
HAL Id: hal-01179146
https://hal.science/hal-01179146v1

Submitted on 21 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A linked data framework for Android
Maria Rosoiu, Jérôme David, Jérôme Euzenat

To cite this version:
Maria Rosoiu, Jérôme David, Jérôme Euzenat. A linked data framework for Android. Elena Simperl;
Barry Norton; Dunja Mladenic; Emanuele Della Valle; Irini Fundulaki; Alexandre Passant; Raphaël
Troncy. The Semantic Web: ESWC 2012 Satellite Events, Springer Verlag, pp.204-218, 2015, 978-3-
662-46640-7. �10.1007/978-3-662-46641-4_15�. �hal-01179146�

https://hal.science/hal-01179146v1
https://hal.archives-ouvertes.fr

A linked data framework for Android

Maria-Elena Roşoiu, Jérôme David, Jérôme Euzenat

INRIA & Univ. Grenoble Alpes
Grenoble, France

{Maria.Rosoiu,Jerome.David,Jerome.Euzenat}@inria.fr

Abstract. Mobile devices are becoming major repositories of personal informa-
tion. Still, they do not provide a uniform manner to deal with data from both
inside and outside the device. Linked data provides a uniform interface to access
structured interconnected data over the web. Hence, exposing mobile phone in-
formation as linked data would improve the usability of such information. We
present an API that provides data access in RDF, both within mobile devices and
from the outside world. This API is based on the Android content provider API
which is designed to share data across Android applications. Moreover, it intro-
duces a transparent URI dereferencing scheme, exposing content outside of the
device. As a consequence, any application may access data as linked data without
any a priori knowledge of the data source.

1 Introduction

Smartphones are becoming our main personal information repositories. Unfortunately,
this information is stored in independent silos managed by applications, thus it is diffi-
cult to share data across them. One could synchronize application data, such as the con-
tacts or the agenda using a central repository. However, these are not generic solutions
and there is no mean to give access to data straight from the phone. The W3C Device
API1 covers this need across devices, but it offers specific APIs for specific applica-
tions, and not a uniform and flexible access to linked data. Nowadays, mobile operating
systems, such as Android, deliver solutions to access application content, but they are
restricted to some application database schemas that must be known beforehand.

Offering phone information as RDF data would allow application developers to
take advantage of it without relying on specific services. Moreover, doing this along
the linked data principles (use URIs, provide RDF, describe in ontologies, link to other
sources) would integrate the phone information within the web of data and make it ac-
cessible from outside the phone. Our goal is to provide applications with a generic layer
for data delivery in RDF. Using such a solution, applications can exploit device infor-
mation in an uniform way without knowing, from the beginning, application schemas.

For example, an application may be used as a personal assistant: when one would
like to know which of his contacts will participate to an event, he will consult the calen-
dar of his contacts in order to retrieve the answer: are they participating to the event or
will they be around the place? From data in linked data and the guest food preferences,

1 http://www.w3.org/2007/uwa/Activity.html

it should be possible to select suitable nearby restaurants. Finally, from guest availabil-
ity and restaurant opening hours, it could adequately plan for a meeting and deliver an
invitation to these people. For sure, privacy and security concerns will have to be dealt
with appropriately, but in a first step we are concerned by making these data available
and interoperable.

The Android platform has several appealing features for that purpose:

– Applications are built and communicate in a service oriented architecture;
– Data sharing is built-in through the notion of ContentProviders.

We presented a first version of RDF content providers in [2]. This layer, built on top
of Android content providers, allowed to share application data inside phones. In this
paper, we extend it by adding capabilities to access external RDF data, and to share
application data as linked data on the web. The mobile device information can then be
accessed remotely, from any web browser, by any person who has been granted access
to it. In this case, the device acts like a web server.

Early efforts were made to build an homogeneous XML repository from personal
information [14]. Some pioneering attempts at marrying mobile information and se-
mantic web technologies were made in [7], but do not aim to expose RDF data. The
Nepomuk project2 strived to produce RDF PIM ontologies, and to expose desktop data
in RDF. OinkIt [6] exported phone contacts as FOAF files. OinkIt is restricted to con-
tacts though Nepomuk covers a wide variety of PIM applications. Nepomuk replicates
data in an RDF store and OinkIt generates a file, while we would rather only provide
access to this data.

This paper is a comprehensive presentation of a framework for exposing Android
application data as linked data. We first describe the context in which the Android plat-
form stores its data (§2), and how it can be extended in order to integrate RDF (§3).
Then, we present three types of applications that sustain its feasibility (§4): the first
type of applications wrap several facilities of devices to expose their data as linked
data, the second application allows one to annotate pictures stored inside the phone,
and the last one is an RDF browser that acts like a linked data client. We then explain
the behavior of a server which exposes phone information to the outside world (§5).
We discuss some technical issues raised by this framework and the solutions we imple-
mented for them (§6). Finally, we present future improvements and challenges in this
field (§7).

2 The Android architecture

Android is a Linux-based operating system for mobile phones. It allows for developing
applications in Java [8, 5] based on a service oriented architecture that we present here.

2.1 Services and Intents

Android is built around different kinds of components that are provided by an applica-
tion3:

2 http://nepomuk.semanticdesktop.org/
3 http://developer.android.com/guide/topics/fundamentals.html

2

– Activities are user interaction modalities (an application panel, a chooser, an alert);
– Services are processing tasks;
– Broadcast receivers are components that react to events;
– Content providers expose some data of an application to other applications.

An application implements any of these kinds of components. Applications and
application components communicate through messages called ”intent(s)”. They are
defined as:

Intent intent = new Intent(Action, Data);

such that Action is a Java like package name, e.g.,
fr.inrialpes.exmo.rdfoid.GETRDF, and Data can be anything, but would
generally be a URI, e.g., content://contacts/people/33, and optionally a
mime-type specifying the expected result. The intent must be called through:

startService(intent).

The targeted component can be explicit, i.e., the components to deal with the request
are explicitly identified, or Android can look for an application or component able to
answer the Action on the Data, and pass it the call and the arguments.

2.2 Android Content Providers

Inside the Android system, each application runs in isolation from other applications.
For each application, the system assigns a different and unique user. Only this user is
granted access to the application data. This allows one to take advantage of a secure
environment, however this tends to lock data in independent repositories, each of them
with its own data representation. This prevents data sharing across applications.

Content providers overcome this drawback by enabling the transfer of structured
data between device applications through a standard interface. This interface empowers
one to query the data or to modify it.

A content provider4 is a subclass of ContentProvider and implements the fol-
lowing interface:
Cursor query(Uri id, String[] proj, String select, String[] selectArgs, String orderBy)
Uri insert(Uri id, ContentValues colValueList)
int update(Uri id, ContentValues colValueList, String select, String[] selectArgs)
int delete(Uri id, String select, String[] selectArgs)
String getType(Uri id) .

which allows one to query, to insert, to delete or to update the data. Queries are issued
in an SQL manner and the results are returned as a cursor on a table.

Calling a ContentProvider is driven by the kind of content to be manipulated:
the calling application indicates its desire to retrieve some content through its type
and/or URI, but does not control which application will provide it. Android calls a
ContentResolver which further looks into the query (the id) to find a suitable con-
tent provider on the phone for providing the required content. For that purpose, the
resolver maps the query URIs to the declared providers. These providers are declared
in application manifest file.

4 http://developer.android.com/guide/topics/providers/
content-providers.html

3

2.3 Android URIs

Android URIs have a specific structure:

content://authority/path/to/data/optionalID.

The content scheme indicates that the identified resource is delivered from a con-
tent provider, the authority identifies the provider, the path/to/data identifies a
particular table, and the optionalID distinguishes a particular instance in the table,
like in:

content://contacts/people/33;
content://fr.inrialpes.exmo.pikoid/picture/234.

The URI content://contacts/people refers to all the people in the contact appli-
cation, and the URI content://contacts/people/33 identifies a specific instance
of these, namely the instance having the id 33.

When an application requires access to a particular piece of data, it queries its URI.
This is done through a request addressed to the ContentResolver which routes the
query to the corresponding content provider.

The usage of URIs to identify data is a key strength from a linked data standpoint.
However, these URIs use the specific content protocol instead of HTTP, and content
providers do not return RDF.

Moreover, the URIs used by content providers are local to each device, i.e., not
dereferenceable on the web, and not unique. This constraint is adequate only when
the interface is used within the same Android device. However, when the inter-
face connects to a wider context, this constraint does not maintain its validity: the
content://contacts/people/22 refers to different entries, i.e., contacts, stored
inside the phone book agenda of different mobile devices.

3 The RDF Content Provider Framework

To allow Android applications to exchange RDF data, we need ContentProviders
which deliver their data in RDF. For that purpose, we have designed an API which must
be embedded inside applications that offer or access RDF content.

3.1 Framework overview

In order to achieve this, we have primarily followed the same principles as the ones
used in the original ContentProvider API. Therefore, our RDFContentProvider
API delivers the following classes and interfaces:

– RdfContentProvider: An abstract class that should be extended if one wants to
create an RDF content provider. It subclasses the ContentProvider class belong-
ing to the Android framework;

4

– RdfContentResolverProxy: A proxy used by applications to send queries to
the RDFContentResolver application. The RDFContentResolver application
records all the RDF content providers installed on the device and routes queries to
the relevant provider;

– Statement: A class used for representing RDF statements;
– RdfCursor: An iterator on a set of RDF statements;
– RdfContentProviderWrapper: A subclass of RdfContentProvider which

allows for adding RDF content provider capabilities to an existing classical con-
tent provider.

Figure 1 gives an overview of the framework architecture.

RDFBrowser RDFServer

RDFContentResolver

RDFHttpContentProviderRDFPhoneSensorsContentProvider

RDFCalendarProviderRDFContactProvider

Pikoid CalendarContact

uri rdf uri
rdf

uri rdf

uri rdf

uri

rdf

uri

rdf

uri

rdf
uri

rdf

uri

rdf

query

tuples

query

tuples

uri

rdf
Phone

Internet

Fig. 1. The architecture components and the communication between them. Components with
double square have a relevant graphic user interface.

The main components from a developer perspective are the RDFContentProvider
API and the RDFContentResolver application.

3.2 The RDF Content Provider API

The goal of the RDFContentProvider API is to answer to two types of queries:

– Queries that request information about a particular individual, e.g., tell me what you
know about contact 33. The provided answer is a set of triples which corresponds
to the description of one object and its attribute values.

– Queries that request only the values for some variables that must satisfy a specific
condition, i.e., SPARQL-like queries. In this case, the answer is a table of tuples,
like in ContentProviders or SPARQL.

For the first type of queries we provide a minimal interface. This interface has to be
implemented for linked data applications and has the following format:

– RDFCursor getRdf(Uri id).

5

In this case, the cursor iterates on a table of subject-predicate-object (or predicate-
object) which represents the triples involved in the description of the object given as
a URI.

As for the second type of queries, they require a more elaborate semantic web in-
terface, i.e., a minimal SPARQL endpoint. Thus, the following methods have to be also
implemented:

– Uri[] getTypes(Uri id): returns the RDF types of a local URI;
– Uri[] getOntologies(): ontologies used by the provider;
– Uri[] getQueryEntities(): classes and relations that can be delivered by the

provider;
– Cursor query(SparqlQuery query): returns tuple results;
– Cursor getQueries(): triple patterns that can be answered by the provider.

The RDFContentProviders that we have developed so far only implement the first
three primitives.

This interface corresponds to the one we required to web services in our work on
ambient intelligence [4]. Indeed, to some extent this work is similar to the work in
ambient intelligence except that instead of working in a building-like environment, it
works within the palm of one’s hand. But the problem is the same: applications which
do not know each others can communicate through semantic web technologies.

3.3 The RDF Content Resolver Service

The RDFContentResolver service has the same goal as the ContentResolver

belonging to the Android framework. It maintains the list of all installed
RDFContentProviders, and forwards the queries it receives to the corresponding
ones. Users do not have to interact with this application, therefore it is implemented as
an Android service.

When an RDF content provider is instantiated by the system, a principle similar to
the one from the Android content provider framework is used: this provider automati-
cally registers to the RDFContentResolver (Figure 2).

The RDFContentResolver can route both the local (content:) and external
(http:) URI-based queries. In case of a local URI, i.e., starting with the content

scheme, the resolver decides to which provider it must redirect the query. In case of an
external URI, i.e., starting with the http scheme, the provider automatically routes the
query to the RDFHttpContentProvider (see Figure 1).

4 Applications

We developed a few applications as a proof of concept of this framework. They can be
considered in different categories: wrappers for existing Android content providers and
other services (§4.1), native applications (§4.2) and a client example for the framework
(§4.3).

6

Fig. 2. RDFBrowser also allows for inspecting from the RDFContentResolver available RDF-
ContentProviders and the ontologies they manipulate.

4.1 RDF Provider wrappers for Phone applications

The RDFContentResolver application is also bundled with several RDF content
providers encapsulating the access to Android predefined providers. The Android
framework has applications which can manage the address book and the agenda. These
two applications store their data inside their own content provider.

In order to expose this data as RDF, we developed the RDFContactProvider

and the RDFCalendarProvider. These providers are wrapper classes for the
ContactProvider and the CalendarProvider residing inside the Android frame-
work. The same could be obtained by bypassing the ContentProvider interface, and
using instead the W3C Device APIs since they exist for each of these applications5.
So doing should not be significantly more difficult and would ease porting to other
platforms than Android.

RDFContactProvider exposes contact data using the FOAF ontology (see Fig-
ure 2). It provides data about the name of a person (display name, given name, family
name), his phone number, email address, instant messenger identifiers, homepage and
notes.

RDFCalendarProvider provides access to Android calendar using the RDF Cal-
endar ontology6. The data supplied by this provider is information about events, their
location, their date (starting date, ending date, duration, and event time zone), the orga-
nizer of the event and a short description.

In addition to these content providers, two other RDF providers are the
RDFPhoneSensorsContentProvider and RDFHttpContentProvider.

5 http://www.w3.org/2009/dap/ or http://www.w3.org/TR/
geolocation-API/

6 RDF Calendar vocabulary: http://www.w3.org/TR/rdfcal/.

7

RDFPhoneSensorsContentProvider exposes sensor data from the sensors em-
bedded inside the mobile device. Contrary to the others, they are not offered as con-
tent providers. At the present time, it only delivers the geographical position (retrieved
using the Android LocationManager service). In order to express this information in
RDF, we use the geo location vocabulary7, which provides a namespace for represent-
ing lat(itude) and long(itude).

The RDFHttpContentProvider allows one to retrieve RDF data from the web of
data. It parses RDF documents retrieved by dereferencing URIs through HTTP and
presents them as RDFCursors. So far, only the minimal interface has been imple-
mented, i.e., the getRdf(Uri id) method.

Developing a wrapper would consist, in general, of the following steps:

– Identify data exposed in the application content provider;
– Choose ontologies corresponding to this data;
– Provide a URI pattern for each ontology concept;
– Implement a dereferencing mechanism which, for each type of resource, extracts

information from the content provider and generates RDF from this (generating
URIs for related resources).

A native RDF content provider application may follow the same steps. However,
it may be developed without any content provider. In this case, the analysis has to be
carried out from the application data (or a corresponding API).

4.2 Pikoid

Pikoid is a native implementation of an RDF content resolver, i.e., an application that
directly implements this interface.

It is a simple application allowing users to annotate pictures on the phone. The anno-
tations answer the following simple questions: where and when (the picture was taken),
who (is on the picture) and what (it represents). It is strongly integrated in the Android
platform as it uses other content providers for identifying these annotations: people are
taken from the address book, places from the map and events from the calendar.

Pikoid directly provides access to this data in RDF: each pikoid object offers these
annotations as well as reference to the corresponding objects served by the wrapped
content providers (RDFContactProvider and RDFCalendarProvider). Figure 3 il-
lustrates browsing starting from Pikoid.

4.3 RDF Browser

The RDF Browser acts as a linked data client. Given a URI, either http: or content:,
the browser issues a request to the ContentResolver. It then displays the resulting
RDF cursor content as a simple page. If the data contains other URIs, the user can click
on one of them and the browser will issue a new query with the selected URI.

An example can be found in Figure 4. In this case, the user uses the RDFBrowser
to get information about the contact having the id 4. When the browser receives the

7 Geo location vocabulary: http://www.w3.org/2003/01/geo/ .

8

Fig. 3. The Pikoid application annotates images with metadata stored as RDF. RDFBrowser al-
lows for querying this information to the Pikoid RDFContentProvider interface and displaying it.
The current picture metadata is shown in the second panel (pikoidRDFprovider/60). From there, it
is possible to browse the information available in the address book (people/104) and the calendar
(events/3) through the corresponding RDF content providers wrapping them.

request, it sends it further to the RDFContentResolver. Since the URI starts with
the content:// scheme and has the com.android.contacts authority, the resolver
routes the query to the RDFContactProvider. This provider retrieves the set of triples
describing the contact and sends it to the calling application which displays it to the
user. Thereupon, the user decides that he wants to continue browsing and selects the
homepage of the contact. In this case, since the URI starts with the http:// scheme,
the resolver routes the query to the RDFHttpContentProvider. The same process
repeats and the user can see the remote requested file, i.e., Tim Berners-Lee FOAF file.

5 RDF Server: embedding a phone in the web of data

RDFContentProviders serve linked data within a single phone, RDFServer exposes
this linked data to the wider web of data. This is based on three components:

9

Fig. 4. An example of using the RDF Browser for accessing remote RDF.

– RDFServer is an RDF HTTP server that takes incoming HTTP queries (URIs) and
returns RDF;

– the RDFContentResolver dereferences incoming URIs and externalizes local
URIs within RDF;

– RDFHttpContentProvider allows for following HTTP URIs if necessary (see
Figure 1).

5.1 RDF Server

The RDFServer exposes the data stored into the device as RDF to the outside world.
Because the server must permanently listen for new requests and does not require any
user interaction, it is implemented as an Android service, i.e., a background process.

The server principles are quite simple. At launch time, it listens on port 80
for incoming requests. Once it receives a request from the outside, it dereferences
the requested URI, i.e., it translates the external URI into an internal one, which
has a meaning inside the Android platform. The RDFServer sends it further to the
RDFContentResolver. In a manner similar to the one explained for the RDFBrowser,
the set of triples is obtained. Before sending this set to the server, the URIs of the triples
are externalized, i.e., transformed into http: URIs. The graph is then serialized using
a port of Jena under the Android platform.

5.2 Dereferencing and externalising URIs

One important issue appears when one want to get data from a device because the
URIs used to query the content providers have a local meaning. URIs used to query
the address book of two different devices are the same, but the content it identifies will
likely be different.

The URI externalization process translates the local URI:

content://authority/path/to/data

10

into the dereferenceable one:

http://deviceIPAddress:port/authority/path/to/data.

Reversing the translation of such a URI is possible since both the authority and the path
are preserved by the externalization process.

Usually, mobile devices do not have a permanent IP address and thus, the external-
ized URIs are not stable. To overcome this, a dynamic DNS client89 may be used.

In addition, the server supports a minimal content negotiation mechanism. If one
wants to receive the data in RDF/XML, it will set the MIME types of the Accept-type
header of its request to “application/rdf+xml” or to “application/*”. In the opposite case
or when the client sets the MIME type to “text/plain”, the data will be transmitted in the
N-Triple format. Not only the requester has the opportunity to express its preferences
regarding the format of the received data, but the default format of the transmitted data
can be specified in the server settings, as well the port on which the server can listen on
and the domain name server for it.

Fig. 5. RDF Server response from externalized URIs.

An example can be found in Figure 5. In this scenario, the user retrieves information
about the fourth contact from the device address book. The request is processed by the
RDF Server in a manner similar to the one of the RDF Browser.

6 Technical issues: application size

The RDFServer included in our architecture eases the access of the user to the RDF
data found on the web. For that purpose, we wanted to reuse an existing semantic web
framework, such as Jena or Sesame. Yet these are not suitable to be employed under
the Android platform (the code depends on some libraries that are unavailable under
Android). There are a few ports of these frameworks to Android: Microjena10 and An-

8 Dynamic DNS Client: https://market.android.com/details?id=org.l6n.
dyndns&hl=en.

9 DynDNS: http://dyn.com/dns/.
10 http://poseidon.ws.dei.polimi.it/ca/?page_id=59.

11

drojena11 are ports of Jena and there exists a port of Sesame to the Android platform
mentioned in [1]. We use Androjena.

A problem that arises when we use this framework is that the size of the application
increases substantially. This is one of the constraints identified in [11]. This problem
could have been avoided by reimplementing only the Jena modules that are needed
in our architecture. Still, we would like to improve our architecture by adding more
features (such as a SPARQL query engine) that require additional modules to those
used to read/parse/write RDF, available in Jena.

We have used ProGuard for addressing this problem. ProGuard12 is a code shrinker,
optimizer, and obfuscator. It removes the unused classes, methods or variables, performs
some byte-code optimizations and obfuscates the code. We only took advantage of the
two former features. The tool proved to be efficient in reducing the size of our applica-
tion (our framework including Androjena) by half, i.e., its initial size was 6.48MB, and,
after applying ProGuard, it was reduced to 3.15MB. In Table 1, the effect of ProGuard
can be observed on some of the applications that we developed.

Application Size without ProGuard Size with ProGuard
RDFContentResolver 6.49 MB 3.15 MB

RDFBrowser 368 KB 184 KB
RDFServer 100 KB 76 KB

Alignment API impl. 254 KB 170 KB

Table 1. Size of applications with or without ProGuard.

The existence of such tools as ProGuard, is a step forward in the continuous battle
between applications that require a considerable amount of space for storing their code
and devices with a reduced memory storage.

7 Perspectives

The current framework is only a first step towards a more comprehensive semantization
of Android devices. Here are some further steps that we plan to take.

7.1 SPARQL querying

One of these further steps would be to allow one to query the device data using
SPARQL.

A double problem appears when one would like to achieve this: the distribution of
the query across several content providers and its translation.

The distribution will require query partitioning and dispatching to different
providers as performed in distributed query processing [13, 10].

The translation of the query can be addressed in several manners:
11 http://code.google.com/p/androjena/.
12 http://proguard.sourceforge.net/.

12

– creating a new RDF content provider which relies on a triple store to deposit the
data [9], and then using SPARQL to query it;

– translating SPARQL queries into more specific requests that may be answered by
an RDF content provider;

– translating SPARQL queries into SQL queries and further decompose them into
ones compatible with the ContentProvider interface.

Concerning the second option, there are several available tools that can make the
translation from SPARQL to SQL, like Virtuoso or D2RQ. However, these tools solve
only half of the problem because the SQL queries have to be adapted to the Content-
Provider interface, i.e., the queries have a particular format, different from SQL. This
interface allows for querying only one view of a specified table at a time, hence it is not
possible to ask content providers to perform joins.

7.2 Query mediation

Once one is able to query data, the heterogeneity of the ontology used by providers
may be a problem. Overcoming this requires mediating queries, i.e., transforming query
expressed into one ontology in another query expressed with an ontology understood
by a content provider. For that purpose, we plan to use ontology alignments. We already
provide a micro version of the Alignment API13 [3] working under Android and able to
retrieve alignments from an Alignment server.

7.3 Security and privacy

Challenges regarding security must be taken into account. The user of the application
should be able to grant or to deny access to his personal data. A specific vocabulary,
such as the one introduced in [12], should be used in order to express this. Moreover,
the dangers of granting system access to a third-party user can be avoided by using a
secure authentication protocol14.

7.4 Resource consumption

Finally, the problem of resource consumption is mentioned here for the record. Such
resources may be related to bandwidth (WiFi or 3G) that are consumed by having the
RDFServer working. In addition, such a server, and the use of our framework in general,
may affect energy consumption. This will have to be precisely considered.

8 Conclusion

Involving Android devices in the semantic web, both as consumers and providers of
data, is an interesting challenge. As mentioned, it faces the issues of size of applications
13 http://alignapi.gforge.inria.fr
14 http://www.w3.org/wiki/WebAccessControl and http://www.w3.org/
wiki/Foaf+ssl.

13

and URI dereferencing in mobility situations. There remain other technical problems
in implementing a full Android RDF framework encompassing distributed SPARQL
querying.

So, our next step is to provide a more fine grained and structured access to data
through SPARQL querying. This promises to raise the issue of computation, and thus
energy, cost on mobile platform.

A further issue is the control of privacy in such a framework. In this particular
domain too, we think that semantic technologies can provide more flexible and targeted
solutions.

The framework and applications described here are available at http://swip.
inrialpes.fr.

Acknowledgements

We thank Yu Yang and Loïc Martin who have programmed part of the Pikoid applica-
tion. This work has been partially supported by the French National Research Agency
under grant ANR-10-CORD-009 (Datalift).

References

1. Mathieu d’Aquin, Andriy Nikolov, and Enrico Motta. Building SPARQL-enabled applica-
tions with android devices. In Proc. 10th ISWC demonstration track, Bonn (DE), 2011.

2. Jérôme David and Jérôme Euzenat. Linked data from your pocket: The Android RDFCon-
tentProvider. In Proc. 9th ISWC demonstration track, Shanghai (CN), pages 129–132, 2010.

3. Jérôme David, Jérôme Euzenat, François Scharffe, and Cássia Trojahn dos Santos. The
Alignment API 4.0. Semantic web journal, 2(1):3–10, 2011.

4. Jérôme Euzenat, Jérôme Pierson, and Fano Ramparani. Dynamic context management for
pervasive applications. Knowledge engineering review, 23(1):21–49, 2008.

5. Marko Gargenta. Learning Android. O’Reilly Media, Inc., Sebastopol (CA US), 2011.
6. Ora Lassila. Semantic web approach to personal information management on mobile de-

vices. In Proc. IEEE International Conference on Semantic Computing (ICSC), Santa Clara
(CA US), pages 601–607, 2008.

7. Marko Luther, Yusuke Fukazawa, Matthias Wagner, and Shoji Kurakake. Situational rea-
soning for task-oriented mobile service recommendation. Knowledge engineering review,
23(1):7–19, 2008.

8. Reto Meier. Professional Android 2 Application Development. Wrox, Birmingham (UK),
2011.

9. Danh Le Phuoc, Josiane Xavier Parreira, Vinny Reynolds, and Manfred Hauswirth. RDF
On the Go: An RDF storage and query processor for mobile devices. In Proc. 9th ISWC
demonstration track, Shanghai (CN)), November 2010.

10. Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with SPARQL. In
Proc. 5th ESWC, Tenerife (ES), pages 524–538, 2008.

11. Laurens Rietveld and Stefan Schlobach. Semantic web in a constrained environment. In
Proc. ESWC Downscaling the semantic web workshop, Heraklion (GR), pages 31–38, 2012.

12. Owen Sacco and Alexandre Passant. A privacy preference ontology (PPO) for linked data.
In Proc. WWW Linked Data on the Web Workshop (LDOW2011), pages 1–5, 2011.

14

13. Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael Schmidt. FedX:
optimization techniques for federated query processing on linked data. In Proc. 10th ISWC,
Bonn (DE), pages 601–616, 2011.

14. Norman Walsh. Generalized metadata in your Palm. In Proc. 2nd Extreme markup languages
conference, Montréal (CA), 2002.

15

