ȳ ∈ [-ρ, ρ] × R be such that u 0 -ϕ has a strict local minimum at ȳ. As above, we may focus on the case when ȳ ∈ Γ. We wish to prove that max i=L,R

Recall that thanks to Lemma 3.2 and Remark 4.3,

where Ẽi 0 (z 2 , p 2 , y 2 ) is defined in Remark 4.3. We make out two cases:

H+,j ((0, z 2 ), Dϕ j (ȳ) + p 2 e 2 , ȳ2 ) .

In this case, we can use a standard stability argument: there exists a sequence y η of local minimum points of u η -ϕ which converges to ȳ as η tends to 0. If, for a subsequence still called y η , y η ∈ Γ, then ηu η (y η ) + max i=L,R H+,i ((0, z 2 ), Dϕ i (y η ) + p 2 e 2 , y η 2 ) ≥ λ η , because u η is a supersolution of (4.9), and (A.2) is obtained by letting η → 0. If for a subsequence, y η ∈ Ω i for some i ∈ {L, R}, then ηu η (y η )+ Hi ((0, z 2 ), Dϕ(y η )+p 2 e 2 , y η 2 ) ≥ λ η , and by letting η → 0, Hi ((0, z 2 ), Dϕ i (ȳ) + p 2 e 2 , ȳ2 ) ≥ λ. Finally, (A.2) is obtained thanks to (A.3). Case 2: the assumptions of the case 1 are not satisfied. Thanks to the above identities for H+,R ((0, z 2 ), (∂ y 2 ϕ(ȳ)+p 2 )e 2 +pe 1 , ȳ2 ) and H+,L ((0, z 2 ), (∂ y 2 ϕ(ȳ)+p 2 )e 2 +pe 1 , ȳ2 ), by modifying the slopes of ϕ in the normal direction on each side of Γ, it is possible to construct a test-function

and ψ satisfies (A.3) for each i ∈ {L, R}. Thus, since ψ touches ϕ at ȳ from below, ȳ is still a strict local minimum point of u 0 -ψ and we conclude by applying the result proved in the first case.

B Proof of Lemma 5.1

In the following lemma, we state some useful properties of the Hamiltonians Hi and H-,i , in addition to those already described in Lemma 4.1: Lemma B.1. For i = L, R, any z 2 , y 2 , y 2 ∈ R and p ∈ R 2 , the Hamiltonians Hi and H±,i , respectively defined in (4.1) and (4.3), satisfy

| H±,i ((0, z 2 ), p, y 2 ) -H±,i ((0, z 2 ), p, y 2 ) |≤ M (C

where the constants M , C 1 and C 2 can be computed from M , M f , g ∞ , g" ∞ and δ 0 in Assumptions [H0]-[H3].

Proof. The proof of (B.1) stems from the definition of Hi . Let us prove (B.2) for H+,R , the other cases being similar. Remark that H+,R can be written Let us now prove Lemma 5.1. We follow the lines of [START_REF] Bardi | Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations, Systems & Control: Foundations & Applications[END_REF], Theorem IV.5.8 and argue by contradiction, assuming that

Then, for any η ∈ (0, m), there exists ξ

We fix a such pair (η, ξ). From the inequalities on the boundary {y 1 = ρ 1 }, we see that

Let us proceed by doubling the variables and introduce the auxiliary function

where ε is a positive parameter and γ :

× R be a point where ψ ε reaches its maximum. We claim that for η small enough and for a subsequence,

C Proof of Theorem 7.2

The proof of Theorem 7.2 follows the lines of [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF]Theorem 2.6] and relies on the following two technical lemmas, which can be proved by adapting the proofs of Lemma 2.8 and Lemma 2.9 in [START_REF] Imbert | Flux-limited solutions for quasi-convex Hamilton-Jacobi equations on networks[END_REF], with very slight changes.

Lemma C.1. Let u : R 2 → R be a subsolution of (1.21) and φ ∈ R touching u from above at z = (0, z2 ) ∈ Γ. For each i ∈ {L, R}, the real number pi :

where σ i is given by (1.5), is nonpositive. Moreover, λu(0, z2 ) + H i ((0, z2 ), Dφ i (0, z2 ) + σ i pi e 1 ) ≤ 0.

(C.1)

Lemma C.2. Let w : R 2 → R be a supersolution of (1.21) and φ ∈ R touching w from below at z = (0, z2 ) ∈ Γ. For each i ∈ {L, R}. For each i ∈ {L, R}, the real number pi :

We are now ready to prove Theorem 7.2.

Subsolutions Let Π be a map as in Definition 7.1. Suppose that a subsolution u of (1.21) satisfies (7.3) for all z ∈ Γ and all test-functions in R Π (z) touching u from above at z. Let φ ∈ R be such that u -φ has a strict local maximum at z ∈ Γ and that u(z) = φ(z). We wish to prove that

From Lemma C.1, for each i ∈ {L, R}, there exists pi ≤ 0 such that

From the monotonicity properties of the Hamiltonians H +,i stated in Lemma 3.2,

Therefore, in order to prove (C.3), we are left with checking that

and assume by contradiction that

Then, from (C.4) , for any i ∈ {L, R}, H -,i (z, Dφ i (z) + σ i pi e 1 ) ≤ -λu(z) < E(z 2 , ∂ z 2 φ(z)).

From this and the monotonicity properties of the functions p ∈ R → H -,i (z, ∂ z 2 φ(z)e 2 + pe 1 ), we deduce that

Thus, the modified test-function ϕ ∈ R Π (z) defined by

is such that u -ϕ has a local maximum at z, and therefore

Supersolutions Suppose that a supersolution u of (1.21) satisfies (7.3) for all z ∈ Γ and all test-functions in R Π (z) touching u from below at z. Let φ ∈ R be such that u -φ has a strict local maximum at z ∈ Γ with u(z) = φ(z). We wish to prove that λu(z) + max E(z 2 , ∂ If for some i ∈ {L, R}, H +,i (z, Dφ i (z) + σ i pi e 1 ) = H i (z, Dφ i (z) + σ i pi e 1 ), then (C.7) follows readily from (C.8) and (C.9) so we may now suppose that H i (z, Dφ i (z) + σ i pi e 1 ) = H -,i (z, Dφ i (z) + σ i pi e 1 ), i = L, R. Since the modified test-function ϕ ∈ R Π (z),

is such that u -ϕ has a local minimum at z, we get λu(z) + max E(z 2 , ∂ z 2 φ(z)), H Γ (z, Dϕ L (z), Dϕ R (z)) ≥ 0, which is the desired contradiction.