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Effect of frictional anisotropy on the quasistatic motion of a deformable

solid sliding on a planar surface

Abstract In this paper, the motion of a deformable body
sliding on a half-plane is considered. The solid under-
goes large displacements but small strains. An ortho-
tropic friction model described by an elliptic cone is
considered. This model allows to describe the sliding-
direction dependence of the frictional behavior observed
in experience. The algorithm used to solve the problem is
based on a weak variational statement of the frictional
contact law. The Uzawa algorithm is used to solve the
discrete problem. The corresponding algorithm is robust
and can deal with large sliding increments. The study
shows that frictional properties can influence signifi-
cantly the trajectory of a deformable body sliding on a
frictional surface.
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1 Introduction

Planning the motion of a body in contact with a planar
surface is an usual task for a robotic system. The goal of
planning is to determine force commands which, if
executed, would achieve a pre-specified motion of the
body. If the task is to be done as quickly as possible,
dynamic effects must be included. Otherwise, a quasi-
static model, one which ignores inertial forces, may
prove a good alternative. Models used in robotics
assume that the pushed body is rigid so the motion
cannot always be uniquely predicted. However, if the
body is assumed deformable, the static indeterminacy is
removed which makes the solution of the problem easy.
An accurate description of the body motion cannot be
achieved unless an adequate friction model is used.
Though, usually assumed to be constant, the friction
coefficient often varies with the sliding direction. So the
usual isotropic Coulomb’s model is a gross approxima-
tion and more complex models have to be introduced. In
what follows, the effect of the friction model on the
motion of an object being pushed over a floor is inves-
tigated.

A friction model is defined by the friction condition
which specifies a convex set of admissible contact forces
and the sliding rule which stipulates what directions of
sliding are allowed. The shape of the friction surface and
the nature of slip rule have a fairly strong influence on
the motion of sliding objects. In most studies, the limit
surface is used under its isotropic form. As a result, the
frictional behavior is independent of the sliding direc-
tion. However this assumption seems to be unrealistic.
Indeed many experimental studies show that the fric-
tional behavior can change drastically with the sliding
direction, requiring an anisotropic model. This anisot-
ropy can be attributed to two main sources. The first one
is the anisotropy of the material constituting the solid
and the planar surface that manifest themselves on the
contact surface as well. The second one is technological.
The industrial process used to fabricate the bodies can



create striations along preferential directions. In fact,
most machining, finishing and superfinishing operations
are directional, and machined surfaces have particular
striation patterns unique to type of machining. Also
specific techniques of manufacture produce a surface
with anisotropic frictional properties. For a large num-
ber of machining processes, the striation directions are
mutually orthogonal. For such surfaces, an orthotropic
frictional model will provide a better description of the
frictional behavior.

A common way to model frictional anisotropy is to
adopt an elliptic friction condition in the plane
r, = const, where r, is the contact pressure. In the
sequel, the term ““contact pressure” means the normal
component of the contact stress vector which has a
tangential component when friction exists on the contact
surface. Two friction coefficients, one in the x-direction
and another in the y-direction (orthogonal to the
x-direction), have to be determined. These coefficients
correspond to the ellipse semi-axes for r, = 1. It will be
shown that frictional anisotropy has a significant impact
for problems such as motion of sliding objects. For a
specified pushing force the trajectory of an object
depends on the frictional properties of the planar sur-
face.

In this paper, the motion of a pushed deformable
block sliding on a frictional planar surface is studied.
The block is assumed to be elastic. Large displacements
are allowed but the block is assumed to undergo small
strain. The supporting surface has anisotropic frictional
properties. The problem is solved in a quasi-static
fashion using the finite element method and the total
lagrangian technique. The algorithm used to solve the
problem is based on a variational formulation of the
frictional contact law. In the next section, contact vari-
ables are defined and the unilateral contact law is pre-
sented. For bodies in contact, this law can be written in a
rate form where the kinematical variable is the velocity.
Section 3 is concerned with anisotropic friction models
with convex limit friction surfaces of elliptic shape. In
Sect. 4, the rate form of the Signorini conditions are
coupled with the sliding rule to give the complete fric-
tional contact law for bodies in contact. A formulation
based on a variational inequality is presented at the end
of the section. Section 5 deals with the governing discrete
relations of the considered frictional contact model. In

Fig. 1 Block sliding on a
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Sect. 6, the discretized frictional contact problem is
outlined and the F.E. algorithm is presented in Sect. 8.
The example shown in Sect. 9 highlights the influence of
the frictional model on the motion of sliding objects.

2 Deformable block sliding on a planar
surface — Governing equations

The pushed block undergoes large displacements which
require an appropriate setting of the problem. The basics
of continuum contact mechanics in the large displace-
ment setting are briefly addressed in this section. The
details are omitted as they are not necessary for the
current study (see, [4]).

2.1 Kinematics and statics

Consider a deformable block # undergoing large dis-
placements and small strains (Fig. 1). The body %
occupies in a referential configuration the open, simply
connected, bounded domain Q ¢ R? . The closure Q of
Q represents the reference configuration of # which
corresponds to the initial one in the total Lagrangian
formulation, adopted here. A material particle .# in Q is
identified by its reference position vector X. The suc-
cessive deformed configurations %', t¢€[0,T], are
defined by a differentiable and invertible mapping ¢ :

P(X, 1) : Q x [0,T] — R,

where I =:[0,7] is the time domain of interest, corre-
sponding to the loading process. The time ¢ € I charac-
terizing the reference configuration is # = 0. The
position of a particle of the body in the current config-
uration 4’ is defined using the current coordinate vector
x = ¢(X, ). The displacement of a material point from
the initial configuration is the difference between its
current and its initial position

u=¢(X,;t) - X
The velocity of a material point in the reference con-
figuration is given by

o

uX, ) = B (X, 1)

Wy




The boundary I'(¢) of 4" is assumed to be sufficiently
smooth everywhere such that an outward unit normal
vector, denoted by n, can be defined everywhere on I'(¢).
To fix the ideas, the body under consideration is a cube
in frictional contact with a planar surface, denoted .%.
We assume that the boundary I'(¢) of 4’ can be divided
into three disjoint parts: I',(¢) with prescribed displace-
ments, I',(¢) with prescribed boundary loads, and the
potential contact surface I'.(¢#) where %; may possibly
come into contact with the half-plane at some time ¢

I(6) = Tu(t) UL () UT(2)

Displacements are imposed on the upper face of the cube
and the lower face corresponds to the contact surface I'..
The remaining faces are stress free. The transformation
gradient F relates the current configuration to the ref-
erence configuration by

ou(X, 1)

Ox(X,1)

The space %,y defined by

F(X,?) =

%d:{ue%det(nw) >0VXeQandu=u VXeru}

contains all admissible displacement fields that satisfy
kinematic relations. The strain measure adopted here is
the Green-Lagrange strain tensor E which refers to the
initial configuration %4
E= 5 (cC-I)= 3 (Vu+ (Vu)" + (Vu) Vu) (2)
where C = F'F is the right Cauchy-Green tensor.

The strong form of the equilibrium equations in the
reference configuration is given by

Div P+1f, =0 in Q(0) (3)
on I',(0) (4)

where P denotes the first Piola-Kirchhoff stress tensor,

fy = Jf the body forces per unit undeformed volume, ng

the normal to I',(0) and t the imposed surface tractions.

The body % is modelled using the linear St Venant

constitutive relation where the Green-Lagrange strains

are related to the second Piola-Kirchhoff stresses by
OW(E)

_EFlp _
S=F'P=""p (5)

with W (E) being the energy density function (quadratic).

Pny =t

2.2 Contact mechanics

In the initial configuration %, the lower face of the
block is in full contact with the half-plane. The external
loading starts with with a uniform vertical motion of the
upper face which compress the block so it remains in
contact with the planar surface during sliding. The
sliding motion is obtained by imposing a uniform hori-
zontal displacement to the upper surface. During the

motion of the block, contact conditions must be fulfilled
at each time-instant and material points in contact with
& in the initial configuration %, must not cross the half-
plane. Accordingly, contact conditions must be formu-
lated in the current configuration %,. On the surface %,
an orthogonal vector n directed towards % is defined
(Fig. 2). The unit normal n coincide here with the unit
vector associated with the z-axis of the coordinate sys-
tem. Within the half-plane % two unit vectors t, and t,
are defined such that with n, they form an orthogonal
local basis. Several options are possible for setting up the
base vectors, depending on a particular choice of the
unit tangent vectors. A natural choice for the unit tan-
gent vectors is the principal orthotropy directions. The
relative slip velocity corresponds to the block velocity a
since the planar surface is motionless. As a result of the
external loading a contact force distribution equilibrat-
ing the loads is developed. The surface traction vector r*
at a material point .# € I', is given by

r'=Pn (6)

The contact force distribution r* acts on the half-plane
& . According to the principle of action and reaction, the
block & is subjected to

r=-P Ny (7)

In the local coordinate system defined by the plane %
and the normal n, any variable w or r may be uniquely
decomposed into normal and tangential components
according to

l:l:ﬁt‘l_'/.lnn ﬁt€<?, L.lneR (8)
e, rmeR )

The frictional force r, are dissipative and always opposes
sliding (see Fig. 2). To ensure that the dissipation is
positive the velocity u will be preceded by a sign “minus”
(—u). The unilateral contact condition requires that
material points X € I', are either in contact or not in
contact with the plane . Therefore, the body % is
allowed to separate but not to cross the plane . This
condition constraints the placement of the body 4. In
the problem under consideration, the lower face of the
cube remain in contact with the planar surface during
the whole loading process. Using the above decompo-
sition and taken into account that the initial gap (dis-
tance between the block and the planar surface projected

r=r;+r,n

Bm

T SRR

Fig. 2 Kinematics of contact




on the normal) is null, the non-penetration condition
can be expressed by

—u, <0 (10)

A dual relation involves the contact pressure r, acting on
the block which must be positive (r, > 0) where there is
contact and zero where there is no contact. This condi-
tion is often referred to the non-adhesion condition. This
set of relations may be summarized by the so-called
Signorini conditions:

—u, <0 r,>0 wu,ur,=0

(11)
which has to be satisfied at each time-instant ¢ € I. In the

case of persistent contact (u, = 0), the unilateral contact
law can be formulated in a rate form:

-1, <0 7,>0 u,yr,=0 (12)

The relation (12.a) imposes that contacting bodies must
either remain in contact (i, =0) or must separate
(&, > 0) (only a loss of contact is allowed). The rate
formulation of the Signorini conditions (12) can be
combined with the sliding rule to derive the full fric-
tional contact law applicable to material points of T,
already in contact. This complete law specifies allowable
velocities of these points such that impenetrability,
non-adhesion and the sliding rule are satisfied. In a more
general situation, a positive gap may appear (u, > 0). In
that case, the normal relative velocity is arbitrary
(&1, € R) and the normal reaction force is equal to zero
(r, =0). The equations developed above need to be
completed by a set of relations specifying the friction
model and the slip rule.

on I,

3 Orthotropic friction model

A rate-independent friction model is considered where a
linear dependence of the limit tangential force on the
normal force holds. A theoretical investigation on fric-
tion surfaces and sliding rules has been carried out by
Michatowski and Mro6z [2]. Their study, based on a

Fig. 3 Elliptic friction
condition

model of rigid anisotropic asperities, shows that cross
sections of the friction cone could be slightly non-con-
vex. However they can be approximated accurately by
ellipses. A family of anisotropic friction models,
described by a friction condition of elliptic shape (in the
plane r, = const) is considered. The principal axes of the
ellipse coincide with the orthotropy axes x and y.

3.1 Friction criterion

The asperity model used by Michatowski and Mréz ([2])
to study anisotropic frictional contact phenomenon
generates limit friction curves that can be accurately
approximated by ellipses. The generic form of such
convex friction criterion is given by

Sy, ra) = el —ra =0 (13)
where || o ||, denotes the elliptic norm
[feell, = (14)

The coefficients u, and p, are the principal friction
coefficients. The curve (13) intersects the x-axis at u.r,
and —p,ry; it intersects the y-axis at u,r, and —pu,r, (Fig.
3). Introducing the friction coefficients matrix M,
defined by

te 0
M= |
{0 '“y}

the elliptic norm (14) used in the friction criterion defi-
nition (13) can be replaced by the usual Euclidean norm
Ik

e, = (M7

The classical isotropic Coulomb’s friction criterion is
recovered by setting

I = by, =

so M is the unit matrix. The set K,, of allowable contact
forces r, defined by

T, A

v

_lu’ i /rn

/uq; rn T +

N

f (rtx 7rty7 Tn)




(15)

is convex. Its boundary and interior are denoted ‘‘bd
K, and “int K,,”, respectively. Now it is appropriate to
introduce the cone K, dual (or polar) to K. This set will
be used later in the paper. By definition the polar cone
K} is the set comprising all vectors v € R? satisfying the
followmg inequality

veER?, (16)

where the dot - stands for the usual scalar product.
The scalar product in (16) is developed in the following
manner

K, = {r e R ||Irl, —ra < o},

r-v<0, Vrek,

V=7 U A0 U (17)
< wll vl 4 7 (18)
< (vl + o) (19)

where the Cauchy-Schwartz inequality has been used to
obtain the first inequality and the friction criterion (15)
has been used to obtain the second one. The normal
reaction r, being positive, the inequality (19) is satisfied if

[IVell, + 00 <0 (20)
where the norm || e H; ,dual of || e |, is given by

* 2 2
[velly =/ (ate) ™+ (0, )™ = (M| (21)
All vectors v satisfying (20) belongs to K,
K, ={ve R ||l + v, < 0} (22)

3.2 Slip rule

An associated sliding rule (in the plane r, = cte) is
adopted where the direction of sliding (up to the sign ) is
given by the gradient to the friction cone and its mag-
nitude by the multiplier A:

—1, =0 (23)
. - Of pi I

gy, = A =L 24

= or, = ], 24)
8f i I

—i, Ed 25

l‘» 8”}) ‘uy ||rt|| ( )

The multiplier i is required to satisfy the complemen-
tarity relations

S(r,m) <0, iZOa /if(rt,r,,):() (26)

The components of the tangential reaction can be
eliminated from the slip rule (24-25) so the expression of
A as function of —u, is obtained

a=l

=], (27)

The inverse of the relationships (23-25) is

r, >0 (28)
Iy = ,ux( ) (29)
|| f| i
20 -
ry = ry o) (30)

| =l

4 The frictional contact law

The frictional contact law aims to describe contact
interactions. We consider now the previous friction law
embedding the impenetrability condition for complete-
ness. The sliding rule is combined with the rate form of
the unilateral contact conditions to obtain the frictional
contact law. The multivalued nature of this strongly non-
linear law makes problems involving frictional contact
among the most difficult ones in solid mechanics.

4.1 Analytical formulation

The complete form of the frictional contact law deals
with the three possible physical situations, which are
separation, contact with sticking, and contact with
sliding. Dissipation occurs only for the last case. This
law is applicable only to material points in contact. Two
overlapped “if ... then ... else” statements can be used
to write it analytically (Box 1):

if T, =0 then
! separation
—U, <0
elseif r € int K, then
I'sticking
U, =0 and ; =0
else (r € bd K, and r, > 0)

I'sliding
{ . /\ Tt
U, =0 and I\ suchtha’c—ut.:—2 =
pa lrell
endif

In the first and the second part of the statement, the
multivalued character of the frictional contact constit-
utive model is revealed. If 7, is null then the velocity u is
arbitrary but its normal component #%, should be posi-
tive. In others words, an infinite number of velocity
vectors i € R can be related to one element of r € R>.
On the other hand, if —u is null then the reaction r
should be in K, but its direction or magnitude are not
specified. They are arbitrary. Again, one element of R



(—i = 0) can be related to an infinite number of r € R®.
The inverse constitutive frictional contact law, i.e. the
relationship r(—u) can be written as (Box 2):

if y, >0 fhen
!separation
7 =0
elseif =0 then
tsticking
rc K,
else e T —{0})
tsliding
2
m >0 and r, = —THW‘T
t

I
endif

Similar considerations regarding the multi-valued char-
acter of the relatioship can be drawn for the inverse law.

4.2 Variational inequality-based formulation

The previous forms of the frictional contact law, given in
Box 1 and Box 2, are well suited for classical numerical
implementations where the contact problem is dissoci-
ated from the friction problem. However on the contact
surface, contact cannot be separated from friction.
Therefore a coupled algorithm that solved both prob-
lems in one step could improve the computational per-
formances and robustness. With this aim in mind, the
frictional contact law need to be reformulated. The main
idea behind this reformulation is to provide a natural
basis for the application of the Uzawa algorithm.

The slip rule, as written in relations (23-25), exhibits
a structure similar to the non-associated flow rule in
plasticity. Indeed, during sliding, contact is maintained.
Therefore the normal velocity is equal to zero (i, = 0)
and not related to the normal component of the reaction
r, through normality. In fact, if we regard the contact
force r and the velocity —u as conjugate quantities of
each other, the normality will not occur since it would
require that the velocity would have a normal separating
component.

To avoid complex notations due to elliptic norms, the
variational-inequality based formulation is derived for
the isotropic model p, = p,. The sliding rule is given by

. . <Of (r
—u, =0, —u =1 :;li) (31)
but can be rewritten in the following obvious way:
. : K 8f . I ¥
—(ty + ud) = 27—, —w =A— 32
( Iz ) 81",, t ||rt|| ( )

where / is obtained after eliminating the tangential
reaction components from the slip rule:

n

Fig. 4 Non-normality of the velocity vector

= = (33)

Indeed the first relation of (32) yields back —u, = 0, that
is during sliding contact must hold. An obvious vector
addition (see Fig. 4) gives :

- (1'1, + (i, + M)n) = grad f

At the apex the friction criterion is not differentiable and
the vector gradient should be replaced by any subgra-
dient v as depicted in Fig. 4:

— (0 + (t, + pf| —0[)m) = v (35)

Any vector v satisfying the following inequality, known
as the convexity inequality for non-differentiable func-
tion, is a subgradient:

) > fO)+ @ —r)-v WeR’ (36)

The set of all subgradients is called subdifferential
(see[3]), and is denoted by Jf(r). This more general
definition allows to rewrite (34) as

— (0 + (y + pl| —0[[)n) € Of (r) (37)

The subdifferential of a convex function defines a convex
cone, called normal cone. Furthermore the subdifferen-
tial of the cone K, at the origin corresponds to its dual
cone:

f(0) =K, ={veR : u|v +uv, <0}

The relation (37) is valid everywhere on the friction
surface and coincide with the (34) everywhere except at

(34)

(38)



the origin (r = 0). Therefore this relation corresponds to
the frictional contact law. As it is well known from
Convex Analysis, the normality rule (37) is equivalent to
the following variational inequality:

rek,: (r—r)-v>0, W ek, (39)
where the components of the vector v are
V=W, Uy = —(iy + | —0n) (40)

Again the vector v satisfying the inequality (39) is unique
except at the apex (r = 0) where this inequality becomes

K;:{veR3:r’-v§0, v e K,} (41)

Combining the definition of the dual cone (22) and the
definition of the vector v (40), we can see that at the
origin (r = 0), the non-penetration condition for con-
tacting bodies is recovered. The slip rule in the form (37)
is obtained for an anisotropic model by simply replacing

“ull = ()] with || — (a)]],”.

5 Discrete frictional contact law

The inequality developed in the previous section is now
discretized so it can be used in the local stage where the
reaction are computed. The time interval [0, 7] is parti-
tioned into N sub-intervals of size /A¢, not necessarily
equal, according to

O=to<t; < - <ty 1<ty <---<ty=T

We set w(t,) and Aw = o, — w,_1, where o represents
any variable. Between two time instants, the velocity is
assumed to be constant. In order to ensure convergence
and stability requirements, the implicit scheme is con-
sidered. As a result of a backward-Euler type approxi-
mation of (39), the frictional contact law is satisfied at
the end of each time step:

{ "1 € K, such that

Av-(f —rth) <0, W ek, (42)

where the components of the vector Av are given by
Av, = —Au, and Av, = —(Auﬂ +|I - AUrHZ)

The previous inequality can be transformed into a pro-
jection inequality

Find r"*! € K, such that
("t —1). (¢ =t >0, W ek,

where the vector 7 is given by

n+l _ A

T rt put
= = . 44
~{7} {r,’i“—p(Auﬁl(—Aut)l,,)} 44

The last inequality means that the reaction at the end of
the time step is the projection of the augmented surface
traction 7 onto the convex Coulomb’s cone K,

't = proj (1,K,)

(43)

(45)

Three different situations emerge according to the posi-
tion of the prediction in the forces space. The first case
corresponds to a prediction located in the cone K. Its
projection is the prediction itself, i.e. ¥"*! = 7. The second
one relates to a prediction situated in the cone Ky, where
its projection turns out to be the origin of the forces space,
i.e.r"™! = 0. In the last case, the prediction is neither in X,
nor in K* and the corrector step requires computing the
projection of the prediction. The projection of a point
onto a convex set is equivalent to the minimization of the
distance between this point and the convex set. In the
present situation (orhtotropic friction condition), it leads
to a quartic equation that has one positive root. The
details of the derivation can be found in [1].

6 Finite-step boundary value problem and variational
formulation

The solution of the elastic frictional-contact initial
boundary value problem, under a given history of
external actions, requires following the evolution of the
body response since the frictional contact law is intrin-
sically path-dependant. A numerical technique, which
combines a space and time discretization, is used to solve
this problem. The time discretization is based on a
subdivision of the external actions history into a se-
quence of loading conditions at selected time instants.
The solution is then achieved by solving a sequence of
problems in which the load increments are applied and
the variables at the end of each increment are updated.
We suppose that the solution of the problem is known at
time ¢,. Given the body force T"H, the surface traction

" and the imposed displacement @ ”*!, it is required to
solve the governing equations listed below:
e in Q(0) :
Div P!+ 1 =0 (46)
1
En+1 — 5 (Fn+1 + (Fn+l)T + (Fn+1>TFn+1) (47)
Fn+1 _ vun+1
6W(E) n+1
n+1 n+1 n+1gQn+1
= P =F 4
s =S s (48)
e on I,(0) :
P”“no = ngrl (49)
e on I,(0) :
u=1u" (50)
eonI.(0):
"t = proj (¢(Au),K,) (51)



The standard approach to derive the principle of virtual
work over an increment consists in taking the inner
product of the local equilibrium equation (46) with a test
function du satisfying ou =0 on I', and du, >0 on I',
(virtual displacement increment):

/ Div P"!. $u dQ + /

Q(0) Q(0)

+n+1

i uda=0 (52

Integrating by parts the first term and taking into
account the boundary conditions leads to the following
variational equation:

/s"“-(sE dQ — / £ sudo
alo) alo)
- / T oudr— / rlsudl =0 (53)
I,(0) T.(0)

where the first Piola-Kirchhoff stress tensor P"*! has
been exchanged with the second Piola-Kirchhoff tensor
S"! Taking into account that the stress filed is in
equilibrium at ¢,, the weak form can be written in terms
of finite increments as follows:

5{ / AW(AE) dQ — / Afy - Au dQ

Q(0) Q(0)
— / Aty - Au dI" — / Ar-AudF}:O (54)
I:(0) Tc(0)
where AW(AE) is given by
AW (AE) = %(AE)TD(AE) (55)
and AE by
AE(u",Au) = E(u" + Au) — E(u") (56)

If the behavior on contact surface is frictionless, the
functional (52) becomes the classical energy functional:

5{ / AW(AE) d Q — / AT - Au dQ

Q(0) Q(0)

- / Aty - Au dF} =0 (57)
r;0)

Then, the problem in not path-dependant anymore and
the total variables are used instead of their increments.

7 Finite element discretization

The displacement increment field and the transforma-
tion gradient are approximated according to:

Au=N(X)AU, AF = B(X)AU (58)

where AU is the unknown nodal displacement increment
vector, N(X) is the matrix of polynomial shape functions
and the matrix B(X) is given by

B(X) = 81;;)()

The strain increment can be decomposed as

AE = (B (U") 4+ Bn(AU))AU (59)
The operator By relates the linear part of the strain
tensor to the nodal displacement vector and By relates
the nonlinear part of the strain tensor to the nodal dis-
placement vector. The compatibility conditions (50) on
I', are enforced by substituting nodal unknowns by their
corresponding values. Taking into account (58) and (59),
the fully discrete form of the functional is given by

/ AW(AE(U", AU)) dQ — AF* - AU — AR - AU
Q(0)
(60)

where AF®*' corresponds to the generalized nodal force
increment vector

AF = / NTAf, dQ + / NTAt, dT
Q(0)

(61)
I+ (0)

and AR is the equivalent contact reaction increment
vector at nodes. The equilibrium equations over a time
step are given by

/ OAW (AE(U", AU))

_ ext —
AU dQ — AF AR=0

(62)

Q(0)

where

OAW (AE(U", AU))
0AU

Combining the structural equilibrium equations (62)
with the incremental frictional contact constitutive
relation (51), the solution of the boundary value prob-
lem over a time step is obtained by solving the following
system of equations:

:KT

K1AU — AF*™' — AR =0 (63)
R""! = proj(t(AU),K,) on T, (64)
AU=AU onT, (65)

8 Solution algorithm

The system of equations (63—65) has to be solved itera-
tively since the displacement increment vector, the con-
tact surface and the reactions AR are unknown. The
solution algorithm (see Box 3) tackle separately the
geometric and the contact nonlinearities. At the begin-



Fig. 5 Block mesh

For EAcH LOAD STEP :

o Initialisation : AU? = 0 and AS® =0

o Compute the external load vector : AFe*t

e Detect contact node using a gap function

e Equilibrium Loop i: 1 —n
Assemble the tangent stiffness matrix Ko
Modify K for essential boundary conditions
Solve : AU = K;' (AF*®* + AR?)
Update: U=U+ AU
Convergence? : i=1i+1
On I, : Correct AU and AR according to Box 4
Solve : AU =K' (AF<* + AR?)

e Qutputs : AE, AS

Fig. 6 Contour plots of slip
after compression

g

ning of each load step, AR is set equal to zero and AU is
computed according to (63). Since the problem is geo-
metrically nonlinear, the process is iterative. Now the
reactions have to be computed and the penetration that
has occurred by assuming AR = 0 must be corrected.
This is achieved by applying the Uzawa iterative scheme
as shown in Box 4. This procedure involves only vari-
ables associated with contact nodes. In contrast with
classical methods (penalty, Lagrange multiplier), the
present algorithm does not require an update of the
global stiffness matrix during the contact iterations.
Furthermore the total number of degree of freedom
remain unchanged.

The displacement increments on the contact surface
are computed using the flexibility matrix W, defined in
the local coordinate system:

Wan ~ Wat,  Wa,

W = Wat, Wt Wy,
Wat, Wi, Wi,
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A
(®) pa = 0.3, py =0.15
’ Rn

3052.04
2749.68
2447.33
2144.97
1842.61
1540.25
1237.90
935.54
633.18
330.82

(¢) z = 0.3, py = 0.05
Fig. 7 Contour plots of r, after compression

Next, the prediction t is computed and projected on the
cone K, to give the reaction (see Box 4). The Uzawa
algorithm is known for being convergent but requiring
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quite a few iterations. The convergence rate strongly
depends on the regularization factor p. A good choice is
crucial to ensure that the algorithm will convergence
within a few iterations. Our experience has shown that a
different factor p for each contact node gives a better
convergence. In our calculations, the factor p is calcu-
lated using the diagonal terms of the flexibility matrix:

1

o min (Wnn 5 thx 5 Wt}}’)

o

This choice has proven to be satisfactory for most cases.

9 Numerical application

The numerical algorithm developed above is used to
study the motion of a block pushed on a frictional pla-
nar surface. The block is a rectangular prism with the
following dimensions: base = 20 mm x 20 mm and
height 10 mm. The block is subdivided into 2000
eight-node brick-like elements as shown in Fig. 5. Each
element has 27 integration points. The lower surface of
the cube is in contact with a planar surface whose nor-
mal vector is (0, 0, 1). The loading process involves 5
steps and is displacement-controlled. During the first
step, the block is compressed by applying a uniform
vertical displacement on the upper surface. The magni-
tude of the vertical displacement is 0.1 mm. Next, the
block is pushed horizontally by applying, in 4 steps, a
uniform horizontal displacement on the upper surface.
The direction of the horizontal motion is inclined at 45°
with respect to the x-axis. The magnitude of each hori-
zontal displacement increment is 0.32 mm. The block is
assumed to be elastic with the following material prop-
erties:

— Young’s modulus: E = 210000 N/mm?,
— Poisson’s ratio: = 0.3

The effect of frictional anisotropy is examined by con-
sidering three different sets of frictional coefficients u,
and p,:

— Case 1 : p, = p, = 0.2, (isotropic)
—Case 2: u, = 0.3 and p, = 0.15,
— Case 3 : p, = 0.3 and p, = 0.05

The first case corresponds to the classical isotropic
frictional model where the frictional behavior is iden-
tical for all sliding directions. A mild anisotropy is
considered in the second case where the friction coef-
ficient in the x-direction is twice the friction coefficient
in the y-direction. In Case 3, the anisotropy is even
stronger with a ratio u,/u, equal to 6.

9.1 Compression of the block

The frictional properties of the planar surface have a
significant influence on the slip distribution. Figure 6
shows the contour plots of the slip for the three cases.
The slip corresponds to the Euclidean norm of the



Slip
0285704
0279658
0273611
0267564
0261518
0.255471
0249425
0243378
0237331
0231285

@) fa =y =0.2

Slip
0.281599
0.275508
0.269417
0.263326
0.257235
0.251145
0.245054
0.238963
0.232872
0.226781

(b) po =0.3, py =0.15

Slip
0.427572
0.420724
0.413875
0.407027
0.400179
0.393331
0.386483
0.379635
0.372786
0.365938

() pz = 0.3, py = 0.05
Fig. 8 Contour plots of slip after sliding. a p,=p, =02 b

e =03,1,=0.15 ¢ u, = 0.3, 5, = 0.05

tangential displacement of contact nodes. As expected,
the stick zone is located around the base center and
sliding increases monotonically as we get closer to the
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periphery. The shapes of the slip iso-values are similar to
the friction criterion. The iso-values are circular for
the isotropic case and elliptic for the anisotropic cases.
The tangential displacement is obviously larger in the
y-direction if the friction coefficient is smaller in this
direction. The slip iso-values are flat ellipses for the
strongly anisotropic model, exactly like the friction cri-
terion. Contour plots of the normal reaction r, are
shown in Fig. 7. The largest value of r, occurs around
the base center but does not change notably with the
frictional properties of the planar surface. The minimum
of the normal reaction occurs at the periphery.

9.2. Sliding motion of the block

Figure 8 shows contour plots of the total slip at the end
of the loading process. The maximum value of the
sliding occurs at the front corner (with respect to
motion). There is no significant difference between the
value of the maximum slip for the isotropic model
and the mildly anisotropic one. A larger displacement in
the y-direction is observed for the strongly anisotropic
model as a result of a low friction coefficient in this
direction. The contour plots of the normal reaction at
the end of the loading are shown in Fig. 9. Again, the
maximum and the minimum of r, are very close for all
models. The maximum occurs in the “front” area while
the minimum occurs in the “back™ area. The deformed
meshes for the three models are shown in Fig. 10. The
motion of the upper face is imposed but the motion of
the lower face depends strongly on the frictional prop-
erties of the planar surface. If the frictional behavior is
independent of the sliding direction (isotropic model),
the lower and the upper faces of the block move in the
same direction. Therefore no twist (distortion due to
different motion directions for the lower and upper fa-
ces) of the cube occurs. However, deformation due to
the relative displacement between the upper and the
lower faces takes place. The amplitude of this defor-
mation depends on the elastic properties of the cube. On
the other hand if an anisotropic frictional model is
considered then the motion direction of the lower face
does not coincide with the motion direction of the upper
face and the block is twisted. The magnitude of this
distortion depends on the friction coefficients and the
elastic properties. The distortion is stronger for the
strongly anisotropic model.

10 Conclusion

In this paper, the motion of a deformable body sliding
on a half-plane has been investigated. Large displace-
ments but small strains have been considered. The fric-
tional behavior has been modelled by an elliptic cone.
The algorithm used to solve the problem is based on a
weak variational statement of the frictional contact law.
An uncoupled strategy was used to solve the discrete
equations. The study shows that frictional properties
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