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The present paper is devoted to the modeling of finite deformations of a hyperelastic body described by Ogden’s model under contact/impact
conditions. Frictional contact problems are solved by means of the bi-potential method. The first order algorithm is applied to integrate the
equation of motion. The total Lagrangian formulation is adopted to describe the geometrically non-linear behavior. For the finite element
implementation, the explicit expression of the tangent operator is derived including the case of repeated eigenvalues. A numerical example is
given to illustrate efficiency and accuracy of the method.

Keywords: Hyperelasticity; Contact/impact; Ogden’s model; Large deformation

1. Introduction

Problems involving unilateral contact and friction are among
the most difficult ones in mechanics and at the same time of
crucial importance in many engineering branches. A large num-
ber of algorithms for the modelling of contact problems by
the finite element method have been presented in the literature.
See, for example, the monographs by Kikuchi and Oden [1],
Zhong [2] and Wriggers [3], and the references therein. The bi-
potential method proposed by De Saxcé and Feng [4,5] turns
out to be particularly efficient for the treatment of quasi-static
frictional contact problems [6–9]. The present work extends
the bi-potential method to dynamic contact problems by using
a first-order time integration algorithm and considering a class
of hyperelastic materials which can be described by the well-
known Ogden’s constitutive law [10].

Dynamic contact or impact falls within the framework of
non-linear dynamics. The computational treatment of a non-
linear dynamic problem must comply with the basic require-
ment that: (i) the linear and angular momenta be conserved; (ii)
the energy be conserved when the corresponding phenomenon

∗ Corresponding author. Tel.: +33 1 69 47 75 01; fax: +33 1 69 47 75 99.
E-mail address: feng@iup.univ-evry.fr (Z.-Q. Feng).

is non-dissipative; and (iii) the energy dissipation be exactly
equal to the physical one when the corresponding phenomenon
is dissipative. The problem of satisfying these three require-
ments in the case of dynamic contact has been addressed and
dealt with in a few recent computational mechanics works
[11–14].

In the present work, this problem is solved by using the bi-
potential method together with the first-order time integration
algorithm which was applied by Jean [15] to simulate non-
smooth dynamic contact of granular materials. In fact, the first-
order time integration is both simple and suitable for discon-
tinuous phenomena such as impact [16].

In non-linear elasticity, there exist many models to describe
the hyperelastic behavior of foam- or rubber-like materials
[10,17–22]. The Ogden’s model plays an important role in mod-
elling such materials and has been implemented in most com-
mercial finite element codes. However, it seems that the prob-
lem of finite deformations of Ogden’s materials under impact
loading has not been investigated from a computational point
of view. Consequently, the main purpose of the present paper
is to study and solve this problem by means of the bi-potential
method together with the first-order time integration algorithm.

This paper is structured as follows. In Section 2, the
problem of frictional dynamic contact of Ogden’s bodies is
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formulated. Next, the bi-potential method is recapitulated in
Section 3. The stress–strain tangent operator associated to the
hyperelastic Ogden’s law is calculated in Section 4. The finite
element formulation of the frictional dynamic contact problem
and the first-order time integration algorithm are given in Sec-
tion 5. A numerical example concerning the impact of a hyper-
elastic cylinder into a funnel is provided in Section 6 to show
the energy conservation in the absence of friction and the en-
ergy dissipation in the presence of friction. In Section 7, a few
concluding remarks are drawn.

2. Problem setting

In this section, basic definitions and notations used are briefly
described. Details can be found in [3].

2.1. Kinematics

Consider a deformable body B undergoing large strains
(Fig. 1). The body B occupies in its initial configuration an
open, simply connected and bounded domain �0 ⊂ R3. The
closure �0 of �0 represents the reference configuration of B
in the total Lagrangian formulation, adopted here. A material
particle M of B is identified by its reference position vector
X ∈ �0. At each time t ∈ It , where It := [0, T ] denotes the
time interval of a loading process, the boundary � of �0 can,
in general, be split into three parts: �u with prescribed dis-
placements ū, �t with prescribed tractions t̄, and the potential
contact surface �c, where the body B may come into contact
with the surface �′ of a rigid body B′:

� = �u ∪ �t ∪ �c. (1)

With no loss of generality, the rigid body is assumed to be
motionless.

The successive deformed configurations �(t) of B with t ∈
It are defined by a one-parameter differentiable and invertible
mapping �:

�(X, t): � × It → R3.

The boundary �(t) of �(t) is assumed to be sufficiently smooth
so that an outward unit normal vector, denoted by m, can be
defined almost everywhere on �. The position of a particle
of the body in the current configuration �(t) is defined by
its current position vector x = �(X, t). The displacement of a
material point corresponds to the difference between its current
and initial positions

u = �(X, t) − X. (2)

The velocity and acceleration of a material point in the
Lagrangian description are given as

u̇(X, t) = ��

�t
(X, t), ü(X, t) = �2�

�t2 (X, t). (3)

The transformation gradient F is defined by

F(X, t) = �x(X, t)

�X
= I + �u(X, t)

�X
, (4)

Fig. 1. Contact kinematics.

where I is the unity tensor, and is required to be such that
J = det(F) > 0. The constraint of incompressibility (isochoric
deformation) is characterized by

J = det(F) = 1. (5)

The strain measure adopted here is the Green–Lagrangian strain
tensor E:

E = 1
2 (C − I), (6)

where C = FTF is the right Cauchy–Green tensor.

2.2. Ogden’s hyperelastic law

The deformable body under consideration is assumed to be
rubber-like and more precisely characterized by Ogden’s hy-
perelastic law. Let W be the strain energy density which is a
scalar function of either the strain tensor E or C. Thus, the
second Piola–Kirchhoff stress tensor S is given by

S = �W

�E
= 2

�W

�C
. (7)

In the case of isotropic hyperelasticity [18], Eq. (7) can be
written as

S = 2

[
I3

�W

�I3
C−1 +

(
�W

�I1
+ I1

�W

�I2

)
I − �W

�I2
C
]

, (8)

where Ii (i = 1, 2, 3) denote the invariants of the right
Cauchy–Green deformation tensor C:

I1 = tr(C), I2 = (I 2
1 − C : C)/2, I3 = det(C) = J 2. (9)

In terms of the eigenvalues (or principal stretches) �i (i=1, 2, 3)

of the right Cauchy–Green tensor C, we have

I1 = �1 + �2 + �3, I2 = �1�2 + �2�3 + �1�3,

I3 = �1�2�3. (10)
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In this paper, Ogden’s constitutive law is adopted [10]. Corre-
spondingly, W is expressed by

W(�1, �2, �3) =
N∑

i=1

�i

�i

(��i /2
1 + ��i /2

2 + ��i /2
3 − 3)

+
N∑

i=1

�i

�i�i

(J−�i�i − 1), (11)

where N, �i , �i and �i are material parameters. The initial shear
modulus, G, and the initial bulk modulus, K, are given as

G = 1

2

N∑
i=1

�i�i , K =
N∑

i=1

�i�i

(
1

3
+ �i

)
. (12)

It is noted that, for N = 1, �1 =−G, �1 =−2 and �1 = 0.5, the
well-known Blatz–Ko strain-energy density is recovered [17]

W = G

2
(�−1

1 + �−1
2 + �−1

3 + 2J − 5) (13)

or equivalently

W = G

2

(
I2

I3
+ 2J − 5

)
. (14)

Some other hyperelastic models are discussed by Horgan and
Saccomandi [22].

By deriving the energy density (11) with respect to the strain
tensor, we obtain

S =
N∑

i=1

�i

(
�(�i /2)−1

1
��1

�C
+ �(�i /2)−1

2
��2

�C
+ �(�i /2)−1

3
��3

�C

)

−
N∑

i=1

�iJ
−�i�i C−1. (15)

Using the Cayley–Hamilton theorem, we can write (15) in the
equivalent form

S =
N∑

i=1

�i

(
�(�i /2)−1

1
��1

�C
+ �(�i /2)−1

2
��2

�C
+ �(�i /2)−1

3
��3

�C

)

−
N∑

i=1

�iJ
−�i�i−2(C2 − I1C + I2I). (16)

The first Piola–Kirchhoff stress tensor P and Cauchy stress (or
true stress) tensor � are related to the second Piola–Kirchhoff
one S as follows

P = FS, � = 1

J
FSFT. (17)

2.3. Frictional unilateral contact conditions

Consider a point x = �(X, t) with X ∈ �c at an instant t ∈
It . The orthogonal projection of x on the rigid body surface
�′ is defined by x′. The contact distance vector (or gap vector
function) is defined by

g = x − x′ = hn, (18)

where n is the outward unit normal vector of �′ at x′ and h is
the oriented contact distance, specified by h = ‖x − x′‖. The
plane S tangent to �′ at x′ is defined by

S = {y ∈ R3 | (y − x′) · n = 0}. (19)

Let r be the contact stress vector exerted by �′ on B at x. Next,
the displacement vector u, the velocity vector u̇ and the contact
stress vector r at x can be uniquely decomposed into a normal
part and a tangential part as follows:

u = ut + un n, un = u · n, ut = (I − n ⊗ n)u, (20)

u̇ = u̇t + u̇n n, u̇n = u̇ · n, u̇t = (I − n ⊗ n)u̇, (21)

r = rt + rn n, rn = r · n, rt = (I − n ⊗ n)r. (22)

The unilateral contact law is characterized by a geometric con-
dition of non-penetration, a static condition of no-adhesion and
a mechanical complementary condition. These three conditions,
known as the Signorini conditions, can be formulated as

h�0, rn �0, h rn = 0. (23)

In general, at any time t ∈ It , the potential contact surfaces �c

can be split into two disjoint parts: +�c where the body is in
contact with �′ and −�c where the body is separated from �′.
In the case of dynamic contact, the Signorini conditions can be
formulated, on +�c, via the relative velocity

u̇n �0, rn �0, u̇n rn = 0 on +�c. (24)

The bodies are separating when u̇n > 0 and remain in contact
for u̇n = 0.

Formulation (24) of the Signorini conditions can be com-
bined with the sliding rule to derive the complete frictional
contact law for the contacting part +�c. This complete law
specifies possible velocities of bodies that satisfy the unilateral
contact conditions and the sliding rule. In this work, the clas-
sical isotropic Coulomb friction rule is used. The set of admis-
sible forces, denoted by K�, is defined by

K� = {r ∈ R3 such that ‖rt‖ − �rn �0}, (25)

which is Coulomb’s convex cone. On the contacting surface
+�c, the sliding rule can be combined with the rate form of
the Signorini conditions to obtain the frictional contact law
that specifies possible scenarios on the contact area (stick, slip,
separation). Two overlapped “if. . .then. . .else” statements can
be used to write it in a compact form:

if rn = 0 then u̇n �0 ! separating
elseif r ∈ int K� then u̇n = 0 ! sticking

and − u̇t = 0
else (r ∈ bd K� and rn > 0){

u̇n = 0 and ∃ �̇ > 0 such that

−u̇t = �̇
rt

‖rt‖
}

! sliding

endif

(26)

where “int K�” and “bd K�” denote the interior and the bound-
ary of K�, respectively. The multivalued character of the law
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lies in the first and the second part of the statement. If rn is
null then u̇ must be such that its normal component u̇n should
be positive. In other words, one single element of R3 (r = 0) is
associated with an infinite number of velocity vectors u̇ ∈ R3.
The same arguments remain valid for the second part of the
statement.

It is noted that the minus sign before u̇t means that the
frictional force is opposite to the sliding velocity in the isotropic
friction case. The complete form of the frictional contact law
involves three possible states, which are separating, contact with
sticking, and contact with sliding. Only the last state produces
energy dissipation.

3. The bi-potential method

De Saxcé and Feng [5] have shown that the contact law (26)
is equivalent to the following differential inclusion:

(−u̇t − (u̇n + �‖ − u̇t‖) n) ∈ �
⋃
K�

r, (27)

where
⋃

K�
r denotes the so-called indicator function of the

closed convex set K�:

⋃
K�

(r) =
{

0 if r ∈ K�,

+∞ otherwise.
(28)

The following contact bi-potential is obtained:

bc(−u̇, r) =
⋃
R−

(−u̇n) +
⋃
K�

(r) + � rn‖ − u̇t‖, (29)

where R−=]−∞, 0] is the set of the negative real numbers. In
order to avoid non-differentiable potentials that occur in non-
linear mechanics, such as in contact problems, it is convenient
to use the augmented Lagrangian method [4–6,23,24]. For the
contact bi-potential bc, given by (29), provided that u̇n �0 and
r ∈ K�, we have

∀r′ ∈ K�,

��(r ′
n − rn)‖ − u̇t‖ + (r′ − (r − �u̇)) · (r′ − r)�0, (30)

where � is a solution parameter which is not user-defined. In
order to ensure numerical convergence, � can be chosen as
the maximum value of the diagonal terms of the local contact
stiffness matrix. Taking account of decomposition (21), (22),
the following inequality has to be satisfied:

r′ ∈ K�, (r − �) · (r′ − r)�0, (31)

where the modified augmented surface traction � is defined by

� = r + �(−u̇t − (u̇n + �‖ − u̇t‖)n). (32)

Inequality (31) means that r is the projection of � onto the
closed convex Coulomb’s cone:

r = proj(�, K�). (33)

For the numerical solution of the implicit (33), Uzawa’s algo-
rithm can be used, which leads to an iterative process involving
one predictor–corrector step:

Predictor �i+1 = ri + �i (−u̇i
t − (u̇i

n + �‖ − u̇i
t‖) n),

Corrector ri+1 = proj(�i+1, K�). (34)

It is worth noting that, in this algorithm, the unilateral contact
and the friction are coupled via the bi-potential. Another gist of
the bi-potential method is that the corrector can be analytically
found with respect to the three possible contact statuses: � ⊂
K� (contact with sticking), � ⊂ K∗

� (no contact) and � ⊂
R3 − K� ∪ K∗

� (contact with sliding). K∗
� is the polar cone of

K�. This corrector step is explicitly given as follows:

if �‖�i+1
t ‖ < − 	i+1

n then ri+1 = 0 ! separating

else if ‖�i+1
t ‖ < � 	i+1

n then ri+1 = �i+1 ! sticking

else ri+1 = �i+1 − (‖�i+1
t ‖ − � 	i+1

n )

(1 + �2)

×
(

�i+1
t

‖�i+1
t ‖ + � n

)
! sliding.

(35)

4. Stress–strain tangent operator of Ogden’s materials

In order to construct the tangent stiffness matrix for the anal-
ysis of dynamic contact by the finite element method in the
next section, it is necessary to determine the stress–strain tan-
gent operator D for Ogden’s law. This fourth-order tensor is
obtained from the derivative of S with respect to E in Eq. (16):

D = �S
�E

= 4
�2W

�C2 = 4
N∑

i=1

�i

�i

�2Wi
1

�C2 + 4
N∑

i=1

�i

�i�i

�2Wi
2

�C2 (36)

with

Wi
1 = ��i /2

1 + ��i /2
2 + ��i /2

3 , W i
2 = J−�i�i = I

−�i�i /2
3 . (37)

For the sake of simplicity, we note � = �i/2 and � = −�i�i/2.
Eq. (37) becomes then

Wi
1 = ��

1 + ��
2 + ��

3, W i
2 = I

�
3 . (38)

Simo and Taylor have provided a closed form expression in the
most general case of the spatial and material tangent moduli
and applied it to Ogden’s material [25]. We propose in this
study a similar formulation by using a spectral decomposition
expressed in terms of the eigenvalue-bases Ma(a = 1, 2, 3) of
C. Furthermore, we apply a limiting technique to deal with the
special case of coalescent eigenvalues. To this end, we propose
a coordinate-free formulation for the spectral decomposition of
C. First, we introduce four isotropic functions of C:

f (I1, I2, I3) = I 2
1 − 3I2, (39)

g(I1, I2, I3) = 27I 2
3 + 4I 3

2 − I 2
1 I 2

2 + 4I 3
1 I3 − 18I1I2I3, (40)

h(I1, I2, I3) = 2I 3
1 /27 − I1I2/3 + I3, (41)
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(I1, I2, I3) = 1

3
cos−1

[
2I 3

1 − 9I1I2 + 27I3

2(I 2
1 − 3I2)

3/2

]

with 0�
��/3. (42)

Then, four cases can be distinguished:
Case 1: �1 = �2 = �3 = �. This case occurs if and only if

f = 0. Then it follows that

C = �I. (43)

Case 2: �1 > �2 = �3. This case takes place if and only if
f �= 0, g = 0, h > 0.

When these conditions are verified, we have

�1 = 1
3 I1 + 2

3

√
I 2

1 − 3I2,

�2 = �3 = 1
3I1 − 1

3

√
I 2

1 − 3I2, (44)

C = �1M1 + �3(I − M1), (45)

M1 = 1√
I 2

1 − 3I2

[
C − 1

3

(
I1 −

√
I 2

1 − 3I2

)
I
]

. (46)

Case 3: �1 = �2 > �3. This case prevails if and only if f �=
0, g = 0, h < 0.

Under these conditions, the following expressions are valid:

�1 = �2 = 1
3I1 + 1

3

√
I 2

1 − 3I2, �3 = 1
3I1 − 2

3

√
I 2

1 − 3I2,

(47)

C = �1(I − M3) + �3M3, (48)

M3 = 1√
I 2

1 − 3I2

[
1

3

(
I1 +

√
I 2

1 − 3I2

)
I − C

]
. (49)

Case 4: �1 > �2 > �3. This case is true if and only if f �=
0, g �= 0.

Whenever these two conditions are satisfied, we have

�1 = 1
3I1 + 2

3

√
I 2

1 − 3I2 cos 
, (50)

�2 = 1
3I1 + 2

3

√
I 2

1 − 3I2 cos( 2
3� − 
), (51)

�3 = 1
3I1 + 2

3

√
I 2

1 − 3I2 cos( 2
3� + 
), (52)

where the angle 
 is given by Eq. (42). Correspondingly,

C =
3∑

a=1

�aMa , (53)

Ma = (C − �bI)(C − �cI)
(�a − �b)(�a − �c)

, (54)

where (a, b, c) represents a cyclic permutation of (1, 2, 3).
It is noted that Cases 2 and 3 can be put together by substi-

tution so as to write �1 = �2 and �1 �= �3.
In order to calculate the second derivatives of W1 with respect

to C, a limiting technique [10,26,27] was used to take account

for the special case of coalescent eigenvalues in which non-
differentiability occurs. After some calculations, we obtain the
second derivatives of W1 for the case of distinct or repeated
eigenvalues.

Case A: triple eigenvalues: �1 = �2 = �3 = �3 = �

�2W1

�C2 = �(� − 1)��−2I⊗I. (55)

Case B: double eigenvalues: �1 = �2 and �1 �= �3

�2W1

�C2 = �(� − 1)[��−2
1 (I − M3)⊗(I − M3)

+ ��−2
3 M3 ⊗ M3] + �

��−1
1 − ��−1

3

�1 − �3
[(I − M3)⊗M3

+ M3⊗(I − M3)]. (56)

Case C: distinct eigenvalues: �1 �= �2, �2 �= �3 and �1 �= �3

�2W1

�C2 = �

[
(� − 1)

3∑
a=1

��−2
a Ma ⊗ Ma

+
3∑

a=1

��−1
a − ��−1

b

�a − �b

(Ma⊗Mb + Mb⊗Ma)

]
, (57)

where b changes with respect to a following a cyclic permuta-
tion of (1,2,3).

We now deal with the potential of the form Wi
2 = I

�
3 in Eq.

(38). As this potential does not have problem of differentiability
encountered for the potential W1, the calculation is then much
simpler. By using the chain derivative rule and some standard
results (see [28,29]), we have

�2W2

�C2 = �I
�
3 (�C−1 ⊗ C−1 − C−1⊗C−1). (58)

The coordinate-free symbols ⊗ and ⊗ used above are related
to the corresponding index symbols in the following way

(A ⊗ B)ijkl = AijBkl ,

(A⊗B)ijkl = 1
2 (AikBjl + AilBjk). (59)

5. Finite element formulation of non-linear structures

5.1. Total Lagrangian formulation

In the case of dynamic multibody contact problems involving
large deformations of hyperelastic solids, the non-linear relation
between strains and displacements cannot be ignored. The total
Lagrangian formulation is adopted in this work to describe non-
linear behavior. It is well known that the strain tensor E and
the stress tensor S are both symmetric. Thus, we note hereafter
E and S in vector form as

E = 〈E11 E22 E33 2E12 2E13 2E23〉T,

S = 〈S11 S22 S33 S12 S13 S23〉T. (60)

In the context of the finite element method and with Eqs. (4) and
(6), the Green–Lagrangian strain can be formally written with
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linear and non-linear terms in terms of nodal displacements
[21]:

E = (BL + 1
2 BNL(u))u, (61)

where BL is the matrix which relates the linear strain term to
the nodal displacements, and BNL(u), the matrix which relates
the non-linear strain term to the nodal displacements. From Eq.
(61), the incremental form of the strain–displacement relation-
ship is

�E = (BL + BNL(u))�u. (62)

Using the principle of virtual displacement, the virtual work
�U is given as

�U = �uT Mü + �uT Au̇ +
∫

V0

�ET S dV

− �uT Fext − �uTR = 0, (63)

where V0 is the volume of the initial configuration, Fext the
vector of external loads, R the contact reaction vector, M the
mass matrix, A the damping matrix, u̇ the velocity vector and
ü the acceleration vector. In view of Eqs. (36), (60) and (62),
we obtain

�S = D�E = D(BL + BNL(u))�u, (64)

where D denotes the constitutive tangent matrix which
is deduced from the stress–strain tangent operator D

(Eqs. (36)–(58)) due to its major and minor symmetries:

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1111 D1122 D1133 D1112 D1113 D1123
D1122 D2222 D2233 D2212 D2213 D2223
D1133 D2233 D3333 D3312 D3313 D3323

D1112 D2212 D3312
(D1212 + D1221)

2

(D1213 + D1231)

2

(D1223 + D1232)

2

D1113 D2213 D3313
(D1312 + D1321)

2

(D1313 + D1331)

2

(D1323 + D1332)

2

D1123 D2223 D3323
(D2312 + D2321)

2

(D2313 + D2331)

2

(D2323 + D2332)

2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (65)

Substituting �E from Eq. (62) into Eq. (63) results in

�U = �uT Mü + �uT Au̇ + �uT
∫

V0

(BL + BNL(u))TS dV

− �uT Fext − �uT R = 0. (66)

The vector of internal forces is defined by

Fint =
∫

V0

(BL + BNL(u))TS dV . (67)

Since �u is arbitrary, a set of non-linear equations can be ob-
tained as

Mü + Au̇ + Fint − Fext − R = 0. (68)

It is noted that the stiffness effect is taken into account by the
internal forces vector Fint. Eq. (68) can be transformed into

Mü = F + R, F = Fext − Fint − Au̇ (69)

with the initial conditions at t = 0,

u̇ = u̇0 and u = u0. (70)

Taking the derivative of Fint with respect to the nodal displace-
ments u gives the tangent stiffness matrix as

K = �Fint

�u
= Ke + K
 + Ku, (71)

where Ke, K
 and Ku stand respectively for the elastic stiffness
matrix, the geometric stiffness (or initial stress stiffness) matrix
and the initial displacement stiffness matrix:

Ke =
∫

V0

BT
LDBL dV , (72)

K
 =
∫

V0

�BT
NL

�u
S dV , (73)

Ku =
∫

V0

(BT
LDBNL + BT

NLDBL + BT
NLDBNL) dV . (74)

5.2. First-order integration algorithm

We can now integrate Eq. (69) between consecutive time
configuration t and t + �t . The most common method to do
that is the Newmark method which is a second order algorithm.
However, in impact problems, higher order approximation
does not necessarily mean better accuracy, and may even be

superfluous. At the moment of a sudden change of contact con-
ditions (impact, release of contact), the velocity and acceler-
ation are not continuous, and excessive regularity constraints
may lead to serious errors. For this reason, the first-order algo-
rithm proposed by Jean [15] is used in this work. This algorithm
is based on the following approximations:∫ t+�t

t

M du̇ = M(u̇t+�t − u̇t ), (75)

∫ t+�t

t

F dt = �t ((1 − �)Ft + �Ft+�t ), (76)

∫ t+�t

t

R dt = �tRt+�t , (77)

ut+�t − ut = �t ((1 − �)u̇t + �u̇t+�t ), (78)

where 0���1 and 0���1. In the iterative solution proce-
dure, all the values at time t + �t are replaced by the values

6



of the current iteration i + 1; for example, Ft+�t = Fi+1. A
standard approximation of Fi+1 gives

Fi+1 = Fi
int + �F

�u
(ui+1 − ui ) + �F

�u̇
(u̇i+1 − u̇i )

= Fi
int − Ki �u − Ai�u̇. (79)

Finally, we obtain the recursive form of Eq. (69) in terms of
displacements:

K̄i�u = F̄i + F̄i
acc + Ri+1,

ui+1 = ui + �u, (80)

where the so-called effective terms are given by

K̄i = �Ki + �

��t
Ai + 1

��t2 Mi , (81)

F̄i
acc = − 1

��t2 Mi{ui − ut − �t u̇t }, (82)

F̄i = (1 − �)(Ft
int + Ft

ext) + �(Fi
int + Ft+�t

ext ). (83)

At the end of each time step, the velocity is updated by

u̇t+�t =
(

1 − 1

�

)
u̇t + 1

��t
(ut+�t − ut ). (84)

Eq. (80) is strongly non-linear, because large rotations and
large deformations are involved. Besides, in multibody con-
tact/impact problems, unilateral contact and friction, character-
ized by inequalities, are non-smooth phenomena. To solve this
equation instead of considering all non-linearities at the same
time, Feng [7] has proposed a strategy which consists in sepa-
rating the non-linearities so as to overcome the complexity of
calculation and to improve the numerical stability. As �u and R
are both unknown, Eq. (80) cannot be directly solved. First, the
vector R is determined by the bi-potential method in a reduced
system, which only concerns contact nodes. The reader can
refer to [4,5,7,9] for more details on the bi-potential method.
Then, the vector �u can be computed in the whole structure,
using contact reactions as external loading. It is important to
note that, as opposed to the penalty method or Lagrange multi-
plier method, the bi-potential method neither changes the global
stiffness matrix nor increases the degrees of freedom. This inter-
esting property makes it easy to implement contact and friction
problems in an existing general-purpose finite element code by
this method. In addition, the solution procedure is more sta-
ble because of the separation of non-linearities and improved
numerical algorithms for calculation of contact reactions.

5.3. Energy computation

After determining the displacement and the velocity fields,
we can calculate different energies. From Eq. (11), we calcu-
late the strain energy density W on an integration point (Gauss
point). The total elastic strain energy of the contact bodies (dis-
cretized by nel finite elements) is then written by

Ee =
nel∑
e=1

∫
Ve

W dV . (85)

The total kinetic energy can be calculated at the global level by

Ek = 1
2 u̇TMu̇. (86)

Finally, the total energy of the system of solids is

Et = Ee + Ek . (87)

The case of interest for the analysis presented below corre-
sponds to the homogeneous Neumann problem, characterized
by no imposed boundary displacements and no external load-
ing. In addition, if frictionless contact is considered, the total
energy should be conserved. The given example shows that this
fundamental energy conservation property is preserved.

6. A numerical example

The algorithms presented above have been implemented and
tested in the finite element code FER/Impact [30]. To illustrate
the capacity of the algorithm described above to simulating
contact/impact problems, we consider here one example where
no damping exists except for Coulomb friction between contact
surfaces, i.e., A = 0 in Eq. (81).

This problem concerns the impact of a cylinder made of
rubbers upon two oblique rigid symmetric surfaces forming
a funnel, inspired of the work by Wriggers et al. [31]. The
characteristics of this example are: Ogden’s model parameters
N =1, �1 =−3 MPa, �1 =−2 and �1 =0.5, initial mass density
�0=700 kg/m3, initial velocity vy=−30 m/s. The radius of the
cylinder is: R =0.01 m. The total simulation time is 3×10−3 s
and the solution parameters are: �t = 10−5 s, � = � = 0.5.
The cylinder is modeled by 209 nodes and 192 linear quadri-
lateral plane strain elements without considering the symme-
try (Fig. 2). The initial position of the cylinder is given by its
center point O(0.0, 0.03). The right part of the rigid block is
defined by A(0.005, 0.0), B(0.015, 0.0), C(0.015, 0.035) and
D(0.012, 0.035).

Three cases A, B and C are considered (Table 1). It is noted
that these analyses were performed on a PC (Pentium 4

2.8 GHz).
Fig. 3 shows the von Mises stress of � in the cylinder at the
moment when the cylinder reaches its lowest position and the
kinetic energy Ek equals zero (see Figs. 6–8). The CPU time to

Fig. 2. Deformable-rigid impact.
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Table 1
Influence of friction coefficients

Case At time (ms) 
max (MPa) CPU time (s)

A: � = 0.0 0.87 8.192 62
B: � = 0.2 0.70 4.523 77
C: � = 0.4 0.61 4.396 83

achieve the solution and the maximum value of the von Mises
stress (relative to the Cauchy stress) are also given in Table 1.
We observe apparent differences concerning the values and the
localization of the maximum stress. In Case A, the cylinder goes
down lower so as to be more deformed. Therefore, the stress
value is higher. When the friction increases, the cylinder does
not go down as low as before, braked by the friction forces.
The localization of the maximum stress moves to the contact
surfaces because friction forces are added onto the surfaces in
contact, as shown in Fig. 3. The deformed configurations at
time t = 2 ms are shown in Fig. 4. The displacement of the
center point O versus time is plotted in Fig. 5. For the three
cases, Figs. 6–8 show the plots of the kinetic energy Ek , the
elastic strain energy Ee and the total energy Et . For Case A, the
cylinder rebounds with the same velocity as the initial velocity,
as there is no energy loss in the system (see Fig. 6). For Case
B, the cylinder rebounds as well but with smaller velocity than
the initial velocity, as there is energy loss in the system (see
Fig. 7). By taking into account more important friction (Case
C), after a jump up, the cylinder sticks to the contact surfaces
and the kinetic energy Ek tends to zero and thus the cylinder
is locked (see Fig. 8). Furthermore, the elastic deformation is
smaller, as compared to the frictionless case A.

We observe that the total energy is quite well conserved in
the case of frictionless contact (Fig. 6). However, in the case of
frictional contact, the total energy decreases (Figs. 7 and 8). So
the total energy is dissipated by frictional effects as expected.
It is worth noting that the dissipated energy is quantitatively

Fig. 3. Isovalues of von Mises stress.

calculated. It is also interesting to examine another question:
is the dissipated energy proportional to the friction coeffi-
cient? The answer is negative according to numerical results.
This can be seen by Figs. 7 and 8 in which we observe al-
most the same dissipated energy with two different friction
coefficients. In fact, when the friction coefficient increases,
the friction forces increase but the tangential slips decrease
(Fig. 3).

In this study, another interesting result is obtained by com-
paring cases B and C. In Case B (Fig. 7), the kinetic energy
tends to a constant value and the elastic strain energy equals
zero after the impact. On the contrary, in Case C (Fig. 8),
the kinetic energy tends to zero and the elastic strain energy
is not released. As expected, the cylinder is locked inside the
funnel. For both cases, the total energy remains almost the
same. Thus, friction is seen to play a key role in contact/impact
problems.

In Case C, we have changed the parameter � (0.01, 0.1, 0.5,

5.0) so as to check its influence on the model. Fig. 9 shows
the evolution of the total energy. Fig. 10 depicts the evolu-
tion of the von Mises stress at the center of the cylinder (point
O in Fig. 2). These results indicate the tendency that the in-
compressibility of the Ogden’s materials increases when �
decreases.

In order to test the robustness of the proposed algorithm,
we reconsider the frictionless impact case (Case A) and apply
additionally an initial rotation of 
 = 1000 rad/s to the cylin-
der (namely Case D). Fig. 11 shows the initial and deformed
configurations at time t = 0.6 ms. The rotation effects can
be clearly shown by means of the evolution of three specific
points H, O and G. The plots of the kinetic energy Ek , the
elastic strain energy Ee and the total energy Et are given in
Fig. 12. By comparing Figs. 6 and 12, we observe that the evo-
lution of the elastic strain energy remains the same for Case A
(without initial rotation) and Case D (with initial rotation). The
kinetic energy is just shifted higher in Case D as compared to
Case A due to the contribution of the initial rotation. It is also
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Fig. 4. Deformed configurations at time t = 2 ms.
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Fig. 6. Energy evolution (� = 0.0).

observed that, in both cases, the total energy is well conserved.
These results indicate that the initial rotation does not really
affect the impact behavior of solids. Of course, this is true only
if frictionless contact is considered.
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Fig. 7. Energy evolution (� = 0.2).
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7. Concluding remarks

In this work, Ogden’s hyperelastic law has been theoreti-
cally investigated and numerically implemented in the context
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Fig. 11. Initial and deformed configurations at time t = 0.6 ms (with initial
rotation).

of impact loading with friction. The coupling of the bi-potential
method and the first-order numerical integration scheme has
given rise to an algorithm which allows to simulate the be-
havior of Ogden’s materials under impact loading in a numer-
ically stable and energy conserving way. The cases where the
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Fig. 12. Energy evolution (� = 0.0) (with initial rotation).

eigenvalues of the right Cauchy–Green strain tensors C are not
single have been carefully treated for the finite element imple-
mentation. The numerical experiments performed indicate that:

• the total energy is well conserved in the case of frictionless
impact with or without initial rotation;

• the physical energy dissipation due to friction is quantita-
tively determined;

• the locking of the impacting body by friction effects is nu-
merically captured.

The algorithm presented in this paper can be extended to three-
dimensional dynamic contact problems including more com-
plex frictional models such as orthotropic friction laws with
non-associated flow rules [32]. This work is being undertaken.
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