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Abstract. This work is concerned with the homogenization of solids reinforced by aligned

parallel continuous fibers or weakened by aligned parallel cylindrical pores and undergoing large

deformations. By alternatively exploiting the nominal and material formulations of the

corresponding homogenization problem and by applying the implicit function theorem, it is shown

that locally homogeneous deformations can be produced in such inhomogeneous materials and

form a differentiable manifold. For every macroscopic strain associated to a locally homogeneous

deformation field, the effective nominal or material stress–strain relation is exactly determined and

connections are also exactly established between the effective nominal and material elastic tangent

moduli. These results are microstructure-independent in the sense that they hold irrespectively of

the transverse geometry and distribution of the fibers or pores. A porous medium consisting of a

compressible Mooney–Rivlin material with cylindrical pores is studied in detail to illustrate the

general results.

Mathematics Subject Classifications (2000): 74B20, 74Q15.

Key words: homogenization, fiber-reinforced composites, porous materials, homogeneous strain

fields, microstructure, large deformations.

1. Introduction

For the prediction of the effective mechanical properties of linear inhomoge-

neous or composite materials, micromechanical theories have been substantially

developed and numerous general and specific results are now available (see [22,

26, 32]). A considerable effort has also been devoted in recent years to estimate

or bound the effective behavior of nonlinear composite materials subjected to

infinitesimal strains (see, e.g., [23, 30, 31]). By contrast, the homogenization of

composite materials undergoing large deformations has been little investigated,

This work was the first time presented at the Euromech Colloqium 464 on BFiber-reinforced
Solids: Constitutive Laws and Instabilities,^ September 28–October 1, 2004, Cantabria, Spain.
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although a framework was provided by Hill [15] more than 30 years ago and

although interesting results were obtained in some general or particular situations

(see, e.g., [10, 18, 19, 25, 27, 28]). The present work is concerned with the

homogenization of elastic fiber-reinforced composite materials at finite strain,

aiming to furnish a few exact results for this problem. In particular, by

considering aligned parallel cylindrical pores in place of aligned parallel fibers,

the present work is also relative to the homogenization of a class of porous

materials.

Within the framework of linear elasticity, Hill [14] discovered that the

effective elastic moduli of a transversely isotropic fiber-reinforced composite

with two transversely isotropic phases are connected by two exact relations

independent of the transverse geometry and arrangement of the fibers at given

volume fraction, so that the usual number of five independent elastic moduli for a

transversely isotropic material reduces to three. This important result was

extended by Dvorak [7] to totally anisotropic linear fiber-reinforced composites

through systematically studying and exploiting the concept of homogeneous

deformations in inhomogeneous materials. Inspired by the works of Hill [14] and

Dvorak [7], He [12] generalized their conclusions to nonlinear elastic fiber-

reinforced composites subjected to infinitesimal strains by using the implicit

function theorem of mathematical analysis. The present work poses and answers

the following question: Is it possible to further extend the results of Hill [14] and

Dvorak [7] to elastic fiber-reinforced composites undergoing large deformations?

As will be seen, the key to giving a definite answer to the previous question

lies in applying the implicit function theorem. However, a dilemma is

encountered in the context of finite elasticity. On one side, as pointed by Hill

[15] (see also [25]), for the transition from microvariables to macrovariables, the

deformation gradient tensor and the nominal (or first Piola–Kirchhoff) stress

tensor are the physically meaningful couple of kinematical and static variables.

On the other hand, for the principle of objectivity [34] to be satisfied, the

material (or Green–Lagrange) strain tensor and the material (or second Piola–

Kirchhoff) stress tensor constitute a much more convenient couple of

kinematical and static variables. This conflict is circumvented by alternate use

of the nominal and material descriptions in solving the problem addressed in the

present work.

In the context of finite elasticity, the treatment of homogenization problems

must account for the instability phenomena due to the fact that the strain-energy

function cannot be convex with respect to the deformation gradient tensor (see,

e.g., [2, 5]). Within the framework of periodic hyperelastic composites, a few

authors, including Abeyaratne and Triantafyllidis [1], Triantafyllidis and Maker

[33], Müller [24], Geymonat et al. [8] and Miehe et al. [21], have at different

levels of generality studied the microscopic and macroscopic instabilities as well

as their relations. In particular, considering a Neo-Hookean matrix with periodic

cylindrical pores, Abeyaratne and Triantafyllidis [1] found that the homogenized
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tangential tensor of the porous material loses strong ellipticity while the matrix

material remains strongly elliptic. Examining a specific class of fiber-reinforced

layered periodic composites, Triantafyllidis and Maker [33] shown that the

bifurcation of such a composite at a wavelength much larger than the unit cell

size is associated with the loss of strong ellipticity of the homogenized tan-

gential tensor. The relations between microscopic and macroscopic instabilities

were further investigated by Geymonat et al. [8] in the context of non-convex

functional analysis, who, in a rather general way, demonstrated that long

wavelength instabilities for the linearized problem lead to the loss of rank-one

convexity of the homogenized strain-energy function. As pointed out by Müller

[24], a major difficulty due to the occurrence of microscopic instabilities is that

the representative volume element (RVE) used to formulate the homogenization

problem does not a priori correspond to the unit cell of a periodic composite. The

RVE must contain a sufficient number of unit cells so as to catch the energy-

minimizing modes (see [20, 21] for more details). In the present wok, we do not

deal with any instability issue relative to the class of fiber-reinforced composites

under consideration, although instability phenomena may occur at the micro-

scopic and macroscopic levels. In fact, our work does not require that fibers be

arranged periodically in the transverse plane, so that a random transverse dis-

tribution of fibers is not excluded. Except the recent one of Lopez-Pamies

and Ponte Castañeda [19], the works reported in the literature on microscopic

and macroscopic phenomena related to the homogenization of composites at

finite strain are concerned almost exclusively with periodic microstructures.

The relevant instability issue in the case of random microstructures remains

largely open and is far beyond the scope of the present work. The results

presented in this paper on the existence of homogeneous deformation fields and

the exact relations should be taken to be valid only until microscopic instabilities

appear.

The paper is organized as follows. Section 2 is dedicated to the specification

and formulation of the problem to be dealt with. In Section 3, while requiring the

principle of objectivity to be checked, the implicit function theorem is applied to

show that material and nominal homogeneous deformation fields can be

generated in fiber-reinforced composites and form two differential manifolds

which are related by the rotation group. In Section 4, the effective elastic

nominal and material stress–strain relations are exactly determined for all

macroscopic deformations associated to a locally homogeneous deformation

field. General exact connections are also established between the effective elastic

nominal and material tangent moduli evaluated at each macroscopic strain

inducing a locally homogeneous deformation field. The results of Section 4 are

illustrated in Section 5 through an example where a compressible Mooney–

Rivlin material weakened by aligned parallel cylindrical pores is considered. The

results obtained in the present paper are independent of the transverse

morphology and distribution of the fibers at given volume fraction, as in the
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case of linear elasticity. These results serve directly for partial determination of

the effective elastic properties of fiber-reinforced composites undergoing large

deformations and can be also used as benchmarks for analytical and numerical

approximate methods elaborated to estimate them.

Coordinate-free notation is adopted in the present paper. As a general rule,

light-face (Greek or Latin) letters designate scalars, sets, spaces, domains or

groups. Bold-face lowercase and uppercase Latin letters represent vectors and

second-order tensors, respectively. Outline Latin letters are reserved for fourth-

order tensors. The components of a vector, second- or fourth-order tensor are

represented by the corresponding light-face letter with a suitable number of

subscripts. Further, we denote by R3 the usual three-dimensional (3D) Euclidian

space, by Lin the space of all second-order tensors on R3, by Sym the sub-

space of all second-order symmetric tensors on R3, and by Lin+ the cone of

all second-order positive-determinant tensors belonging to Lin. Given any two

elements A and B of Lin, we define, apart from the usual tensor product A �
B, two tensor products A�B and A�B of Kronecker type (see, e.g., [13])

by

A�Bð Þ u � vð Þ ¼ Auð Þ � Bvð Þ; A�Bð Þ u � vð Þ ¼ Avð Þ � Buð Þ

for any two elements u and v of R3. It is also convenient to introduce another

tensor product A�B by

A�B ¼ 1
2
A�Bþ A�Bð Þ:

Next, the fourth-order identity tensor I on Lin, the transposition mapping T on

Lin, and the fourth-order identity tensor 1 on Sym can be expressed in terms of

the second-order identity tensor I as follows:

I ¼ I� I; T ¼ I� I; 1 ¼ I� I:

For later use, remark that

A�Bð ÞX ¼ AXBT ; A�Bð ÞX ¼ AXTBT ; A�Bð ÞX ¼ 1
2
A Xþ XT
� �

BT

for any three elements A, B and X of Lin. In fact, the matrix components forms

of A�B, A�B and A�B are given by A�Bð Þijkl ¼ AikBjl, A�ð BÞijkl ¼
AilBjk and A�Bð Þijkl ¼

1
2
AikBjl þ AilBjk

� �
.

2. Setting of the Problem

In this section, we describe and formulate the problem with which the present

work is concerned.
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2.1. LOCAL STRESS–STRAIN RELATIONS AND MACROSCOPIC VARIABLES

The inhomogeneous material investigated in this work consists of a solid matrix

reinforced by aligned parallel continuous fibers (see Figure 1). The matrix and

fiber phases are assumed to be individually homogeneous and perfectly bonded

together across interfaces but no restrictions are imposed on the transverse

geometry and distribution of the fibers, which may be random. The two-phase

composite under consideration is thus homogeneous along the fiber direction

while being inhomogeneous in the transverse plane. Let � be the domain

occupied by a specimen of the composite in the reference configuration and let

�(r) correspond to the sub-domain of phase r(= 1, 2). In what follows, we

designate the boundary of � by @�, the phase interfaces by �, the volume

average over � by < I >, the volume average over �(r) by < I >r, and the initial

volume fraction of phase r by c(r). For definiteness, the matrix is referred to as

phase 1, the fibers are called phase 2, and the direction of the fibers is defined by

the unit vector n (see Figure 1).

The local (or microscopic) behavior of each phase of the composite is

assumed to be nonlinearly elastic. Denoting by F the gradient of a deformation

y : x 2 � 7! y Xð Þ 2 R3, and by P the resulting nominal stress, the local elastic

stress–strain relation of the composite is described by

P ¼ P x;Fð Þ ¼
Xr¼2

r¼1
� rð Þ xð ÞP rð Þ Fð Þ: ð2:1Þ

Here, P(r)(F) is the nonlinear stress–strain relation of phase r and �(r) is the char-

acteristic function of �(r) such that �(r)(x) = 1 for x 2 �(r) and �(r)(x) = 0 for x =2
�(r). The characteristic functions �(r) entirely describe the microstructure of the

composite. The elastic stress–strain relation (2.1) is required to satisfy the prin-

Figure 1. A fiber-reinforced composite or unidirectional pore-weakened material.
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ciple of objectivity and the relevant material symmetry conditions [34]. Desig-

nating the 3D rotation group by SO(3), the principle of objectivity reads

P rð Þ QFð Þ ¼ QP rð Þ Fð Þ; 8Q 2 SO 3ð Þ; 8F 2 Linþ: ð2:2Þ

If the material symmetry of phase r is specified by G(r) � SO(3), then P(r)(F)

must satisfy the condition

P rð Þ FQð Þ ¼ P rð ÞðFÞQ; 8Q 2 G rð Þ; 8F 2 Linþ: ð2:3Þ

In this paper, the particularization of G(r) is not necessary. However, use will be

explicitly or tacitly made of the following necessary and sufficient condition for

(2.2) to be verified:

P rð ÞðFÞ ¼ RP rð Þ Uð Þ; 8F 2 Linþ; ð2:4Þ

where R and U are the respective rotation and right stretch tensors in the polar

decomposition F = RU.

In what follows, we make the additional assumption that the stress–strain

relation P(r)(F) of every phase is continuously differentiable and verifies the

initial condition

P rð Þ Ið Þ ¼ 0: ð2:5Þ

As will be seen, the continuous differentiability of P(r)(F) (r = 1, 2) is essential to

the present work while the condition (2.5), which means that phase r is free of

residual stress in the reference configuration, can be relaxed.

Alternatively, the local behavior of the composite can be described by

S ¼ S x;Eð Þ ¼
Xr¼2

r¼1
� rð Þ xð ÞS rð Þ Eð Þ: ð2:6Þ

Here, E is the Green–Lagrange strain tensor defined by

E ¼ 1
2
C� Ið Þ with C ¼ FTF ¼ U2; ð2:7Þ

and S is the material stress tensor. The material stress–strain relation S(r)(E) of

phase r is related to its nominal one P(r)(F) by

P rð Þ Fð Þ ¼ FS rð Þ Eð Þ: ð2:8Þ

With (2.1), the material symmetry requirement (2.3) and the residual-stress free

condition (2.5) become

S rð Þ QEQT
� �

¼ QS rð Þ Eð ÞQT ; 8Q 2 G rð Þ; 8E 2 Sym; ð2:9Þ

S rð Þ 0ð Þ ¼ 0: ð2:10Þ
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It is known from continuum mechanics (see, e.g., [9]) that the main advantage

of using the material stress–strain relation (2.6) in place of the nominal one (2.1)

is that the principle of objectivity is automatically satisfied by the former.

However, from the standpoint of micromechanics, the conjugated pair (P, F) is

more appropriate. Indeed, the macroscopic nominal stress P and deformation

gradient F are simply the volume averages of their microscopic counterparts over

�, which are dependent uniquely on the surface tractions and displacements on

@� [15]:

F ¼< F >¼
1

�j j

Z

�

Fdv ¼
1

�j j

Z

@�

y� xdv; ð2:11Þ

P ¼< P >¼
1

�j j

Z

�

Pdv ¼
1

�j j

Z

@�

Pmð Þ � xdv; ð2:12Þ

where m is the outward unit vector normal to @�. Then, the macroscopic Green–

Lagrange strain tensor E and material stress tensor S are obtained through F:

E ¼ 1
2
F
T
F� I

� �
¼ 1

2
< F >T < F > �I

� �
; ð2:13Þ

S ¼ F
�1
P ¼< F >�1< P > : ð2:14Þ

It is important to remark that, in general, E 6¼< E > and S 6¼< S > (see Hill

[15]).

2.2. FORMULATION OF THE HOMOGENIZATION PROBLEM

Even though no limitations are imposed on the precise geometrical forms of the

transverse cross-sections of the fibers and on the precise way in which the fibers

are arranged in the transverse plane, we require that their transverse distribution

be statistically uniform and that the largest dimension of the transverse cross-

section of each fiber be much smaller than the dimensions of the specimen �.

These conditions make it meaningful to consider � as an RVE and investigate

the homogenization problem related to the composite.

Since the phases are nonlinearly elastic and perfectly bonded together, the

effective (or macroscopic) behavior of the composite is also nonlinearly elastic

and can be described by the effective nominal stress–strain relation

P ¼ P̂P F
� �

: ð2:15Þ

The homogenization problem under consideration is to determine the effective

stress–strain function P̂P F
� �

from the knowledge of the microstructure character-
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ized by �(r) and the phase stress–strain relations specified by P(r)(F). Together

with the definition (2.12) of P, this is a boundary value problem of nonlinear

inhomogeneous elasticity, which can be formulated as follows.

Without loss of generality, consider the case where a linear transformation is

prescribed on the boundary @� of �:

y xð Þ ¼ Fx on @�; ð2:16Þ

where F is a given second-order tensor belonging to Linþ. Due to the surface

loading (2.16), a deformation field y, a deformation gradient field F and a

nominal stress field P are produced over �. From now on, it is convenient to

denote the restriction of y, F and P to phase r as y(r), F(r) and P(r). In addition to

the boundary condition (2.16) and to the local stress–strain law (2.1), y, F and P

must verify the following field equations and perfect interface conditions:

– the equation relating F(r) to y(r),

F rð Þ ¼ ry rð Þ over � rð Þ; ð2:17Þ

– the equilibrium of forces,

DivP rð Þ ¼ 0 over � rð Þ; ð2:18Þ

– the equilibrium of moments,

P rð ÞF rð ÞT ¼ F rð ÞP rð ÞT over � rð Þ; ð2:19Þ

– the deformation continuity across the interface,

y 2ð Þ � y 1ð Þ ¼ 0 on �; ð2:20Þ

– the stress continuity conditions across the interface,

P 2ð Þ � P 1ð Þ
� �

N? ¼ 0 on �: ð2:21Þ

In (2.18), body forces have been neglected. In (2.21), n? is any unit vector

normal to the interface � between the matrix and the fibers in the reference

configuration � of the composite. Since the direction of the fibers is defined by

the unit vector n, it follows that n? is characterized by n? � n ¼ 0.

The complete determination of the effective stress–strain relation (2.15)

requires solving the nonlinear boundary value problem formulated by (2.16)–

(2.21) together with (2.1). This problem is a very difficult one, since it is

governed by a system of highly nonlinear partial differential equations with

random coefficients. Consequently, it can be generally treated only numerically.

However, as it will be shown below, using the fact that the composite is

homogeneous along the fiber direction n, there are some special forms for the
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deformation gradient tensor F in (2.16), such that the aforementioned nonlinear

boundary value problem admits some particular homogeneous strain fields as

exact solutions.

To close this section, we remark that the homogenization of materials with

unidirectional cylindrical pores can be considered as a special case of the

problem formulated above. Indeed, it suffices to set P 2ð Þ ¼ 0 or S 2ð Þ ¼ 0.

3. Homogeneous Elastic Deformation Fields

Consider a homogeneous deformation field

y xð Þ ¼ F*x over �; ð3:1Þ

where F* 2 Lin+. Then, (2.18), (2.20) and (2.16) with F ¼ F* are immediately

verified. Accounting for (2.1) and (2.17), satisfaction of the remaining equations,

i.e., (2.19) and (2.21), requires that

P 2ð Þ F*ð Þ � P 1ð Þ F*ð Þ
h i

n? ¼ 0 on �; ð3:2Þ

P rð Þ F*ð ÞF*T ¼ F*P rð ÞT F*ð Þ over � rð Þ: ð3:3Þ

These two equations constitute the nominal necessary and sufficient conditions

for the existence of homogeneous elastic deformations in the composite. Note

that (3.2) must hold for any unit vector n? perpendicular to the fiber direction n.

Thus, (3.2) can be conveniently written in the following equivalent form:

I� I� Nð Þ½ � P 2ð Þ F*ð Þ � P 1ð Þ F*ð Þ
h i

¼ 0; ð3:4Þ

where N = n � n. Introducing the jump operator �½ �½ � across the interface � such

that �½ �½ � ¼ � 2ð Þ � � 1ð Þ, we can further write (3.4) as I� I �ð½ NÞ� P F*ð Þ½ �½ � ¼ 0.

Using the objectivity principle (2.4) and the residual stress free condition

(2.5), we immediately obtain the expected result that every rotation F* = R* is a

trivial solution for (3.3) and (3.4). Of course, this is not a specific property of the

composite under consideration but only a direct consequence of the objectivity

principle together with (2.5).

To find non-trivial solutions for (3.3) and (3.4), we first establish their

material counterparts. Under the homogeneous deformation field condition (3.1),

the material stress tensor S(r) of phase r is related to its nominal one P(r) by

P rð Þ ¼ F*S rð Þ: ð3:5Þ
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By using (3.5) and invoking the objectivity principle condition (2.4), (3.2) and 
(3.3) can be equivalently rewritten as

S 2ð Þ E*ð Þ � S 1ð Þ E*ð Þ
h i

n? ¼ 0 on �; ð3:6Þ

S rð ÞT E*ð Þ ¼ S rð Þ E*ð Þ over � rð Þ; ð3:7Þ

where E* is the Green–Lagrange strain tensor associated to F* by

E* ¼ 1
2
C*� 1ð Þ with C* ¼ F*TF*: ð3:8Þ

Equation (3.6) must hold for any unit vector n? normal to the fiber direction n.

As in the work of He [12], 1defining the fourth-order orthogonal projection

tensors N and N
? by

N
? ¼ 1� N ¼ 1� N� N; ð3:9Þ

(3.6) can be written in a more convenient equivalent form:

N
? S E*ð Þ½ �½ � ¼ 0: ð3:10Þ

While writing (3.10), the symmetric condition (3.7) has been tacitly employed.

Bearing in mind the definition (3.9) of N?, we see that (3.10) is a system of five

nonlinear equations with the six components of E* as unknowns. Accounting for

the residual-stress free hypothesis (2.10), it is immediate that E* = 0 is a trivial

solution of (3.10). Next, following He [12], let us show that (3.10) admits other

solutions than E* = 0, i.e., non-zero homogeneous strain fields can be produced

in the composite.

First, the assumption that the nominal stress–strain relation P(r)(E) of the

matrix or fibers is continuously differentiable has the consequence that the

material tangent tensors

L
rð Þ Eð Þ ¼ rS rð Þ Eð Þ r ¼ 1; 2ð Þ ð3:11Þ

are continuous. Next, we introduce the jump of the material tangent tensor across

� as

L½ �½ � ¼ L
2ð Þ � L

1ð Þ ð3:12Þ

and define the kernel space of N? L 0ð Þ½ �½ � by

Ker N
?
L 0ð Þ½ �½ �

� �
¼ �E 2 Sym : N?

L 0ð Þ���E ¼ 0½ g:½
�

ð3:13Þ

The dimension of this subspace of Sym is equal or greater than 1, i.e.,

q ¼ dim Ker N
?
L 0ð Þ½ �½ �

� �� �
� 1; ð3:14Þ
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because dim Ker N
?

� �� �
¼ 1 and dim Ker ABð Þð Þ ¼ max dim Ker Að Þð Þ; dim Kerðf

Bð ÞÞg for any two fourth-order tensors A andB.

In view of the initial condition (2.10) and the fact (3.14), we can now apply

the implicit function theorem of classical analysis (see, e.g., [3]) to infer the

existence of a neighborhood D of E* = 0, such that the solutions of Equation

(3.10) within D form a differentiable manifold M of dimension q:

dim Mð Þ ¼ q � 1 ð3:15Þ

with

M ¼ E* 2 D � Sym : N? S E*ð Þ½ �½ � ¼ 0
� �

: ð3:16Þ

Thus, it follows from (3.15) to (3.16) that homogeneous elastic strains can be

generated in the fiber-reinforced solid under consideration. The corresponding

homogeneous elastic deformation fields are obtained by (3.1) with

F* ¼ R*U* ¼ R* 2E*þ Ið Þ1=2; R* 2 SOð3Þ; E* 2 M : ð3:17Þ

For our purpose, it is useful to define another differentiable manifold:

M 0 ¼ F* : F* ¼ R* 2E*þ Ið Þ1=2;R* 2 SO 3ð Þ;E* 2 M
n o

: ð3:18Þ

We infer from (3.15) and (3.18) that

dimðM 0Þ ¼ q � 4: ð3:19Þ

In fact, the manifold M0 provides non-trivial solutions for (3.3) and (3.4).

For later use, let us introduce the plane TM(E*) tangent to M at E* 2 M and

the plane TM 0 F*ð Þ tangent to M0 at F* 2 M0:

TM E*ð Þ ¼ Ker N
?
L E*ð Þ½ �½ �

� �
; E* 2 M ; ð3:20Þ

TM 0 F*ð Þ ¼ Ker I� I� Nð Þð Þ K F*ð Þ½ �½ �Þ; F* 2 M 0: ð3:21Þ

In (3.21), K F*ð Þ½ �½ � is the jump of the phase nominal tangent tensors across the

interface �, i.e.,

K½ �½ � ¼ K
2ð Þ �K

1ð Þ ð3:22Þ

with

K
rð Þ ¼ rP rð Þ r ¼ 1; 2ð Þ; ð3:23Þ
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and the kernel space of I� I� Nð Þð Þ K F*ð Þ½ �½ � is defined as

Ker I� I� Nð Þð Þ K F*ð Þ½ �½ �ð Þ ¼ �F 2 Lin : I� I� Nð Þð Þ K F*ð Þ½ �½ ��F ¼ 0
� �

:

ð3:24Þ

In passing and for later use, observe that the basic formula (3.5) gives rise o the

following relation between the nominal and material tangent tensors (see, e.g.,

[4, 6]):

K
rð Þ F*ð Þ ¼ I�S rð Þ E*ð Þ þ F*�Ið ÞL rð Þ E*ð Þ F*T�Ið Þ: ð3:25Þ

Lastly, it is directly deduced from (3.15) and (3.19) that

dim TM E*ð Þð Þ ¼ q � 1; dim TM 0 F*ð Þð Þ ¼ q � 4 ð3:26Þ

provided E* 2 M and F* 2 M0.

4. Microstructure-Independent Exact Results

The possibility of generating non-trivial homogeneous elastic deformations in the

fiber-reinforced solid has at least two important consequences: (i) The effective

nominal or material stress-strain relation can be explicitly and exactly

determined for every F* 2 M0; (ii) exact connections exist between the effective

elastic nominal (or material) tangent moduli evaluated at any F* 2 M0 (or E* 2
M). This section has the purpose of establishing these results which turn out to be

independent of the transverse geometry and distribution of the fibers.

4.1. EXACT RESULTS FOR THE EFFECTIVE NOMINAL AND MATERIAL

STRESS–STRAIN RELATIONS

For any surface loading specified by (2.16) with F ¼ F* 2 M 0, the resulting

deformation field is homogeneous over �. Correspondingly, the nominal stress

field P(x, F*) calculated by (2.1) is homogenous in each phase. Further, owing to

the satisfaction of (3.4), the part I� I� Nð Þ½ �P x;F*ð Þ of P(x, F*) is homogeneous

over �. So, using (2.12), we can exactly determine the effective nominal stress–

strain relation (2.15) for any F ¼ F* 2 M 0 as follows:

P ¼ P̂P F*ð Þ ¼< P x;F*ð Þ >¼ c 1ð ÞP 1ð Þ F*ð Þ þ c 2ð ÞP 2ð Þ F*ð Þ: ð4:1Þ

Further, recalling that c(r) denotes the volume fraction of phase r, (4.1) can be

split into

I�Nð ÞP̂P F*ð Þ ¼ I�Nð Þ c 1ð ÞP 1ð Þ F*ð Þ þ c 2ð ÞP 2ð Þ F*ð Þ
h i

; ð4:2Þ

12



I� I� Nð Þ½ �P̂P F*ð Þ ¼ I� I� Nð Þ½ �P 1ð Þ F*ð Þ ¼ I� I� Nð Þ½ �P 2ð Þ F*ð Þ�: ð4:3Þ

Using (2.14) and (4.1), we obtain the associated effective material stress:

S ¼ F*�1P̂P F*ð Þ ¼ c 1ð ÞF*�1P 1ð Þ F*ð Þ þ c 2ð ÞF*�1P 2ð Þ F*ð Þ: ð4:4Þ

Since P(r)(F*) verifies the principle of objectivity as specified by (2.4), we can

invoke (2.8) and (2.14) to put (4.4) in a simpler equivalent form:

S ¼ ŜS E*ð Þ ¼ c 1ð ÞS 1ð ÞðE*Þ þ c 2ð ÞS 2ð Þ E*ð Þ; ð4:5Þ

where ŜS E*ð Þ ¼ F*�1P̂P F*ð Þ is the effective material stress–strain relation ŜS Eð Þ
evaluated at E ¼ E* 2 M .

Interestingly, we observe that (4.5) amounts to S ¼< S x;E*ð Þ >. This seems

to be in contradiction with the general fact that E 6¼< E > and S 6¼< S >
recalled just after equation (2.14). In reality, in the special case where a

homogeneous deformation field y(x) = F*x over � represents a solution for the

homogenization problem, it results from (2.13) to (2.14) that E ¼< E >¼ E*

and S ¼< S >¼< S x;E*ð Þ >.

When the phases of the composite are hyperelastic, i.e. the nominal stress–

strain relation P(r)(F) of phase r in (2.1) is given by

P rð Þ Fð Þ ¼
@w rð Þ Fð Þ

@F
ð4:6Þ

where w(r)(F) is the strain-energy function of phase r, then the existence of

homogeneous deformation fields implies that the effective strain-energy function

ŵw F
� �

can be exactly evaluated for all F* 2 M0 as follows:

ŵw F*ð Þ ¼ c 1ð Þw 1ð Þ F*ð Þ þ c 2ð Þw 2ð Þ F*ð Þ: ð4:7Þ

Thus, the Voigt bound established by Ogden [28] in the case of finite elasticity is

achieved by fiber-reinforced composites whenever F* 2 M0.

4.2. EXACT CONNECTIONS BETWEEN EFFECTIVE NOMINAL TANGENT MODULI

By definition, the effective nominal tangent tensor A F
� �

associated to (2.15) is

given by

A F
� �

¼ rP̂P F
� �

: ð4:8Þ

Now, let us show that exact connections exist between the components of A F*ð Þ
with F* 2 M0.
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In view of (3.21) and (3.26)2, it makes sense to introduce the orthogonal

projection operator H F*ð Þ from Lin to TM 0 F*ð Þ through

Ker I� I� Nð Þð Þ K F*ð Þ½ �½ �ð Þ ¼ �F* : �F* ¼ H F*ð Þð Þ�F; �F 2 Linf g ð4:9Þ

and the complementary orthogonal projection operator H? F*ð Þ by

H
? F*ð Þ ¼ I�H F*ð Þ: ð4:10Þ

In particular, when det K F*ð Þ½ �½ �ð Þ 6¼ 0, we have H F*ð Þ ¼ I� I� Nð Þ and H
?

F*ð Þ ¼ I�N. In what follows, it should be kept in mind that H F*ð Þ and H
? F*ð Þ

are entirely determined by I� I� Nð Þð Þ K F*ð Þ½ �½ �. With the aid of H F*ð Þ and

H
? F*ð Þ, every variation ��F of a local deformation gradient field F* 2 M0 admits

the following decomposition:

��F ¼ ��F*þ �F0; ��F* ¼ H��F; ��F0 ¼ H
?��F: ð4:11Þ

In other words, each variation ��F of F* 2 M 0 can be uniquely decomposed into

one component ��F* tangent to M 0 at F* and one component ��F0 perpendicular to

the tangent plane TM 0 F*ð Þ. Remark that ��F* induces a homogeneous deformation

field in the fiber-reinforced composite. So, for any variation ��F of a macroscopic

deformation gradient F ¼ F* 2 M 0, the decomposition

��F ¼ ��F*þ ��F0; ��F* ¼ H��F; ��F0 ¼ H
?��F ð4:12Þ

holds as well.

The phase nominal incremental stress–strain relations associated to (2.1) and

the effective nominal incremental stress–strain relation corresponding to (2.15)

take the following respective forms:

��P ¼ ��P X;F; ��Fð Þ ¼
Xr¼2

r¼1
� rð Þ xð Þ��P rð Þ F; ��Fð Þ ¼

Xr¼2

r¼1
� rð Þ xð ÞK rð Þ Fð Þ��F;

ð4:13Þ

��P ¼ ��P̂P F; ��F
� �

¼ rP̂P F
� �� �

��F ¼ A F
� �

��F: ð4:14Þ

When F* 2M 0, then F ¼ F* and use of the orthogonal projection operator H F*ð Þ
and H

? F*ð Þ allows to split (4.13) into

H��P ¼ H

Xr¼2

r¼1
� rð Þ xð ÞK rð Þ

� �
H��FþH

Xr¼2

r¼1
� rð Þ xð ÞK rð Þ

� �
H

?��F;

ð4:15Þ

H
?��P ¼ H

?
Xr¼2

r¼1
� rð Þ xð ÞK rð Þ

� �
H��FþH

?
Xr¼2

r¼1
� rð Þ xð ÞK rð Þ

� �
H

?��F;

ð4:16Þ
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and (4.14) into

H��P ¼ HAH��FþHAH
?��F; ð4:17Þ

H
?��P ¼ H

?
AH��FþH

?
AH

?��F: ð4:18Þ

In (4.15)–(4.18) and in what follows, for notational simplicity the dependence on

F* 2 M 0 is dropped as no confusion is possible.

The volume average of (4.15) and the one of (4.16) give

H��P ¼
Xr¼2

r¼1
c rð Þ

HK
rð Þ
H

� �
��F*þ

Xr¼2

r¼1
c rð Þ

HK
rð Þ
H

?
� �

< ��F0 >r;

ð4:19Þ

H
?��P ¼

Xr¼2

r¼1
c rð Þ

H
?
K

rð Þ
H

� �
��F*þ

Xr¼2

r¼1
c rð Þ

H
?
K

rð Þ
H

?
� �

< ��F0 >r :

ð4:20Þ

Using ��F0 ¼ c 1ð Þ < ��F0 >1 þ c 2ð Þ < ��F0 >2 and comparing the above two

expressions with (4.17) and (4.18), we derive

H A � < K >ð ÞH��F*þH A�K
1ð Þ

� �
H

?��F0 ¼ c 2ð Þ
H K½ �½ �H? < ��F0 >2;

ð4:21Þ

H
?
A � < K >ð ÞH��F*þH

?
A�K

1ð Þ
� �

H
?��F0 ¼ c 2ð Þ

H
?
K½ �½ �H? < ��F0>2;

ð4:22Þ

where < K > ¼ c 1ð Þ
K

1ð Þ þ c 2ð Þ
K

2ð Þ. To obtain a set of exact connections bet-

ween the components of A, we first pose ��F0 ¼ 0, eliminate < ��F0 >2 and

prescribe ��F* arbitrarily in (4.21) and (4.22). This gives

H
�

K½ �½ � H?
K½ �½ �H?

� �
�1 � I

�
A � < K >ð Þ

�
H ¼ 0:

�
ð4:23Þ

Next, setting ��F* = 0, eliminating < ��F0 >2 and letting ��F0 be arbitrary in (4.21)

and (4.22), yields

H
�

K½ �½ � H?
K½ �½ �H?

� �
�1 � I

� ��
A�K

1ð Þ
��
H

? ¼ 0: ð4:24Þ

In (4.23) and (4.24), the partial inverse H
?
K½ �½ �H?

� ��1
should be understood in

the sense that H
?
K½ �½ �H?

� ��1
H

?
K½ �½ �H?

� �
¼ H

?
K½ �½ �H?

� �
H

?
�

K½ �½ �H?Þ�1 ¼
H

?.

The exact relations (4.23) and (4.24) establish connections between the

effective nominal tangent moduli evaluated at each point F* 2 M 0. These
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connections are microstructure-independent in the sense that they hold

irrespectively of the transverse geometry and distribution of the fibers. They

have the direct consequence that the number of independent effective nominal

tangent moduli evaluated for all point F* 2 M 0 is reduced. The degree of

reduction is determined by the dimension of the kernel space of I� I�ðð
NÞÞ K F*ð Þ½ �½ � as defined by (4.9).

4.3. EXACT CONNECTIONS BETWEEN EFFECTIVE MATERIAL TANGENT MODULI

By definition, the effective material tangent tensor B E
� �

associated to the

effective material stress–strain relation ŜSðEÞ is provided by

B E
� �

¼ rŜS E
� �

: ð4:25Þ

The fact that uniform strains can be produced in the composite and constitute a

differential manifold M specified by (3.16) gives rise to exact connections

between the components of B E*ð Þ with E* 2 M. However, the method used in

the last paragraph to establish connections between the components of the

effective nominal tangent tensor A F*ð Þ with F* 2 M 0 cannot be applied here,

because ��E 6¼< ��E > and ��S 6¼< ��S >. Instead, an efficient way to achieve the

purpose consists in starting from the established nominal connections (4.23) and

(4.24) and using the following relation

A F*ð Þ ¼ I�ŜS E*ð Þ þ F*�Ið ÞB E*ð Þ F*T�Ið Þ ð4:26Þ

together with the corresponding phase relation (3.25).

Introducing (4.26) and (3.25) into (4.23) and (4.24), we obtain

H½ I� S½ �½ � þ F*�Ið Þ L½ �½ � F*T�Ið Þð Þ H
? I� S½ �½ � þ F*�Ið Þ L½ �½ � F*T�Ið Þð ÞH?

� ��1
� IÞ

�
�
I� ŜS� < S >

� �
þ F*�Ið Þ B� < L >ð Þ F*T�Ið ÞÞ�H ¼ 0; ð4:27Þ

H½ðI� S½ �½ � þ F*�Ið Þ L½ �½ � F*T�Ið Þ H
? I� S½ �½ � þ F*�Ið Þ L½ �½ � F*T�Ið Þð ÞH?

� ��1
� IÞ

� I� ŜS� S 1ð Þ
� �

þ F*�Ið Þ B� L
1ð Þ

� �
F*T�Ið Þ

� �
�H? ¼ 0: ð4:28Þ

These exact connections are much more complex than (4.23) and (4.24). How-

ever, in the particular case where F* = I and E* = 0, the residual-stress free

condition (2.10) means that S(r)(0) = 0 and implies that ŜS 0ð Þ ¼ 0. Correspond-
ingly, (4.27) and (4.28) can be considerably simplified into

H0

��
L0½ �½ � H?

0 L0½ �½ �H?
0

� ��1
� I

�
B0� < L0 >ð Þ

�
H0 ¼ 0; ð4:29Þ
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H0

��
L0½ �½ �

�
H

?
0 L0½ �½ �H?

0

��1
� I

��
B0 � L

1ð Þ
0

��
H

?
0 ¼ 0; ð4:30Þ

where a quantity with the subscript 0 signifies that it is evaluated at E ¼ E* ¼ 0

or F* = I.

In the case of hyperelastic infinitesimal strains and under the condition that

L
2ð Þ
0 � L

1ð Þ
0 is not singular, i.e., detðL

2ð Þ
0 � L

1ð Þ
0 Þ 6¼ 0, the connections (4.29) and

(4.30) reduce to those given by Dvorak [7] for linear elasticity.

5. Example

The general results given in the previous sections are now illustrated by

considering a simple but physically meaningful example where phase 1 is a

compressible Mooney–Rivlin material and phase 2 consists of unidirectional

cylindrical pores.

The matrix phase of the porous material under consideration is characterized

by the Mooney–Rivlin strain-energy function (see, e.g., [5, 16]):

w 1ð Þ Fð Þ ¼ eww 1ð Þ Jið Þ ¼ �
1ð Þ
1

�
J
1=2
3 � 1

�2
�
�
�

1ð Þ
2 þ 2�

1ð Þ
3

�
ln J3

þ �
1ð Þ
2 J1 � 3ð Þ þ �

1ð Þ
3 J2 � 3ð Þ; ð5:1Þ

where �i
(1)

Q 0 are the material parameters of the matrix phase and Ji are the

principal invariants of the right Cauchy–Green strain tensor C = FTF defined

by

J1 ¼ trC; J2 ¼
1
2

trCð Þ2 � tr C2
� �h i

; J3 ¼ detC: ð5:2Þ

Clearly, for phase 2 made of cylindrical pores, we have w(2)(F) = 0. Applying the

classical formula (see, e.g., [29])

S 1ð Þ ¼ 2
@eww 1ð Þ

@C
¼ 2

@eww 1ð Þ

@J1
þ J1

@eww 1ð Þ

@J2

	 

I�

@eww 1ð Þ

@J2
Cþ J3

@eww 1ð Þ

@J3
C�1

� �

ð5:3Þ

to (5.1) gives the material stress of the matrix phase

S 1ð Þ ¼ 2 �
1ð Þ
2 þ �

1ð Þ
3 J1

� �
I� 2�

1ð Þ
3 Cþ 2 �

1ð Þ
1 J3 � J

1=2
3

� �
� �

1ð Þ
2 � 2�

1ð Þ
3

h i
C�1:

ð5:4Þ
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 Next, the expression for the corresponding nominal stress is obtained as follows:

P 1ð Þ ¼ FS 1ð Þ ¼ 2 �
1ð Þ
2 þ �

1ð Þ
3 J1

� �
F� 2�

1ð Þ
3 FC

þ 2 �
1ð Þ
1 J3 � J

1=2
3

� �
� �

1ð Þ
2 � 2�

1ð Þ
3

h i
F�T : ð5:5Þ

Regarding phase 2, we have S(2) = P(2) = 0.

As shown in Section 3, finding homogeneous material strain fields amounts to

solving the system (3.10) of nonlinear equations. To this end, let us introduce an

orthonormal basis {e1, e1, e3} with the pore direction n coinciding with e1. Then,

substituting (5.4) into the system of equations N
? S Eð Þ½ �½ �C ¼ 0 which is

equivalent to (3.10), it follows that

N
? �2 þ �3J1ð ÞC� �3C

2 þ �1 J3 � J
1=2
3

� �
� �2 � 2�3

h i
I

n o
¼ 0; ð5:6Þ

where N? ¼ 1� e1 � e1 � e1 � e1. In (5.6) and in what follows, we set �i = �i
(1)

(i = 1, 2, 3) for notational simplicity.

To find all the solutions for the system of nonlinear equation (5.6), we first

observe the fact that, given any right Cauchy–Green strain tensor C, an

orthonormal basis {e1, e2, e3} can always be chosen such that e1 corresponds

to the direction n of cylindrical pores and the matrix of C relative to {e1, e2, e3}

takes the form

C ¼
C11 C12 C13

C12 C22 0

C13 0 C33

2
4

3
5: ð5:7Þ

In fact, it is always possible to rotate the transverse-plane orthonormal basis {e2,

e3} about the axis e1 so that C23 = C32 = 0. Correspondingly,

J1 ¼ C11 þ C22 þ C33; ð5:8aÞ

J2 ¼ C11C22 þ C22C33 þ C33C11 � C2
12 � C2

13; ð5:8bÞ

J3 ¼ C11C22C33 � C2
12C33 � C2

13C22: ð5:8cÞ

Introducing (5.7) and (5.8a, 5.8b, 5.8c) into (5.6), we obtain five nonlinear

equations:

�2C12 þ �3C33C12 ¼ 0; ð5:9Þ

�2C13 þ �3C22C13 ¼ 0; ð5:10Þ

�3C12C13 ¼ 0; ð5:11Þ
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�1

�
C11C22C33 � C2

12C33 � C2
13C22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22C33 � C2

12C33 � C2
13C22

q �

þ �2C22 þ �3 C11C22 þ C33C22 � C2
12

� �
� �2 � 2�3 ¼ 0;

ð5:12Þ

�1

�
C11C22C33 � C2

12C33 � C2
13C22 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22C33 � C2

12C33 � C2
13C22

q �

þ �2C33 þ �3 C11C33 þ C22C33 � C2
13

� �
� �2 � 2�3 ¼ 0:

ð5:13Þ

In Appendix A, it is proved that, due to the requirement that C be positive

definite, quations (5.9)–(5.13) admit only the solution expressed by

C* ¼ U*2 ¼ �2
1e1 � e1 þ �2

2 I� e1 � e1ð Þ ð5:14Þ

with

�1 tð Þ ¼
�1t þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1t
2 � 4 �3 þ �1t2ð Þ �3 t4 � 2ð Þ þ �2 t2 � 1ð Þ½ �

p

2 �3 þ �1t2ð Þt
; �2 tð Þ ¼ t

ð5:15Þ

where t 2]0, + 1 [ is a positive parameter. The tensors E* = (C* j I)/2 with C*

specified by (5.14) and (5.15) are transversely isotropic with respect to e1 and

form a manifold M of dimension q = 1 in the space Sym. Furthermore, using

(3.18), we obtain the manifold

M 0 ¼ F* : F* ¼ R* 2Eþ Ið Þ1=2; R* 2 SO 3ð Þ; E* 2 M
n o

ð5:16Þ

in the space Lin. Then, all admissible homogeneous deformation fields for the

porous material under consideration are given by (3.1) with F* 2 M 0.

It is worth noting that the necessary and sufficient condition (5.6) for

the existence of homogeneous deformation fields in the porous material is

nothing else than the demand that the stress field in the matrix phase be uniaxial

along the direction of the cylindrical pores. This can be expected, since the strain

field in the matrix is required to be uniform while no stresses are exerted on

the pore surfaces. Furthermore, (5.14) and (5.15) can be viewed as characterizing

the admissible strain states of the matrix phase associated to the uniaxial stress

state.

Next, applying the formulas (4.5), (4.1) and (4.7), we can exactly evaluate the

effective material stress–strain relation at every E* 2 M and the effective
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 nominal stress–strain relation and strain-energy function at each F* 2 M for the 
porous material through

S ¼ ŜS E*ð Þ ¼ c 1ð ÞS 1ð Þ E*ð Þ

¼ 2c 1ð Þ �2 þ �3J 1*ð ÞI� 2c 1ð Þ�3C*þ 2c 1ð Þ

�
�
�1

�
J 3*�

ffiffiffiffiffiffi
J 3*

p �
� �2 � 2�3

�
C*�1; ð5:17Þ

P ¼ P̂P F*ð Þ ¼ c 1ð ÞP 1ð Þ F*ð Þ

¼ 2c 1ð Þ �2 þ �3J 1*ð ÞRU*� 2c 1ð Þ�3RU*
3

þ 2c 1ð Þ
�
�1

�
J 3*�

ffiffiffiffiffiffi
J 3*

p �
� �2 � 2�3

�
RU*�1; ð5:18Þ

ŵw F*ð Þ ¼ c 1ð Þw 1ð Þ F*ð Þ

¼ c 1ð Þ
�
�1

� ffiffiffiffiffiffiffi
J3*

p
� 1

�2
� �2 þ 2�3ð Þ ln J 3*þ �2 ðJ1*� 3Þ þ �3 J 2*� 3ð Þ�;

ð5:19Þ

where use is made of (5.4), (5.5) and (5.1). Substituting the expressions of C*

and U* specified by (5.14)–(5.15) and the expressions of Ji* specified by

J 1* tð Þ ¼ �2
1 tð Þ þ 2t2; J 2* ¼ 2�2

1 tð Þt2 þ t4; J 3* ¼ �2
1 tð Þt4; ð5:20Þ

into (5.17)–(5.19), we obtain

S ¼ 2c 1ð Þ �1t
4 þ 2�3t

2 þ �2 �
�1t

2

�1

�
�2 þ 2�3

�2
1

	 

e1 � e1; ð5:21Þ

P ¼ 2c 1ð Þ �1t
4 þ 2�3t

2 þ �2

� �
�1 � �1t

2 �
�2 þ 2�3

�1


� �
R*e1ð Þ � e1;

ð5:22Þ

ŵw F*ð Þ ¼ c 1ð Þ �1 �1t
2 � 1

� �2
� �2 þ 2�3ð Þ ln �2

1t
4

� �h i

þ c 1ð Þ �2 �2
1 þ 2t2 � 3

� �
þ �3 2�2

1t
2 þ t4 � 3

� �� �
; ð5:23Þ

where �1 is given by (5.15)1 and R* 2 SO(3).

As expected, the effective behavior of the porous material evaluated at E* 2
M or F* 2 M0 is identical to the one of the matrix with the volume fraction c(1) as

a multiplier. So, under the surface loading (2.6) with F ¼ F* 2 M 0, the porous
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Figure 2. Effective material stress–strain relation S11 E 11*ð Þ along the direction of

cylindrical pores.

Figure 3. Ratio of the uniform longitudinal strain E11* to the uniform transverse strain E 22* .
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material under consideration behaves macroscopically as a compressible

Mooney–Rivlin material. To graphically represent the relations (5.15) and

(5.21), we take the numerical values

c 1ð Þ ¼ 0:75; �1 ¼ 500Pa; �2 ¼ 50Pa; �3 ¼ 20Pa

for the material parameters of the matrix. The effective material stress–strain

relation S11 E11*ð Þ along the direction of the cylindrical pores is shown in Figure 2,

and the ratio E11* /E22* is illustrated in Figure 3.

After determining all homogeneous deformation fields through (5.14) and

(5.15), the exact connections (4.23)–(4.24) or (4.27)–(4.28) can be in principle

specified for the porous material in question with no difficulties. However, the

corresponding explicit expressions are algebraically cumbersome. Therefore, we

do not detail them here.

6. Final Remarks

In this work, the important results provided by Hill [14] and Dvorak [7] have

been generalized to elastic solids reinforced by elastic fibers, or weakened by

unidirectional cylindrical pores, and subjected to large deformations. The method

elaborated to accomplish this generalization can be directly used to extend to the

case of large deformations other microstructure-independent relations, such as

the well-known Levin’s one and Rosen–Hashin’s one (see, e.g., [22]), established

within the framework of linear elasticity or thermoelasticity and on the basis of

the concept of uniform fields. Indeed, the main difficulty encountered in doing

these extensions in the context of large deformations is due to the dilemma

pointed out at the beginning of the paper. The method proposed in this work and

consisting in alternatively exploiting the nominal and material description has

turned out to be very efficient to solve the dilemma.

All the results derived in Sections 2–5 are relative to a representative element

(RVE) � and hence valid for the homogenization of elastic fiber-reinforced

composites under consideration. It is interesting to note that all these results

remain valid even when � is smaller than an RVE, under the condition that the

volume fractions of the fibers and matrix in � correspond to those prescribed for

the composite. In this case, the overall properties of � should not be considered

as Feffective or homogenized_ but Fapparent_ (see, e.g., [11, 17]).

As pointed out in the Introduction, an important issue which has not been

addressed in this work is that of microscopic and macroscopic instabilities due to

the non-convexity of the energy function of an elastic material at finite strain.

All the results given in Sections 2–5 are valid only before the occurrence of

microscopic instability. In other words, they are meaningful only within the

microscopic stability domain. Even though the determination of the latter is an

open problem for composites with random microstructures, we conjecture that,
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except in some very special cases, the microscopic stability domain in the space

of Green–Lagrange strain tensors E is in general a domain containing the zero

strain tensor E = 0 as an interior point. This conjecture is strongly supported by

the recent results of Lopez-Pamies and Ponte Castañeda [19]. Thus, we believe

that the results obtained in this work are useful for the homogenization of fiber-

reinforced composites undergoing large deformations.

Appendix A. Solution of the System of Equations (5.9)–(5.13)

First of all, note that any physically meaningful solution for the system of

nonlinear equations (5.9)–(5.13) must be such that the tensor C is positive

definite, and that every material constant �i involved in (5.9)–(5.13) is such that

�i Q 0.

Then, we begin with the simplest equation (5.11). Satisfaction of the latter

implies that C12 = 0 or C13 = 0. Without loss of generality, assume that C13 = 0.

Then, equation (5.10) is immediately verified and equation (5.9) leads to C12 = 0

or C33 = j�2/�3. The last expression for C33 is not admissible, since it is in

contradiction with the requirement that C be positive definite. So, at this stage,

we can conclude that

C12 ¼ C13 ¼ 0: ðA:1Þ

This conclusion allows us to simplify (5.12) and (5.13) into

�1

�
C11C22C33 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22C33

p �
þ �2C22 þ �3 C11 þ C33ð ÞC22 � �2 � 2�3 ¼ 0;

ðA:2Þ

�1

�
C11C22C33 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C11C22C33

p �
þ �2C33 þ �3 C11 þ C22ð ÞC33 � �2 � 2�3 ¼ 0:

ðA:3Þ

Subtracting (A.3) from (A.2) gives

�2 þ �3C11ð Þ C22 � C33ð Þ ¼ 0:

The solution C11 = j�2/�3 is not admissible and, hence, the following one must

hold:

C22 ¼ C33: ðA:4Þ

Next, introducing (A.4) into (A.2) results in

�3 þ �1C22ð ÞC22C11 � �1C22

ffiffiffiffiffiffiffi
C11

p
þ �3C

2
22 þ �2C22 � �2 � 2�3 ¼ 0:

ðA:5Þ
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This is a quadratic equation of C11
1/2 and has the following admissible solution:

ffiffiffiffiffiffiffi
C11

p
¼

�1C22 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
1C

2
22 � 4C22 �3 þ �1C22ð Þ �3 C2

22 � 2
� �

þ �2 C22 � 1ð Þ
� �q

2 �3 þ �1C22ð ÞC22

:

ðA:6Þ

Combining (5.7), (A.1), (A.4) and (A.6), we finally reach the conclusion that the

system of equations (5.9)–(5.13) admits only the solution specified by (5.14) and

(5.15) where C11
1/2 = �1 and C22

1/2 = �2 = t with t Q 0.
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