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A mode matching approach for modeling two dimensional porous

grating with infinitely rigid or soft inclusions

Benoit Nennig,a) Ygaäl Renou, Jean-Philippe Groby, and Yves Aurégan
Laboratoire d’Acoustique de l’Université du Maine, UMR6613 CNRS/Univ. du Maine,
Avenue Olivier Messiaen, 72085 Le Mans Cedex 9, France

(Dated: February 3, 2012, Version 5.1)

This work investigates the acoustical properties of a multilayer porous material in which periodic
inclusions are embedded. The material is assumed to be backed by a rigid wall. Most of the studies
performed in this field used the multipole method and are limited to circular shape inclusions. Here,
a mode matching approach, more convenient for a layered system, is adopted. The inclusions can be
in the form of rigid scatterers of an arbitrary shape, in the form of an air-filled cavity or in the form
of a porous medium with contrasting properties. The computational approach is validated on simple
geometries against other numerical schemes and with experimental results obtained in an anechoic
room on a rigid grating embedded in a porous material made of 2 mm glass beads. The method is
used to study the acoustic absorption behavior of this class of materials in the low frequency range
and at a range of angles of incidence.

PACS numbers: 43.55.Ev, 43.20.Fn, 43.20.Ks, 43.20.Gp

I. INTRODUCTION

Porous materials are widely used in noise control ap-
plications because of their good sound absorbing proper-
ties in the middle and high frequency range. However,
their low frequency sound absorbing properties are lim-
ited when the layer thickness becomes considerably less
than the wavelength. A common practical solution here
has been to make use of multilayer materials1 to reduce
the thickness of the overall porous structure and to im-
prove its acoustic absorption properties. Another alter-
native solution is to embed inclusions into the porous
layer to provide additional energy scattering and dissipa-
tion mechanisms10. The purpose of this paper is to in-
vestigate more systematically the sound absorption prop-
erties of embedded periodic inclusions in a porous layer
with an numerical technique. The proposed approach is
based on the mode matching method.

The idea of using inclusions in porous media is not en-
tirely new. Perforations (i.e. air inclusion) have been
exploited in the past to improve the sound absorption of
porous material with high flow resistivity. Two distinct
approaches where used in normal incidence for the so
called double porosity material : (i) using finite element
method (FEM)2–4 possibly combined with a topological
optimization algorithm5; (ii) using homogenization6,7.
This model has recently been adapted by Gourdon et
al.8 to account for porous material inclusions instead of
air cavities. Some noticeable enhancements of the vibro-
acoustical properties of the porous materials have been
obtained for transparency applications.

All previous models are limited to normal incidence

a)Electronic address: benoit.nennig@supmeca.fr; Present address:
Laboratoire d’Ingénierie des Systèmes Mécaniques et des Matériaux
(LISMMA), SUPMECA, 3 rue Fernand Hainaut, 93407 Saint-
Ouen, France.

but the oblique case may be investigated thanks to
the Floquet-Bloch formalism assuming periodic hetero-
geneities. This idea was investigated by Groby et al. in
Ref. 10 for the prediction of the acoustic absorption prop-
erties of an heterogeneous porous layer with hard back-
ing. The latter work is mainly concerned with circular
rigid inclusions.

In these and other works only few attempts have been
made to investigate the effects of an rigid inclusion shape
on the acoustic absorption coefficient. In this regard,
Allard et al.12 have proposed a layered mode matching
approach to study arbitrary corrugated porous materials.
Nevertheless, this method have been developed to predict
the effect of porous inclusions. When dealing with rigid
inclusions, the model must be improved in order to take
into account more accurately the presence of geometrical
singularity such as corners.

One possibility is to make use of orthogonal polynomial
basis and in particular their relation to singular weighted
function14 (Chap. 22) and then to combine them with
the modal expansion that will take into account the ve-
locity singularity at corners. A more general method15

exists which is directly relevant to the solution of the
above problem. The idea behind this method has been
exploited by Evans and Fernyhough16 for waves along a
periodic coastline or by Homentcovschi et al.17 for waveg-
uide discontinuity problems. This approach is extensively
used throughout this paper.

The focus of this paper is on the analysis of heteroge-
neous inclusions of arbitrary shape embedded in homo-
geneous porous layers. These heterogeneities can either
be air cavities, contrasting porous fillings or rigid scat-
terers. The proposed layered mode matching scheme is
somewhat similar to that presented in Ref. 12 but is able
to model properly rigid inclusions.

The method can be used to tackle a generalized case
of multilayer structures were all layers can be treated as
heterogeneous. This approach seems to be a good com-
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promise between the computational time and configura-
tion diversity when benchmarked against the finite ele-
ment method. Compared to homogenization, there is no
constraint for the ratio of the size of the heterogeneities
to the acoustic wavelength which the method is able to
consider.
The present paper is organized as follows. The pro-

posed enhanced mode matching method is presented in
Section II. In section III, the validity and the accuracy
of this method is studied with comparison against other
computation mathods and measurements. The exper-
imental data are obtained for a periodic gratings with
square rigid inclusion embedded in a porous material
composed of loose glass beads. In the last section, vari-
ous numerical examples of increasing complexity are pre-
sented.

II. FORMULATION OF THE METHOD

A. Problem statement

We consider that an acoustic plane wave is incident at
the oblique angle of incidence on a system of porous lay-
ers. We assume that system of layers is periodic in the
direction x1 and that the spatial period is d (see Fig. 1).
We assume that the total number of layers stacked up
in the direction x2 is NL . We allow for some hetero-
geneities to be present within this stack so that a horizon-
tal layer can be split into several sub-layers to represent
these heterogeneities as illustrated in Fig. 1. Specifically,
we assume that when the propagating wave encounters a
pair of vertical rigid walls in the layer L i, then the layer

must be split, into N i
C

cells such L
i =

⋃Ni
C

j=1 C
i,j . We

also allow for different materials Ωi,j to be included in
each cell. A new cell C i,j have to be added each time
independent wave propagation can occurred in a layer
L i, i.e. when vertical rigid walls are present. The inter-
face Γi (i = 0, . . . , NL ) between two layers can be in-
homogeneous. It can also be partly rigid interface. The
surrounding domain Ω0 is filled with air with the sound
speed c0 and density ρ0.
The skeleton of the porous material is considered to be

infinitely rigid, therefore the Champoux-Allard-Johnson
equivalent fluid model1 can be used to predict the equiva-
lent bulk modulus Ki,j and the dynamic density ρi,j (see
Appendix A for details). In this case, the wave speed in

the domain Ωi,j is given by the ratio ci,j =
√

Ki,j/ρi,j.
The expression for the acoustic pressure, p, in the equiv-
alent fluid (resp. in the fluid) in each of the system do-
mains, Ωi,j , satisfies the harmonic wave equation (the
time dependence e−iωt is assumed here)

∆p(x) + (ki,j)2p(x) = 0, (1)

where the wavenumber is defined by ki,j = ω/ci,j.
Since the geometry is periodic along x1 and the exci-

tation is by a plane wave, pinc = A0e
ik·x, each physical

variable within this system X should satisfy the Floquet-
Bloch relation

X(x1 + d, x2) = X(x1, x2)e
ik1d, (2)
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FIG. 1. Geometry of the periodic cell.

where the incident wavenumber is k = (k1, k2) = k0 ·
(sin θ, − cos θ). For the sake of conciseness, ϑ = eik1d

and ϑ∗ = e−ik1d will be used.
We are looking to predict the sound pressure field any-

where in the system of porous layers shown in Fig. 1. As
the problem is separable in each layer L i, the pressure
can be written in the form

pi(x) = χ(x1)Y(x2), ∀x ∈ L
i. (3)

In the surrounding fluid domain Ω0, the radiation con-
dition, Floquet condition (2) and the separation of vari-
ables (3) lead to18

p0(x) =
∑

n∈Z

A0
n

1√
d
eiα

0
nx1eiβ

0
nx2 , ∀x ∈ Ω0, (4)

where α0
n = k1 + n 2π

d and β0
n =

√

(k0)2 − (α0
n)

2. The

axial wavenumber β0
n can be real (i.e. a propagating

wave) or imaginary (i.e. an evanescent wave). When
an incident wave impinges on a periodic, non-planar sur-
face, the scattered waves are spread in discrete directions
which depends whether a mode is propagating or not. If
β0
n = 0, the mode is said to be resonant18, and scattered

waves can propagate along the material interface.
In the case of a heterogeneous absorbing material, the

above formalism needs a more detailed explanation. The
sound pressure in a porous layer L i which consists of
several sub-domains is effectively a combination of the
sound pressures in all the cells C i,j of this layer, i.e.

pi(x) =

Ni
C

⋃

j=1

pi,j(x), ∀x ∈ L
i, (5)

where, the sound pressure field in the cell C i,j is sought
using the modal expansion

pi,j(x) =
∑

n∈N

(

Ai,j
n χi,j

n (x1)e
iβi,j

n x2

+Bi,j
n χi,j

n (x1)e
−iβi,j

n x2

)

, ∀x ∈ C
i,j . (6)
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Here, Ai,j
n and Bi,j

n are the x2 > 0 and x2 < 0 travel-
ing wave amplitudes, respectively. χi,j

n and βi,j
n are the

eigenfunctions and the eigenvalues, respectively. The lat-
ter satisfy the Helmholtz equation (1) and the Floquet-
Bloch relation (2). Details on their calculation are given
in the following section.
The velocity along x2 axis, vi,j = 1

iωρi,j ∂x2
pi,j , is given

by the following series

vi,j(x) =
∑

n∈N

(

Ai,j
n χi,j

n,v(x1)e
iβi,j

n x2

−Bi,j
n χi,j

n,v(x1)e
−iβi,j

n x2

)

, ∀x ∈ C
i,j , (7)

where χi,j
n,v(x1) = 1

ωρi,j β
i,jχi,j

n (x1). Similarly to the

sound pressure, the velocity in the layer L i is defined
by

vi(x) =

Ni
C

⋃

j=1

vi,j(x), ∀x ∈ L
i. (8)

In the above summations, the origin of the x2 is fixed at
the upper material surface Γ0.

B. Sound field in a periodic cell

Here we focus on a periodic cell which is illustrated
in Fig. 1. We will determine the eigenmodes and use
them to predict the sound pressure and velocity with
the normal mode decomposition method proposed in the
previous section.

1. Simple layer

Let us consider the first and unique homogeneous cell
within the layer L 1 (see Fig. 1). As previously men-
tioned, all the physical variables must satisfy the 1-D
Helmholtz equation (1). This yields

χ(x1) = Aeiαx1 +Be−iαx1 . (9)

Applying the Floquet-Bloch relation (2) on the pressure
and the velocity19 (see section 3.2.2), we get

χ(x1 + d) = χ(x1)ϑ, (10a)

∂x1
χ(x1 + d) = ∂x1

χ(x1)ϑ, (10b)

leading to the eigenvalue problem

(

ϑ− eiαd ϑ− e−iαd

ϑ− eiαd −ϑ+ e−iαd

)(

A
B

)

=

(

0
0

)

. (11)

The dispersion equation is

(

1− ϑ2
)

+ 2ϑ cosαd = 0, (12)

and its solutions are αn = ±(n 2π
d + k1) with n ∈ Z. The

wavenumber along x2 is given by βn =
√

(ki,j)2 − α2
n.

Therefore, only the positive αn is needed to determine

the corresponding wavenumbers βn. The eigenfunctions
are given by

χn(x1) =
1√
d
ei(±k1+n 2π

d
)x1 . (13)

In this special case χn represent propagating waves as in
Ω0 along x1.

2. Sound propagation in a layer with a rigid inclusion

Consider now the cell C 2,1 which belongs to the layer
L 2 (see Fig. 1). This domain is split into two parts be-
cause of the presence of a rigid inclusion at x1 ∈ [b, c].
Two boundary conditions which need to be added to
Eq.(10) are

∂x1
χ(b) = 0, (14a)

∂x1
χ(c) = 0. (14b)

It is necessary for the eigenmodes to satisfy the 1-D
Helmholtz equation (1), so that

χ(x1) =

{

Aeiαx1 +Be−iαx1 , if x1 ∈ [0, b],

A′eiαx1 +B′e−iαx1 , if x1 ∈ [c, d].
(15)

Applying the boundary conditions from Eq. (14) and
Eq. (10) leads to B = Ae2iαb, B′ = A′e2iαc and

((

1 + e2iαb
)

ϑ −
(

ϑ+ e2iαc
)

ϑ∗
(

1− e2iαb
)

ϑ −
(

ϑ− e2iαc
)

ϑ∗

)(

A
A′

)

=

(

0
0

)

. (16)

The determinant of this system yields sinα(d − a) = 0
with a = c − b. The solutions are αn = nπ

(d−a) as in

the normal incidence case. However, the eigenfunctions
are modified by the Floquet-Bloch relation and we get
A′ = (−1)nϑe−iα1aA. Now let us focus on the cell C 2,2

embedded in the layer L 2. The solution here is some-
what simpler because the eigenproblem is independent of
the periodic conditions. In this case, the eigenmodes are
similar to those determined for the case of a standard
rigid cavity20, i.e. χn(x1) = cosαnx1 for x1 ∈ [b′, c′]
with αn = nπ/a′ letting a′ = c′ − b′.

3. Sound propagation in a layer with a fluid/porous inclusion

Consider now the cell C 4,1 which belongs to the layer
L 4 (see Fig. 1). This cell is split into two parts because
of the presence of another material in Ω4,2, which can be
a fluid or a porous material with contrasting properties.
The boundary conditions are given by the Floquet-Bloch
relation (10) and the continuity conditions at a fluid/fluid
interface are

p4,1(b) = p4,2(b), p4,1(c) = p4,2(c), (17a)

u4,1(b) = u4,2(b), u4,1(c) = u4,2(c). (17b)

Here ui,j = 1
iωρi,j ∂x1

pi,j is the acoustic velocity along the

x1 axis. The corresponding eigenmodes are determined
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from

χ(x1) =











A1e
iα1x1 +B1e

−iα1x1 If x1 ∈ [0, b[,

A2e
iα2x1 +B2e

−iα2x1 If x1 ∈ [b, c[,

A′
1e

iα1x1 +B′
1e

−iα1x1 If x1 ∈ [c, d].

(18)

From (17) A′ = Aei(k1−α1)d, and B′ = Bei(k1+α1)d it
follows that









eiα1a e−iα1a −eiα2a −e−iα2a

α1

ρ1
eiα1a −α1

ρ1
e−iα1a −α2

ρ2
eiα2a α2

ρ2
e−iα2a

eiα1bei(k1−α1)d e−iα1bei(k1+α1)d −eiα2b −e−iα2b

α1

ρ1
eiα1bei(k1−α1)d −α1

ρ1
e−iα1bei(k1+α1)d −α2

ρ2
eiα2b α2

ρ2
e−iα2b









·







A1

B1

A2

B2






=







0
0
0
0






. (19)

After the substitution α1 =
√

(k4,1)2 − (β4)2 and α2 =
√

(k4,2)2 − (β4)2, the determinant of this system yields
the dispersion equation with respect to β4. In this case,
the solutions are not known and numerical methods must
be used. We use the algorithm proposed in Ref. 21, which
requires an analytic dispersion equation but no initial
guess thanks to the winding number (WN) technique.
This technique is used to find the roots βi

n at the first fre-
quency, and these roots are then used as an initial guess
for the next frequency step using the Newton-Raphson
(NR) algorithm, which is faster but less robust. If the NR
algorithm fails, the WN technique is then used instead.
This strategy takes the advantage of the both algorithms
in terms of its robustness and computational time. It
is worth noting that the derivatives are computed an-
alytically to fully take advantage of the NR quadratic
convergence property. Once the eigenvalues are found,
the eigenmodes can be obtained with a singular value
decomposition or another technique. The eigenfunctions
are orthogonal if the cell is symmetric12. This property
is not used directly in this paper but contributes to the
robustness of the proposed method. Further details on
the orthogonality problem arising in dissipative media
are given in Refs. 22, 23.

C. Mode matching strategy

At each layer interface Γi (i = 0, . . . , NL − 1), the
condition of the continuity of the pressure and of the
normal velocity apply. On the rigid backing, i.e. at inter-
face ΓNL , the normal velocity must vanish. The modal
expansions, given in Eqs. (5) and (8) can be truncated
to N first terms for all the layers. The correspondence
n ↔ βi,j

n is given by organizing the imaginary part of the
eigenvalues in ascending order so that the lowest atten-
uation modes are always included in the series. In this
work two mode matching schemes have been used: (i) the
classical mode matching scheme12 was used in the case
of soft inclusions such as air or another porous material;
(ii) the mode re-expansion method16,17 was used in the
case of rigid inclusions. These two numerical schemes are
detailed below.

1. The classical mode matching scheme

Let us defined

χi(x) =

Ni
C

⋃

j=1

χi,j(x)
n , ∀x ∈ L

i, (20)

to be the expression for the n-th modal profile along the
material interface. Matching conditions between the lay-
ers are imposed in a weighted sense, i.e. we proceed by
choosing a weighting function and then integrate over the
interface Γi

∫ d

0

χi
m

† (
pi − pi+1

)

dx1 = 0, (21a)

∫ d

0

χi+1
m,v

† (
vi − vi+1

)

dx1 = 0. (21b)

Here, the weighting functions χi
m and χi

m,v + 1 are the

complex conjugate (denoted by †) eigenfunction of the
layer i and of the layer i+ 1, respectively26.
Using (5) to (8) leads to the overlap integrals matrices

(

P
(j)

)

m,n
=

∫ d

0

(

χi
m

)†
χj
n dx1, (22)

and

(

V
(j)

)

m,n
=

∫ d

0

(

χi+1
m,v

)†
χj
n,v dx1, (23)

where the subscripts m and n are in the [0, N ] range. For
generality, these integrals are computed numerically us-
ing the Gauss-Legendre quadrature rule, although their
analytical forms for some special cases can be found in
Ref. 12. We note that 8N Gaussian quadrature points
are used here.
Using previous equations, the scattering system at the

interface Γi becomes

X
i
EX

(

A
i

B
i+1

)

= Y
i
EY

(

B
i

A
i+1

)

, (24)

where the vectors Ai, Bi contain the modal amplitudes
and the diagonal matrices EX and EY contain the phase
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FIG. 2. Details of two rigid-soft interfaces. With one periodic
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factor, i.e.

EX = diag
(

eiβ
i
1hi . . . eiβ

i
Nhi , e−iβi+1

1
hi . . . e−iβi+1

N
hi

)

,

(25a)

EY = diag
(

e−iβi
1hi . . . e−iβi

Nhi , eiβ
i+1

1
hi . . . eiβ

i+1

N
hi

)

.

(25b)

The matrices Xi and Y
i in the above equations are given

by

X
i =

(

P
(i) −P

(i+1)

V
(i)

V
(i+1)

)

, (26a)

Y
i =

(

−P
(i)

P
(i+1)

V
(i)

V
(i+1)

)

, (26b)

respectively.

2. The re-expansion matching scheme

When rigid inclusions are present, the re-expansion
matching scheme is more robust than the classical one.
We follow the approach used by Homentcovschi17 for the
computation of the scattering matrix for the waveguide
discontinuity problem. This method is detailed for the
case with one inclusion per layer as illustrated on Fig. 2.
If more rigid inclusions are present, then the method can
be easily extended.
The first step is to introduce an auxiliary normal ve-

locity field at the interface Γi for x1 ∈ [b, c] under the
series expansion

ṽ(x1) = w(x1)

K
∑

k=0

VkC
ν
k (x1), (27)

with the weight function

w(x1) = [(c− x1)(x1 − b)]
ν−1/2

. (28)

The most important thing is the singular behavior of
w(x1) for x1 = b and x1 = c, which can be tuned with ν
to get the singularity order of the velocity near a corner17.
We suppose that this singular behavior remains the same

for a rigid corner embedded in a porous media or in air,
i.e. ν = 1/6. Here Vk are some new auxiliary unknowns,
Cν

k are the Gegenbauer polynomials14 (Chap. 22) defined
for x1 ∈ [b, c], which are orthogonal with respect to the
weight function w(x1).
Matching conditions between the layers are imposed in

a weighted sense, i.e. we proceed by choosing a weighting
function and then integrate over the interface Γi. For the
pressure continuity condition, the weighting function is
w(x1)C

ν
k (x1). This yields

∫

γi∩γi+1

wCν
kp

i dx1 =

∫

γi∩γi+1

wCν
k p

i+1 dx1. (29)

The integration support is obviously limited to γi∩γi+1,
where γi stands for the support of the modal profile of the
layer L i. Then, the velocity continuity is applied in two
steps: imposing ṽ = vi and ṽ = vi+1 and then by taking
the projection of the velocities and their corresponding
layer eigenmodes

∫

γi

χi
m

†
vi dx1 =

∫

γi∩γi+1

χi
m

†
ṽi dx1, (30a)

∫

γi+1

χi+1
m

†
vi+1 dx1 =

∫

γi∩γi+1

χi+1
m

†
ṽi dx1. (30b)

In the matrix form it reads as

Yi

(

B̃
i − Ã

i
)

= D
†
iV, (31a)

Yi+1

(

B̃
i+1 − Ã

i+1
)

= D
†
i+1V, (31b)

Di

(

B̃
i + Ã

i
)

= Di+1

(

B̃
i+1 + Ã

i+1
)

, (31c)

where † stands for the conjugate transpose matrix,

(Ãi)n = Ai
ne

iβi
nhi and (B̃i)n = Bi

ne
−iβi

nhi contain the
modal amplitudes, V

i contain the new auxiliary un-
knowns and

(Di)k,n =

∫

γi∩γi+1

wCν
kχ

i
n dx1, (32a)

(Yi)m,n =
βi
n

ωρi

∫

γi

χi
m

†
χi
n dx1. (32b)

The above integrals are computed numerically. The
choice of the numerical quadrature adopted here is essen-
tially motivated by its reletive simplicity and numerical
stability. The indices m, n and k belong to [0, N ].
The use of the numerical Gauss-Gegenbauer quadra-

ture rule24 which accounts for the weight function w
singularity is very efficient when 8N Gauss quadrature
points are used. In this procedure the recursive defini-
tion of the Gegenbauer polynomials14 (Table 22.7) can
be used to limit the round-off error.
The expressions for the scattering matrices

EX

(

A
i

B
i+1

)

=

(

S
11
i S

12
i

S
21
i S

22
i

)

EY

(

B
i

A
i+1

)

, (33)
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relating the incident and reflected waves at each interface
Γi have been given in Ref. 17 and are recalled here as

S
11
i = (Hi +Di)

−1(Hi −Di), (34a)

S
22
i = (Hi+1 +Di+1)

−1(Hi+1 −Di+1), (34b)

S
21
i = 2(Di+1)

−1
Di(Hi +Di)

−1
Hi, (34c)

S
12
i = 2(Di)

−1
Di+1(Hi+1 +Di+1)

−1
Hi+1, (34d)

with

Hi = Di+1Y
−1
i+1D

†
i+1(D

†
i )

−1
Yi, (35a)

Hi+1 = DiY
−1
i D

†
i (D

†
i+1)

−1
Yi+1. (35b)

To get the modal amplitudes we could recombine
Eq. (33) and (24) to build a linear system KA = F,
where all the unknowns, gathered in the vector A, can
be deduced from the right hand side of F arising from the
incident wave. However, the inversion of such a system
is, unfortunately, subject to round-off errors due to the
presence of strongly evanescent waves. Because of these
limitations, an alternative iterative procedure, proposed
by Cummings25 and used successfully by the authors for
silencer modeling21, is adopted here.
The idea is to treat each interface separately by con-

sidering all incoming waves as known quantities. At the
first iteration, the unknown incoming waves [Bi, Ai+1]t

are fixed at zero or initialized by a previous frequency
step solution. The systems given in Eq. (33) and/or in
(24) are then solved for the outgoing waves [Ai, Bi+1]t.
This produces an initial value for the incoming waves on
the next interface and so on. This loop over the inter-
face stops when the relative error on modal amplitudes
is smaller than 10−6 between two consecutive iterations.
In practice, around 10×NL iterations are required. The
factorization of the diagonal matrix EX , containing all
propagation factors, is one of the main advantages of this
iterative process. Indeed, its condition number is very
large due to the combination of x2 > 0 and x2 < 0 trav-
eling ‘evanescent’ waves. Thus, inverting EX separately
minimizes the effects of possible round-off errors. Fur-
thermore, the scattering matrices Xi (i = 0, . . . , NL )
are well-conditioned and the condition number can be
enhanced by a careful choice of the weighting function
in order to maximize their diagonal terms26 as already
discussed in section II.C.1.
Once the wave amplitudes have been evaluated, the

integration of the acoustic intensity leading to the energy
balance can be applied. The integration is carried out
over the periodic cell using the orthogonality relation of
the Floquet modes given in (4). The energy reflection
coefficient18 R is defined as the ratio of the scattered
power in the x2 direction

Pr =
∑

n∈Z

Re {βn}|A0
n|2/(ρ0ω), (36)

to the incident power

Pi = |A0|2k2d/(ρ0ω). (37)

In practice, the number of propagating modes in Ω0 is
very small and it is often reduced to the fundamental
mode n = 0 and the first mode n = ±1.

TABLE I. Material properties used in numerical tests. With
the porosity φ, flow resistivity σ, the tortuosity αinf , the vis-
cous and thermal characteristic lengths Λ and Λ′.

Material φ σ αinf Λ Λ′ Ref.
- [Nm-4s] - [µm] [µm]

Beads 0.4 11,204 1.37 148 444 [27, 28]
Fireflex 0.95 8,900 1.42 180 360 [10]
RGW2 0.94 135,000 2.1 49 166 [3]

Metal foam 0.99 6,916 1.17 100 245 -

Thanks to the conservation of the energy, the absorbed
power is given by Pabs = Pi − Pr. This yields the ab-
sorption coefficient

α =
Pabs

Pi
= 1−R. (38)

III. VALIDATION AND ACCURACY

In this section the validation and the accuracy of the
proposed method is investigated. Firstly, the computa-
tional efficiency is studied for the case of a porous layer
with rectangular and circular inclusions. Secondly, an
experimental validation is performed to check ability of
the method to describe accurately the acoustic behavior
of a finite size porous layer with inclusions composed of
a number of periodic cells.

A. Convergence study on rectangular shaped inclusions

In this example, we consider porous and rigid rectan-
gular inclusions embedded in metal foam (see Table. I).
Because no solution is available in the literature for this
geometry, the reference solutions are computed using a
finite element model. These computations are carried
out using Lagrange quadratic finite elements in the fluid
and porous domains as described in Ref. 12. The non-
reflecting boundary conditions are implemented using the
Dirichlet to Newman (DtN) approach based on Eq. (4)
to avoid problems when the wavelength is high compared
with the computational domain size. The reference ab-
sorption computations α̂ are performed with a mesh of
around 280,000 nodes. It can be noted that an equivalent
meshing size leads to 8 digits accuracy in the predicted
absorption coefficient for homogeneous porous (i.e. with-
out inclusion). In this study the inclusion height was
fixed to 15 mm, and two widths, a = 15 and a = 5 mm,
were tested. In both cases, the inclusions were located
in the center of the 20 × 20 mm periodic cell. These
configurations have been tested at 5000 Hz for 2 incident
wave angles, θ = 0 and θ = π/3 rad.
With a porous inclusion (RGW2 wool, see Table. I),

the present method has shown an exponential conver-

gence, and a relative error E = |α−α̂|
α̂ below 1% has been

achieved in all tested configurations with 3 modes and
the classical matching scheme. With a perfectly rigid in-
clusion, the classical matching scheme is not numerically

A mode matching approach for modeling porous grating 6



0 5 10
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0 5 10
−5.5

−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

PSfrag repla
ements
NN

lo
g
E

lo
g
E

FIG. 3. Convergence of the proposed method for a small
(a/d = 0.25, ) and larger (a/d = 0.75, ) inclusion
size. The black lines stand for the normal incidence and the
gray ones for θ = π/3. The black �-markers stand for the
rigid inclusion (see on the right) and the gray �-markers for
the RGW2 porous inclusion (see on the left).

stable for large rigid inclusions, and it was not possible
to get a relative error below 5% without accounting for
at least thirty modes in the summation. It is known
that the number of modes could be adapted according to
the section ratio13 to enhance the convergence. However,
the re-expansion scheme, described in sec II.C.2, was
adopted because it seems faster and more robust. With
this scheme, an error smaller than 1% can be achieved
with only 3 modes. This accuracy seems sufficient for the
applications proposed in this paper.
.

B. Validation with the multipole method

A comparison with the results presented in Ref. 10 (see
Fig. 3 and 4 inside) for rigid circular inclusions has been
performed. This kind of geometry can be tackled with
the proposed method despite the fact that it is not the
more appropriated technique. The multipole10 method
or the method of fundamental solutions29 constitute bet-
ter approaches for circular shape inclusion. Here, the
circular inclusion of radius a is discretized by 11 layers of
rigid rectangular inclusions (see Fig. 4), and N + 1 = 7
modes are taken into account in each layer. This level of
discretization enables to achieve a good agreement in the
frequency range up to 13 kHz with the results of Groby
et al.10 obtained for a similar problem as illustrated on
Fig. 5. The presence of such inclusions can enhance the
absorption of the Fireflex foam (see Table I), particularly
around 2674 Hz where an absorption peak is obtained be-
low the 1/4-wavelength resonance frequency, fλ/4. This
behavior can be explained by the excitation of a complex
trapped mode10. At this frequency, the sound pressure
maximum is localized near the rigid backing as depicted
in Fig. 4. With the proposed modal approach, this rigid
scatterer can be easily replaced by glass wool circular in-

PSfrag repla
ements(Hz)
FIG. 4. Pressure modulus with the layered rigid circular in-
clusions at 2674 Hz (first absorption peak of Fig. 5). The
horizontal lines stand for the layer interfaces.
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FIG. 5. Comparison and illustration of the proposed method
with circular inclusions (a = 1.5 cm) on a 2 × 2 cm cell with
11 Layers. homogeneous Fireflex material, homoge-
neous RGW2 material, • circular rigid inclusion, circular
rigid inclusion from Ref. 10, • circular RGW2 inclusion.

clusions of the same radius (RGW2 wool, see Tab. I).
Obviously, such results can also be obtained with slight
modifications to the multipole method10. Above 1500
Hz, this new heterogeneous material exhibited better ab-
sorbing properties than any of its constituent materials.
It appears that the absorption properties of a heteroge-
neous porous material are only slightly sensitive to the
inclusion shape, e.g. the presence of square inclusions
with the same area leads to a similar absorption curve.

C. Experimental validation

An experimental validation has been performed in
the anechoic chamber available in LAUM (Laboratoire
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d’Acoustique de l’Université du Maine, France). The ex-
perimental setup is illustrated in Figs. 6 and 7. The
tested sample was formed with 25 identical elementary
cells of 20 mm width and of 21.5 mm height. These
cells were created with a periodic array of 500 mm long,
square aluminum bars which were backed by a 4 mm
thick aluminum plate attached to a 20 mm thick wooden
base. Fig. 6 illustrates schematically the arrangement
of these bars and the periodic grating which this ar-
rangement recreated. The experimental setup shown in
this figure had the following dimensions: a = 15 mm,
h = 21.5 mm, t1 = 2.5 mm, t2 = 4 mm and d = 20 mm.
The simulated periodic grating (500×500 mm) was filled
with 2 mm glass beads (see Fig. 7) to the required thick-
ness. Additional beads were spread around the sample to
cover the whole wooden plate (1×1 m). The use of glass
beads enabled to create a porous filling around various
inclusion shapes. This medium had the basic acoustical
and non-acoustical characteristics which were relatively
easy to predict. The Johnson-Champoux-Allard proper-
ties for these beads are summarized in Tab. I. The values
of these parameters were borrowed from Refs. 27, 28.
A parametric source array30 (using parametric demod-

ulated ultrasonic waves) was used to create a highly di-
rectional plane wave normal to the grating at audible
frequencies to control the diffraction from the edges of
the periodic grating. The distance between the center
of the grating and parametric source array was 1.3 m.
A dynamic signal analyzer (SR785) was used to drive
the parametric source array with a swept sine. A pair
of phase-matched microphones (1/4” microphones B&K
4938 with B&K 2670 preamplifiers and Nexus 4-channel
amplifier) was installed at the center of the grating. The
microphone elevations above the center of grating were
h1 = 8 mm and h2 = 28 mm, respectively. Below the first
cut-off frequency of the Floquet mode (around 17,000 Hz
for the 2 cm cell), the energy reflection coefficient was
deduced from

R(ω) =

∣

∣

∣

∣

∣

e−2ik0h1
e−ik0(h2−h1) −H(ω)

H(ω)− eik0(h2−h1)

∣

∣

∣

∣

∣

2

, (39)

and the absorption coefficient was computed with

Eq. (38). Here H(ω) = p0(0,h2)
p0(0,h1)

denotes the frequency

transfer function between the two microphones located in
the middle of the material sample. An analog 20 kHz low-
pass Butterworth/Bessel multichannel filter from Krohn-
Hite Corporation model # 3945 was used to remove the
residual ultrasonic waves emitted by the parametric ar-
ray.
The comparison of the simulations and experimental

data is presented in Fig. 8 for the homogeneous beads
and for an array of rigid, square inclusions. In all cases
the general behavior of the absorption curves is closely
predicted. A good agreement is obtained for the fre-
quency of the first absorption peak and for its amplitude.
The discrepancies with the square inclusions are in line
with the results obtained in the case of the homogeneous
porous layer. The presence of oscillations in the acous-
tic absorption spectrum is clearly visible in the case of
the square inclusions. This can be explained by the edge

diffraction effect which relates to the finite size of the
simulated periodic grating. This effect is not taken into
account by Eq. (39).
In the homogeneous case, the 1/4-wavelength reso-

nance accounts for the absorption peak around fλ/4 =
3 kHz. The use of square rigid inclusions allows for the
measurement of a high absorption peak at 2041 Hz, which
is below the predicted value of fλ/4. At this frequency,
the absolute part of the sound pressure computed with
the proposed method is high and it is localized near the
backing wall. In this case, the absorption coefficient at
the higher frequencies is relatively poor. An estimation
of the absorption peak frequency fα accurate within a
few percent can be obtained with a modified expression
for the frequency of the 1/4-wavelength resonance

fα ≈ c

4h′
≈ 2200 Hz, (40)

where c is the sound speed in the beads and h′ =
(h − t2/2) + a/2 + t1/2 = 28.25 mm corresponds to the
apparent length along the square inclusion (see Fig. 6).

IV. NUMERICAL RESULTS ON SQUARE SCATTERER

Numerical calculations of the absorption coefficient
have been performed for various inclusion types and
shapes. The effect of the angle incidence on the absorp-
tion coefficient of this system has also been studied. All
computations were performed for metal foam which prop-
erties are presented in (see Tab. I).

A. Inclusion types

In this section, we are interested in square inclusions
located in the center of the periodic cell (20×20 mm) and
excited by a plane wave propagating at the normal angle
of incidence. The inclusion height a was varied from 1
mm to 18 mm in a 1 mm step. It was assumed that the
inclusions were square, rigid and/or filled with air or with
another porous material with contrasting properties (e.g.
RGW2). The predicted absorption coefficient for these
configurations is shown in Fig. 9.
The results suggest that the air-filled inclusions em-

bedded in this metal foam do not enhanced the acoustic
absorbing behavior and that bigger air-filled inclusions
result generally in a lower absorption coefficient. This
result is predictable, because it is known3 that air gaps
are efficient only for highly resistive and weakly tortuous
porous material such as RGW2. The RGW2-filled inclu-
sions case is more effective. If the inclusions are small,
then the behavior is dominated by the metal foam ma-
trix. On the contrary, when the inclusions are large, then
the behavior is close to that expected for an homogeneous
layer of RGW2 wool. Between these two extreme config-
urations, the absorption of the heterogeneous material
is generally better than the absorption of each of the
two homogeneous materials considered separately. This
stands for the range of the square inclusion height con-
sidered in this study (a ∈ [10, 18] mm).

A mode matching approach for modeling porous grating 8
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FIG. 6. Schematic description of the experimental setup with the square section.

FIG. 7. Picture of the experimental setup before total beads
and inclusions filling.
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FIG. 8. Comparison between simulations (solid line) and mea-
surements (dotted line) for square shape inclusion (+) and
homogeneous beads (·).

The results from this modeling work also show that the
absorption coefficient is not too sensitive to the geome-
try of the embedded porous shape and that the filling
ratio seems to be the most significant parameter which
accounts for any improvement. These results are in line
with those obtained by the homogeneization method8 or
by Nennig et al.29 for poroelastic scatterers embedded in
air.
For the rigid inclusions case, the results are similar

to those presented with the circular inclusions in sec-
tion III.B. If the inclusion’s size is sufficiently large, a
peak in the absorption spectrum emerges. Hence, in the
case of the considered layer configuration, the absorption
coefficient may be enhanced between 2000 and 4000 Hz.
The absorption coefficient reaches a minimum around 5
kHz. Groby et al.10 have explained this behavior by the
presence of a bandgap of the ‘underlying’ periodic array
arising from the perfect reflection on the hard backing.
Within this bandgap most of the acoustic energy is re-
flected backward, i.e. back in the domain Ω0, leading to
a poor absorption.

B. The effect of the inclusion position

As already shown by Groby et al.10, that the inclusion
position in the periodic cell can be a sensitive parameter.
For a given square inclusion (a = 15 mm), the influence
of the inclusion height, t2, and the periodic cell width, d,
are illustrated in Fig. 10. It can be shown that the ab-
sorption frequency increases for larger values of the cell
period, d. Moreover, the peak amplitude reaches a max-
imum for d ≈ 30 mm. Note that sudden variation of
the absorption coefficient (the so called Wood’s anoma-
lies) can be observed at the first cut-off frequency of the
Floquet mode18 when d is sufficiently large.
The influence of the inclusions height, t2, is essentially

related to the absorption peak frequency and has nearly
no influence on the peak amplitude. When the height t2
increases, the absorption peak frequency decreases. Once
again, this can be explained10 by the presence of the ‘un-
derlying’ periodic array formed by the inclusions images
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FIG. 9. Effect of the size a of a square inclusion on the absorption coefficient. The inclusion size ranges from 1 to 18 mm
in 1 mm step. ( ) stands for the upper bound (18 mm) of the variation interval. The reference homogeneous metal foam
absorption is denoted by ( ) and the RGW2 wool by ( ). Rigid inclusion (a), Air inclusion (b), and RGW2 porous
inclusion (c).

with respect to the hard backing. When t2 increases, the
period of the image sonic crystal increases, pushing peaks
towards the low frequencies.

C. Effect of the angle of incidence

The Floquet-Bloch formalism presented in this work
enables to study the effect of the angle of incidence θ. The
low frequency absorption coefficient of a homogeneous
porous layer increases with θ. However, the behavior
in the medium and high frequencies depends strongly on
the material properties. For example, in the case of metal
foam the absorption coefficient drastically decreases with
θ above 2000 Hz in comparison with the normal incidence
case (see Fig. 11). When the variation of the angle of in-
cidence is small, then the absorption behavior is similar
to that predicted for the normal incidence case. In con-
trast, when the angle of incidence is large (say θ > π/3),
the absorption can change considerably.
With a rigid square inclusion, this general behavior

remains unchanged but the effect of the high value of
θ seems to be less significant and the absorption peak
frequency typically increases with θ.

V. THE INFLUENCE OF THE INCLUSION SHAPE

Squares or circles are not the optimal inclusions shapes
because a large part of the porous matter is removed
from the layer. As a result, its broadband absorption
capabilities are partially lost. A better approach is to use
‘open’ or ‘partially open’ inclusions, such ⊔ (as illustrated
on Fig. 12), to increase the apparent tortuosity of the
material and to add more trapped modes. A number
of different configurations were studied in this work by
changing the ⊔-section orientation, e.g. ⊔, ⊓ or ⊏. The
acoustic absorption coefficient for a heterogeneous porous
layer with these types of inclusions was predicted with
the proposed numerical method.
It was found that the absorption coefficient of a porous

layer with rigid inclusions is more sensitive to the inclu-
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FIG. 10. Influence of the elementary cell period d (a) and
of the inclusions height t2 (b) on the absorption coefficient
with rigid square inclusions (with a = 15mm) grating. The
homogeneous metal foam absorption is denoted by ( ) in
normal incidence. In all cases, ( ) stands for the upper
bound of the variation interval.
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FIG. 11. Effect of the angle of incidence (θ from 0 by 10 to
80o) on the absorption coefficient of a proous layer with rigid
square inclusions (with a = 15mm). The homogeneous metal
foam material is denoted by ( ) in normal incidence and
by ( ) for θ = 80o. The upper bound of the variation
interval (80o) is denoted by ( ).
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FIG. 12. Effect on the absorption coefficient of the orientation
of a rigid ⊔ inclusion embedded in the metal foam (a=10mm,
thickness 1mm). The (·) stand for the ⊔, the (×) for the ⊓

and the (+) for the ⊏ orientation. The homogeneous metal
foam absorption is denoted by ( ).

sion shape than that in the case of the layer impregnated
with fluid-filled or porous inclusions. For example, the
presence of a ⊓-section in a porous layer yields the lowest
absorption peak frequency, i.e. nearly two times smaller
than the fλ/4 frequency predicted for the uniform porous
layer. At this frequency the sound pressure modulus near
the wall of a rigid ⊓-shape inclusion is relatively high and
strongly localized. However, the absorption coefficient
spectra oscillates significantly as a function of frequency.

With the upside-down configuration, i. e. ⊔-shape, the
absorbing coefficient can be greatly enhanced (by more
than 20%) across the entire frequency range. This is as-
sociated with the the presence of two absorption peaks
caused by the existence of two trapped modes propagat-
ing in the porous layer. One of these modes relates to
a localized pressure field between the inclusions and the

backing wall. In the case of the second peak, the pressure
modulus is localized near the wall inside the ⊔ inclusion.
The ⊏ orientation exhibits a behavior between the two
previous cases.

VI. CONCLUSIONS

In this article, a new mode matching scheme is pro-
posed in order to study the acoustical behavior of a mul-
tilayer porous material in which periodic inclusions are
embedded. The method is validated numerically and ex-
perimentally with rigid inclusions embedded in 2 mm
beads. It has been shown that taking into account the
inclusions geometry is necessary when the inclusions are
rigid. The proposed method can tackle a large variety
of shapes and inclusion types faster than a conventional
FEM model.

This work is an attempt to investigate the influence
of the shape of rigid scatterers embedded in a porous
material. It has been shown that open shape inclusions
(e.g. ⊔-shape) are able to provide a better effect than in-
clusions of closed shapes, because less porous material is
removed from the layer. These heterogeneous structures
can exhibit better acoustic absorption behavior than ho-
mogeneous porous layers of identical thickness and pro-
vide an alternative to multi-layering.

Future work can focus on exploring new inclusion
shapes or more simple shape combinations. In partic-
ular, rigid inclusions combined with metal foam is an
interesting way to achieve a compact, efficient acoustic
treatment for a harsh environment or when good struc-
tural behavior is required.
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APPENDIX A: RIGID FRAME MODEL

Porous materials with a rigid skeleton (and quite reg-
ular pore shape), such as the porous material involved in
this study, are well described by the Johnson-Champoux-
Allard1 (Chap. 5) equivalent fluid model. This equiva-
lent fluid has the equivalent density (e−iωt).

ρ =
α∞ρ0

φ

[

1 + i
σφ

ωρ0α∞
GJ(ω)

]

, (A1)
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and the bulk modulus,

K =
γP 0/φ

γ − (γ − 1)

[

1 + i 8η
Λ′2Prωρ0

(

1− iρ0 ωPrΛ′2

16η

)1/2
]−1 .

(A2)
Note that the domain indices i, j are omitted for clarity.

Here, GJ (ω) =
√

1− 4iα2
∞

ηρ0ω
σ2Λ2φ2 , φ is the porosity, σ is

the flow resistivity, Λ is the vicious length, Λ′ is the ther-
mal length, α∞ is the tortuosity. Moreover, γ is the air
specific heat ratio and P 0 is the atmospheric pressure,
Pr is the Prandtl number and η is the dynamic viscos-
ity. It is important to note, the viscosity is taken into
account in the porous material pore but is neglected in
the surrounding fluid.
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