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Solution of large deformation impact problems with
friction between Blatz–Ko hyperelastic bodies

Zhi-Qiang Feng*, Benoît Magnain, Jean-Michel Cros
Laboratoire de Mécanique et d’Energétique d’Evry, Université d’Evry-Val d’Essonne, 40 rue du Pelvoux, F91020 Evry Cedex, France
Feng et al. [Z.Q. Feng, F. Peyraut, N. Labed, Solution of large deformation contact problems with friction between
Blatz–Ko hyperelastic bodies, Int. J. Eng. Sci. 41 (2003) 2213–2225] have proposed a study of contact problems between
Blatz–Ko hyperelastic bodies in static cases using the bi-potential method. The extension of this method for dynamic anal-
ysis of impact problems is realized in the present work. The total Lagrangian formulation is adopted to describe large
strains and large displacements non-linear behavior. A first order algorithm is applied for the numerical integration of
the time-discretized equation of motion. Numerical examples are carried out in two cases: rigid–deformable and deform-
able–deformable–rigid impacts in 2D. Numerical results show that the proposed approach is robust and efficient and the
physical energy dissipation phenomena are apparently illustrated.

Keywords: Impact and friction; Hyperelastic large strains; Energy dissipation
1. Introduction

Problems involving contact and friction are among the most difficult ones in mechanics and at the same
time of crucial practical importance in many engineering branches. A large number of algorithms for the mod-
eling of contact problems by the finite element method have been presented in the literature. See for example
the monographs by Kikuchi and Oden [2], Zhong [3] and Wriggers [4] and the references therein. De Saxcé and
Feng [5] have proposed a bi-potential method, in which an augmented Lagrangian formulation was developed.
Recently, Feng et al. [1] have successfully applied this method for the modeling of static contact problems
between Blatz–Ko hyperelastic bodies.

For dynamic implicit analysis in structural mechanics, the most commonly used time integration algorithm
is the second order algorithm such as Newmark, Wilson, HHT [6]. Hughes et al. [7] have presented a modified
Newmark scheme for a class of contact–impact problems. The modification is based on some consideration of
* Corresponding author. Tel.: +33 1 69 47 75 01; fax: +33 1 69 47 75 99.
E-mail address: feng@iup.univ-evry.fr (Z.-Q. Feng).
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wave propagation results. Wriggers et al. [8] have developed a radial return mapping scheme to deal with
impact–contact problems. Armero and Petocz [9,10] and Laursen et al. [11–13] have considered dynamic
impact under the auspices of a conservative system and have proposed the means to address the dynamic con-
tact conditions so that they preserve the global conservation properties. The integration scheme is based on the
second order algorithm. Some first order algorithms have also been proposed by Zienkiewicz et al. [14] and
Jean [15] for time stepping in structural dynamics.

The aim of the present paper is to apply the bi-potential method for contact modeling in dynamic cases
involving large displacements and large hyperelastic strains using the first order algorithm for integration
of the equation of motion. The algorithm developed is implemented into the finite element code FER/impact,
using C++ with object oriented programming techniques. Two numerical examples are performed in this
study to show the validity of the model developed. The first example concerns the impact of a hyperelastic
cylinder into a funnel. In order to show the physical energy dissipation by frictional effects, frictionless and
frictional contact are considered for this example and the locking phenomenon is observed. The second exam-
ple simulates the impact with jumping between two hyperelastic bodies and a rigid foundation.

2. Problem setting

2.1. Contact kinematics

In the following, basic definitions and notations used are described. Two deformable bodies Ba (Fig. 1),
a = 1, 2, are considered. Each of them occupies the open, simply connected, bounded domain Xa � R3, whose
generic point is denoted Xa. Furthermore, the solids are elastic and undergo large displacements. The bound-
ary Ca of each body is assumed to be sufficiently smooth everywhere such that an outward unit normal vector,
denoted by na, can be defined at any point M on Ca. At each time t 2 I, where I = [0,T] denotes the time inter-
val corresponding to the loading process, the boundary Ca of the body Ba can, in general, be split into three
parts: Ca

u with prescribed displacements �ua, Ca
t with prescribed boundary loads �ta, and the potential contact

surfaces Ca
c where the two bodies B1 and B2 may possibly come into contact at some time t (see Fig. 1):
Ca ¼ Ca
u [ Ca

t [ Ca
c ð1Þ
The successive deformed configurations of Ba are described at each time t by the displacement fields ua defined
on �Xa (i.e. the closure of Xa). On the contact surface, a unique normal n directed towardsB1 (n � n2) is defined
and the tangential plane, orthogonal to n in R3, is denoted by T. To construct an orthonormal local basis, two
unit vectors tx and ty are defined within the plane T. For describing the frictional contact interactions that may
occur on Cc, we introduce the relative velocity with respect to B2
_u ¼ _u1 � _u2 ð2Þ
Fig. 1. Contact kinematics.
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where _u1 and _u2 are the instantaneous velocities of B1 and B2, respectively. Let r be the contact force distri-
bution exerted on B1 at M from B2. According to the action–reaction principle, B2 is subjected to the stress
vector �r. In the local coordinate system defined by the tangential plane T and the normal n, any element _u
and r may be uniquely decomposed as
_u ¼ _ut þ _unn; _ut 2 T; _un 2 R ð3Þ
r ¼ rt þ rnn; rt 2 T; rn 2 R ð4Þ
2.2. Contact law and friction rule

The unilateral contact law is characterized by a geometric condition of non-penetration, a static condition
of no-adhesion and a mechanical complementary condition. These three conditions are known as the Signorini
conditions. The non-penetration condition constraints the displacement fields ua and is given by
gðXÞ ¼ ðX1 � X2Þ � n P 0 ð5Þ
where
XaðtÞ ¼ Xaðt ¼ 0Þ þ ua ð6Þ
The position vector X2 is found as the closest-point projection of the point X1 2 C1
c on the surface C2

c .
Denoting by h the initial gap obtained at the beginning of each time step.
h ¼ ðX1 � X2Þ � n P 0 ð7Þ
the impenetrability Signorini conditions are given by
un þ h P 0; rn P 0; ðun þ hÞrn ¼ 0 ð8Þ
These conditions have to be satisfied at each time-instant t 2 I. Assume now that the bodies are initially in
contact on a certain portion of Cc. On this part of Cc, the Signorini conditions turn into
un P 0; rn P 0; unrn ¼ 0 ð9Þ
In general, at any time t 2 I, the potential contact surfaces Ca
c can be split into two disjoint parts: +Cc where the

bodies are already in contact and �Ca
c where the bodies are not in contact:
Ca
c ¼ þCc [ �Ca

c ð10Þ
In contrast to Ca
c ,

+Cc and
�Ca

c change in time t and can be empty at some t 2 I. We must stress that with the
formulation (9) only a loss of contact is allowed and the extension of the contact area cannot be modelled with
these relations. In the case of dynamic analysis such as impact problems, the Signorini conditions can be
formulated, on +Cc, in terms of relative velocity
_un P 0; rn P 0; _unrn ¼ 0 on þCc ð11Þ

when _un > 0, the bodies are separating while they remain in contact for _un ¼ 0. The previous formulation of
the Signorini conditions (11) can be combined with the sliding rule to derive the complete frictional contact
law applicable on the contacting part of Cc. This complete law specifies possible velocities of bodies that satisfy
impenetrability, non-adhesion and the sliding rule. Obviously, for a strictly positive gap (un > 0), the normal
relative velocity is arbitrary ( _un 2 R) and the normal reaction force is equal to zero (rn = 0). Motions of bodies
that are not in contact are arbitrary until contact is made. This choice is motivated by the fact that the empha-
sis is put on the definition of admissible evolutions for contacting bodies where the time integration has to be
performed. In the rest of the paper, a ‘‘minus’’ sign will always precede the relative tangential velocity � _ut to
emphasize its opposite direction to the friction force.

Classically, a rate independent dry friction law is characterized by a kinematic slip rule. In this work, the
classical Coulomb friction rule is used. The set of admissible forces, denoted by Kl, is defined by
3



Kl ¼ fr 2 R3 such that krtk � lrn 6 0g ð12Þ
Kl is the so-called Coulomb’s cone and is convex.

2.3. Complete frictional contact law

We consider now the previous friction law embedding an impenetrability condition for completeness. On
the contact surface Cc, the sliding rule can be combined with the rate form of the Signorini conditions to
obtain the frictional contact law that specifies possible scenarios on the contact area (stick, slip and separa-
tion). The multivalued nature of this strongly non-linear law makes problems involving frictional contact
among the most difficult ones in solid mechanics. Two overlapped ‘‘if. . .then. . .else’’ statements can be used
to write it analytically:
if rn ¼ 0 then _un > 0 ! separating

elseif r 2 int Kl then _un ¼ 0 and _ut ¼ 0 ! sticking

else ðr 2 bd Kl and rn > 0Þ

_un ¼ 0 and 9 _k > 0 such that � _ut ¼ _k rt
krtk

n o
! sliding

endif

ð13Þ
where ‘‘intKl’’ and ‘‘bdKl’’ denote the interior and the boundary of Kl, respectively. The multivalued char-
acter of the law lies in the first and the second part of the statement. If rn is null then _u is arbitrary but its
normal component _un should be positive. In other words, one single element of R3 (r = 0) is associated with
an infinite number of velocity vectors _u 2 R3. The same arguments can be developed for the second part of the
statement. The inverse law, i.e. the relationship rð� _uÞ, can be written as
if _un > 0 then rn ¼ 0 ! separating

elseif _u ¼ 0 then r 2 Kl ! sticking

else ð _u 2 T� f0gÞ
_un ¼ 0 and rt ¼ lrn � _ut

k� _utk

n o
! sliding

endif

ð14Þ
The complete form of the frictional contact law involves three possible states, which are separating, contact
with sticking, and contact with sliding. Only the last state produces energy dissipation.
3. The bi-potential method

De Saxcé and Feng [5] have shown that the contact law (13) is equivalent to the following differential
inclusion:
ð� _ut � ð _un þ lk � _utkÞnÞ 2 o
[
Kl

r ð15Þ
where
S

Kl
r denotes the so-called indicator function of the closed convex set Kl:
[
Kl

ðrÞ ¼
0 if r 2 Kl

þ1 otherwise

�
ð16Þ
The following contact bi-potential is obtained:
bcð� _u; rÞ ¼
[
R�

ð� _unÞ þ
[
Kl

ðrÞ þ lrnk � _utk ð17Þ
where R� ¼� �1; 0� is the set of the negative and null real numbers.
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In order to avoid non-differentiable potentials that occur in non-linear mechanics, such as in contact prob-
lems, it is convenient to use the augmented Lagrangian method [5]. For the contact bi-potential bc, given by
(17), provided that _un P 0 and r 2 Kl, we have:
8r0 2 Kl; .lðr0n � rnÞk � _utk þ ðr0 � ðr� . _uÞÞ � ðr0 � rÞ P 0 ð18Þ

where . is a solution parameter which is not user-defined. From numerical experiments, . can be chosen as the
maximum value of the diagonal terms of the local contact stiffness matrix. Taking account of the decompo-
sition (3) and (4), the following inequality has to be satisfied:
r0 2 Kl; ðr� sÞ � ðr0 � rÞ P 0 ð19Þ

where the modified augmented surface traction s is defined by
s ¼ rþ .ð� _ut � ð _un þ lk � _utkÞnÞ ð20Þ

The inequality (19) means that r is the projection of s onto the closed convex Coulomb’s cone:
r ¼ projðs;KlÞ ð21Þ

For the numerical solution of the implicit Eq. (21), Uzawa’s algorithm can be used, which leads to an iterative
process involving one predictor–corrector step:
Predictor siþ1 ¼ ri þ .ið� _uit � ð _uin þ lk � _uitkÞnÞ
Corrector riþ1 ¼ projðsiþ1;KlÞ

ð22Þ
It is worth noting that, in this algorithm, the unilateral contact and the friction are coupled via the bi-poten-
tial. Another gist of the bi-potential method is that the corrector can be analytically found with respect to the
three possible contact statuses: s � Kl (contact with sticking), s � K�

l (no contact) and s � R3 � Kl [ K�
l

(contact with sliding). K�
l is the polar cone of Kl. This corrector step is explicitly given as follows:
if lksiþ1
t k < �siþ1

n then riþ1 ¼ 0 ! separating

elseif ksiþ1
t k < lsiþ1

n then riþ1 ¼ siþ1 ! sticking

else riþ1 ¼ siþ1 � ðksiþ1
t k�lsiþ1

n Þ
ð1þl2Þ

siþ1
t

ksiþ1
t k þ ln

� �
! sliding

ð23Þ
It is important to emphasize the fact that this explicit formula is valid for both 2D and 3D contact problems
with Coulomb’s friction and allows us to obtain very stable and accurate results.

4. Hyperelastic bodies undergoing large deformations

Rubber or other polymer materials are said to be hyperelastic. Usually, these kind of materials undergo
large deformations. In order to describe the geometrical transformation problems, the deformation gradient
tensor is introduced by
F ijðxÞ ¼ dij þ
oui
oxj

or F ¼ Iþru ð24Þ
where I is the unity tensor, x the position vector and u the displacement vector. Because of large displacements
and rotations, Green–Lagrangian strain is adopted for the non-linear relationships between strains and dis-
placements. We note C the stretch tensor or the right Cauchy–Green deformation tensor (C = FTF). The
Green–Lagrangian strain tensor E is defined by
E ¼ ðC� IÞ=2 ð25Þ

In the case of hyperelastic law, there exists an elastic potential function W (or strain energy density function)
which is a scale function of one of the strain tensors, whose derivative with respect to a strain component
determines the corresponding stress component. This can be expressed by
S ¼ oW
oE

¼ 2
oW
oC

ð26Þ
5



where S is the second Piola–Kirchoff stress tensor. In the particular case of isotropic hyperelasticity [16], (26)
can be written by
S ¼ 2 I3
oW
oI3

C�1 þ oW
oI1

þ I1
oW
oI2

� �
I� oW

oI2
C

� �
ð27Þ
where Ii (i = 1,2,3) denote the invariants of the right Cauchy–Green deformation tensor C:
I1 ¼ Cii; I2 ¼ ðI21 � CijCijÞ=2; I3 ¼ detðCÞ ð28Þ

The Blatz–Ko constitutive law is used to model compressible foam-type polyurethane rubbers [17]. The strain
energy density function is given as follows:
W ¼ G
2

I2
I3

þ 2
ffiffiffiffi
I3

p
� 5

� �
ð29Þ
where G is the shear modulus. By deriving the energy density (29) with respect to the three invariants, we
obtain
oW
oI1

¼ 0;
oW
oI2

¼ G
2

1

I3
;

oW
oI3

¼ G
2

� I2
I23

þ 1ffiffiffiffi
I3

p
� �

ð30Þ
Reporting the result in (27) gives
S ¼ GF�1
ffiffiffiffi
I3

p
I� B�1

n o
F�T ð31Þ
where B = FFT is the left Cauchy–Green deformation tensor associated to F. Noting J ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detð2Eþ IÞ

p
, the

tensor S can also be written in function of E:
SðEÞ ¼ GfJð2Eþ IÞ�1 � ð2Eþ IÞ�2g ð32Þ

The Cauchy stress (or true stress) tensor r is calculated from the second Piola–Kirchoff stress tensor S as
follows:
r ¼ 1

detðFÞFSF
T ð33Þ
5. Finite element formulation of non-linear structures

5.1. Total Lagrangian formulation

In the case of dynamic multibody contact problems involving large deformations of hyperelastic solids, the
non-linear relation between strains and displacements cannot be ignored. The total Lagrangian formulation
was selected in this work to describe non-linear behavior. In the context of the finite element method and with
(24) and (25), the Green–Lagrangian strain can be formally written with linear and non-linear terms in func-
tion of nodal displacements:
E ¼ BL þ
1

2
BNLðuÞ

� �
u ð34Þ
where BL is the matrix which relates the linear strain term to the nodal displacements, and BNL(u), the matrix
which relates the non-linear strain term to the nodal displacements. From Eq. (34), the incremental form of the
strain–displacement relationship is
dE ¼ ðBL þ BNLðuÞÞdu ð35Þ

Using the principle of virtual displacement, the virtual work dU is given as
dU ¼ M€uduþ A _uduþ
Z
V 0

SdEdV � Fextdu� Rdu ¼ 0 ð36Þ
6



where V0 is the volume of the initial configuration, Fext the vector of external loads, R the contact reaction
vector, M the mass matrix, A the damping matrix, _u the velocity vector and €u the acceleration vector.

From Eqs. (26)–(31), we obtain
dS ¼ DdE ¼ DðBL þ BNLðuÞÞdu ð37Þ
where D is the current stress–strain tensor which is obtained from the derivative of S with respect to E in
Eq. (32):
Dijkl ¼ G �2Jð2Eþ IÞ�1
ik ð2Eþ IÞ�1

lj þ Jð2Eþ IÞ�1
lk ð2Eþ IÞ�1

ij þ 2½ð2Eþ IÞ�1
ik ð2Eþ IÞ�2

lj

n

þ ð2Eþ IÞ�2
ik ð2Eþ IÞ�1

lj �
o

ð38Þ
Substituting dE from Eq. (35) into Eq. (36) results in
dU ¼ M€uduþ A _uduþ
Z
V 0

SðBL þ BNLðuÞÞdudV � Fextdu� Rdu ¼ 0 ð39Þ
The vector of internal forces is defined by
Fint ¼
Z
V 0

ðBL þ BNLðuÞÞTSdV ð40Þ
Since du is arbitrary, a set of non-linear equations can be obtained as
M€uþ A _uþ Fint � Fext � R ¼ 0 ð41Þ

It is noted that the stiffness effect is taken into account by the internal forces vector Fint. Eq. (41) can be trans-
formed into
M€u ¼ Fþ R; where F ¼ Fext � Fint � A _u ð42Þ

with the initial conditions at t = 0
_u ¼ _u0 and u ¼ u0 ð43Þ
Taking the derivative of Fint with respect to the nodal displacements u gives the tangent stiffness matrix as
K ¼ oFint

ou
¼

Z
V 0

oS

ou
ðBL þ BNLðuÞÞ þ S

oBNLðuÞ
ou

� �
dV ð44Þ
In addition, by using Eqs. (35) and (37), the tangent stiffness matrix is in fact the sum of the elastic stiffness
matrix Ke, the geometric stiffness (or initial stress stiffness) matrix Kr and the initial displacement stiffness
matrix Ku:
K ¼ Ke þ Kr þ Ku ð45Þ
where
Ke ¼
Z
V 0

BT
LDBL dV ð46Þ

Kr ¼
Z
V 0

S
oBNL

ou
dV ð47Þ

Ku ¼
Z
V 0

BT
LDBNL þ BT

NLDBL þ BT
NLDBNL

	 

dV ð48Þ
5.2. First order integration algorithm

We can now integrate Eq. (42) between consecutive time configuration t and t + Dt. The most common
method to do that is the Newmark method which is based on a second order algorithm. However, in impact
7



problems, higher order approximation does not necessarily mean better accuracy, and may even be superflu-
ous. At the moment of a sudden change of contact conditions (impact, release of contact), the velocity and
acceleration are not continuous, and excessive regularity constraints may lead to serious errors. For this
reason, Jean [15] has proposed a first order algorithm which is used in this work. This algorithm is based
on the following approximations:
Z tþDt

t
Md _u ¼ Mð _utþDt � _utÞ ð49Þ

Z tþDt

t
Fdt ¼ Dtðð1� nÞFt þ nFtþDtÞ ð50Þ

Z tþDt

t
Rdt ¼ DtRtþDt ð51Þ

utþDt � ut ¼ Dtðð1� hÞ _ut þ h _utþDtÞ ð52Þ
where 0 6 n 6 1; 0 6 h 6 1. In the iterative solution procedure, all the values at time t + Dt are replaced by the
values of the current iteration i + 1; for example, Ft+Dt = Fi+1. A standard approximation of Fi+1 gives
Fiþ1 ¼ Fi
int þ

oF

ou
ðuiþ1 � uiÞ þ oF

o _u
ð _uiþ1 � _uiÞ ¼ Fi

int � KiDu� AiD _u ð53Þ
Finally, we obtain the recursive form of (42) in terms of displacements:
KiDu ¼ Fi þ Fi
acc þ Riþ1

uiþ1 ¼ ui þ Du
ð54Þ
where the so-called effective terms are given by
Ki ¼ nKi þ n
hDt

Ai þ 1

hDt2
Mi ð55Þ

Fi
acc ¼ � 1

hDt2
Mi ui � ut � Dt _utf g ð56Þ

Fi ¼ ð1� nÞðFt
int þ Ft

extÞ þ nðFi
int þ FtþDt

ext Þ ð57Þ
At the end of each time step, the velocity is updated by
_utþDt ¼ 1� 1

h

� �
_ut þ 1

hDt
ðutþDt � utÞ ð58Þ
By setting h ¼ 1
2
, this scheme is then called the implicit trapezoidal rule and it is equivalent to the Tamma–

Namburu method in which the acceleration need not be computed [18]. See [19,20] for the interesting
comments on time stepping algorithms and on energy conservation.

It is noted that Eq. (54) is strongly non-linear, because of large rotations and large displacements of solid,
for instance in multibody contact/impact problems. Besides, as mentioned above, the constitutive law of con-
tact with friction is usually represented by inequalities and the contact potential is even non-differentiable.
Instead of solving this equation in consideration of all non-linearities at the same time, Feng [21] has proposed
a solution strategy which consists in separating the non-linearities in order to overcome the complexity of cal-
culation and to improve the numerical stability. As Du and R are both unknown, Eq. (54) cannot be directly
solved. First, the vector R is determined by the bi-potential method in a reduced system, which only concerns
contact nodes. Then, the vector Du can be computed in the whole structure, using contact reactions as external
loading. It is very important to note that, as opposed to the penalty method or Lagrange multiplier method,
the bi-potential method neither changes the global stiffness matrix, nor increases the degrees of freedom. One
consequence of this interesting property is that it is easy to implement contact and friction problems in an
existing general-purpose finite element code by this method. In addition, the solution procedure is more stable
because of the separation of non-linearities and improved numerical algorithms for calculation of contact
reactions.
8



5.3. Energy computation

After determining the displacement and the velocity fields, we can calculate different energies. The total
elastic strain energy of the contact bodies (discretized by nel finite elements) is then written by
Ee ¼
Xnel
e¼1

Z
Xe

W e dX ð59Þ
The total kinetic energy can be calculated at the global level by
Ek ¼
1

2
_uTM _u ð60Þ
Finally, the total energy of the system of solids is
Et ¼ Ee þ Ek ð61Þ

The case of interest for the analysis presented below corresponds to the homogeneous Neumann problem,
characterized by no imposed boundary displacements and no external loading. In addition, if frictionless
contact is considered, the total energy should be conserved. For the given examples, this fundamental energy
conservation property has been observed.

6. Numerical results

The algorithms presented above have been implemented and tested in the finite element code FER/impact
[22]. Many application examples, in static or quasi-static cases, have been carried out using the present method
[1,21,23].

To illustrate the behavior of a contact/impact simulation by the new algorithm described above, we con-
sider two example applications. For each cases, we assume that no damping exists except for Coulomb friction
between contact surfaces, i.e. A = 0 in Eqs. (41), (42) and (55).

6.1. Deformable–rigid impact

This problem concerns the impact of a cylinder made of foam-type polyurethane rubbers into two oblique
rigid symmetric surfaces forming a funnel. The characteristics of this example are: shear modulus G = 3 MPa,
mass density q = 700 kg/m3, initial velocity vy = �30 m/s. The radius of the cylinder is: R = 0.01 m. The total
simulation time is 3 · 10�3 s and the solution parameters are: Dt = 10�5 s, n = h = 0.5. The cylinder is
modeled by 209 nodes and 192 linear quadrilateral plane strain elements (Fig. 2). The initial position of the
Fig. 2. Deformable–rigid impact.
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cylinder is given by its center point O(0.0,0.03). The right part of the rigid block is defined by A(0.005,0.0),
B(0.015,0.0), C(0.015,0.035) and D(0.012,0.035).

Three cases A, B and C are considered (Table 1). It is noted that these analyses were performed on a PC
(Pentium 4/2.8 GHz). Fig. 3 shows the Von-Mises stress distribution in the cylinder at the moment when the
cylinder reaches its lowest position and the kinetic energy Ek equals zero (see Figs. 6–8). The CPU time to
achieve the solution and the maximum value of the Von-Mises stress are also given in Table 1. We observe
apparent differences concerning the values and the localization of the maximum stress. In Case A, the cylinder
goes down lower so as to be more deformed. Therefore, the stress value is higher. When the friction increases,
the cylinder does not go down as low, braked by the friction forces. The localization of the maximum stress
moves to the contact surfaces because friction forces are added onto the surfaces in contact, as shown in Fig. 3.
The deformed configurations at time t = 2 ms are shown in Fig. 4. The displacement of the center point O
Table 1
Influence of friction coefficients

Case At time (ms) rmax (MPa) CPU time (s)

A: l = 0.0 0.87 8.192 62
B: l = 0.2 0.70 4.523 77
C: l = 0.4 0.61 4.396 83

Fig. 3. Isovalues of Von-Mises stress.

Fig. 4. Deformed configurations at time t = 2 ms.
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versus time is plotted in Fig. 5. For the three cases, Figs. 6–8 show the plots of the kinetic energy Ek, the elastic
strain energy Ee and the total energy Et. For Case A, the cylinder rebounds with the same velocity as the initial
velocity, as there is no energy loss in the system (see Fig. 6). For Case B, the cylinder rebounds too but with
smaller velocity than the initial velocity, as there is energy loss in the system (see Fig. 7). By taking into
account more important friction (Case C), after a jump up, the cylinder sticks to the contact surfaces and
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Fig. 6. Energy evolution (l = 0.0).
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Fig. 8. Energy evolution (l = 0.4).
the kinetic energy Ek tends to zero and thus the cylinder is locked (see Fig. 8). Furthermore, the elastic defor-
mation is smaller, as compared to the frictionless case A.

We observe that the total energy is perfectly conserved in the case of frictionless contact (Fig. 6). However,
in the case of frictional contact, the total energy decreases (Figs. 7 and 8). So the total energy is dissipated by
frictional effects as expected. It is worth noting that the dissipated energy is quantitatively calculated. It is also
interesting to examine another question: is the dissipated energy proportional to the friction coefficient? The
answer is not according to numerical results. The proof is illustrated by Figs. 7 and 8 in which we observe
almost the same dissipated energy even with two different friction coefficients. In fact, when the friction coef-
ficient increases, the friction forces increase. However, the tangential slips will decrease (Fig. 3). We know that
the dissipated energy depends not only on the friction forces but also on the tangential slips on the contact
surface.

We observed another interesting result in this study when comparing the cases B and C. In Case B (Fig. 7),
the kinetic energy tends to a constant value and the elastic strain energy equals zero after the impact. On the
contrary, in Case C (Fig. 8), the kinetic energy tends to zero and the elastic strain energy is not released. As
expected, the cylinder is locked inside the funnel. For both cases, the total energy remains almost the same.

6.2. Deformable–deformable–rigid impact

In order to show the ability of the algorithms developed to deal with multi-zones contact/impact problems,
we propose a second example which simulates the impact of a deformable cylinder onto a deformable block
and the later is posed onto a rigid foundation. So the contact occurs not only between the cylinder and the
block but also between the block and the rigid foundation. The material characteristics of the two hyperelastic
bodies are: shear modulus G = 3 MPa, mass density q = 700 kg/m3. The initial velocity of the cylinder is:
Fig. 9. Deformable–deformable–rigid impact.
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Fig. 10. Isovalues of Von-Mises stress.
vy = �20 m/s. The radius of the cylinder is: R = 0.025 m. The geometric sizes of the block are: height
l = 0.06 m and width L = 0.16 m. The total simulation time is 5 · 10�3 s and the solution parameters are:
Dt = 10�5 s, n = h = 0.5. The cylinder and the block are modeled respectively by 239 and 429 nodes for 384
and 118 linear quadrilateral plane strain elements (Fig. 9).

Fig. 10 shows the distribution of the Von-Mises stress in the two deformable bodies during the simulation.
It is interesting to note that the block jumps up under the impact of the cylinder.

7. Conclusion

In this paper, we have presented the recent development of the bi-potential method applied to dynamic
analysis of two-dimensional contact problems with Coulomb friction between Blatz–Ko hyperelastic bodies.
The algorithm has been described and investigated numerically for two problems using different coefficients of
friction. From numerical experiments, we have found that:

• The algorithm is simple and efficient:
– no modification of the global stiffness matrix;
– no regularization of contact and friction laws;
– accurate calculation of contact forces in a reduced system;
– first order time stepping instead of second or higher order integration.
• The total energy is well conserved in the case of frictionless contact of solids.
• The algorithm permits to determine quantitatively the physical energy dissipation by frictional effects.
• The locking and jumping phenomena are numerically illustrated.

We have felt that this approach could easily be extended to three-dimensional dynamic contact problems
including non-linear material constitutive laws and more complex frictional models [24]. This work is being
undertaken.
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