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Abstract

To estimate the efficiency of parallel baffle-type silencers in rectangular ducts, a two-dimensional
multi-layer model is presented for predicting their transmission loss. The approach takes into
account an arbitrary number of bulk reacting baffles of finite length bounded at both ends by
a metallic fairing. Each layer is described by a mean pressure, which allows computing a piece-
wise constant modal basis for the mean pressure over the cross section. The continuity between
the incoming and outgoing waves is performed by axial mode matching at the inlet and out-
let cross-sections of the baffle silencer. It is shown that the model is easy to implement and
suitable for optimization purposes based on design parameters such as the height of each baf-
fle, their relative positions in the duct, and material properties. Relatively complex configura-
tions can be simulated with relatively modest computational effort. An experimental campaign
was carried out on a reduced scale test bench for standard configurations. The numerical re-
sults are in good agreement with the measurements. Noise reduction performances are analyzed
in terms of reflected and dissipated sound powers. Finally, more complex geometric configura-
tions are simulated in order to examine the influence of the relative transverse and axial posi-
tions of each baffle as well as the effect of a resistive screen between the baffles and the airways.

1 Introduction

Baffle-type silencers are widely used in the heating, ventilation and air conditioning (HVAC) systems
of buildings to reduce noise being emitted from air-moving devices such as fans and air conditioners.
These silencers generally consist of several baffles inserted in a duct with a rectangular cross section
(see for instance Fig. 1). Each baffle is made of sound absorbing material such as rockwool or glasswool.
The presence of air flow inside the HVAC duct leads to the use of thin veils or perforated metal sheets
between the baffles and the airways for protection. Usually, a metallic fairing is also placed at each
end of the baffle.

The analysis of sound propagation through dissipative silencers is generally performed using clas-
sical dicretization techniques such as the very popular Finite Element Method (FEM) [1, 2, 3, 4, 5]
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Figure 1: Plan view of typical parallel-baffle silencer geometry.

and the Boundary Element Method (BEM) [6]. Although these methods can be used to model a large
variety of geometrical configurations, they are known to be demanding, both in terms of data prepara-
tion and computation, rendering optimization procedures somewhat cumbersome. Another approach
that takes advantage of the axially invariant properties of these types of silencer consists in expanding
the acoustic field as a truncated sum over the silencer eigenmodes. This modal approach is attractive
because it immediately reduces the dimension of the problem, i.e. only the acoustic eigenmodes over
the cross-section of the silencer must be calculated, which can be much quicker than using a full FEM
model. Regarding the specific case of parallel baffle-type silencers, three variants of the modal approach
stand out in the scientific literature: (i) Ko [7], and Cummings & Sormaz [8] obtained eigenmodes
analytically by using appropriate root-finding algorithms. However, the geometrical assumption that
the silencer is of infinite length restricted their analysis to the prediction of modal attenuations only.
(ii) In the specific case where baffles are arranged periodically, Mechel [9, 10], and Tam and Fahy
[11], determined the modal sound field in the silencer section analytically. A mode matching method
was then applied to quantify the scattering effects over the inlet and outlet planes of the silencer, for
transmission loss and sound intensity, respectively. (iii) In order to address more general configura-
tions, Kirby [12] performed a finite element eigenvalue analysis and axial mode matching to calculate
the transmission loss of baffle-type silencers with metallic fairings. He underlined the fact that at
low frequencies, the effect of the silencer geometry predominates and that a two-dimensional model is
sufficient for evaluating silencer performance.

The present paper proposes an easy-to-implement and relatively inexpensive numerical multi-layer
model tailored specifically for analyzing the performances of parallel baffle-type silencers. It can
simulate a wide variety of configurations and is suitable for optimization purposes based on design
parameters such as the height of each baffle, their relative positions in the duct, and material properties.
The model can be considered as an extension of the low-frequency model developed by Aurégan et
al. [13] for a coaxial cylindrical dissipative silencer. It is similar to classical FEM eigenmode analysis
except that the mean pressure across each layer, i.e. the baffle or the airway, is used as a degree
of freedom instead of the nodal pressure value. This renders the axial mode matching procedure
considerably easier. The consideration of a resistive screen between an airway and a porous material
layer is also facilitated.

The present paper is organized as follows. First the geometry and the assumptions for the problem
are defined. The main ingredients of the method, namely the modal basis for the mean pressure
and the mode matching procedure are then presented with all the necessary details. Thereafter, the
experimental setup is explained and the numerical results are compared against new experimental data
for two standard geometric configurations. The performance of both standard silencers are analyzed in
terms of reflected and dissipated sound powers. Finally, the method is applied to the simulation of two
other configurations with more complex geometries and several results are presented and discussed.
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Figure 2: Transverse velocity profile.

2 Silencer model

Without loss of generality, we present our numerical model for the analysis of typical baffle silencers
inserted in an infinite rectangular duct with rigid walls, as shown in Fig. 1. This is done for the sake
of increasing clarity, as the extension of the model to tackle more complex situations is demonstrated
in Section 4. In the present configuration, three separate domains are defined. In domain I (inlet
duct), an incident sound wave propagates in the positive z-direction and excites the silencer. Domain
II is the silencer section made up of an arbitrary number N of layers. Airways and baffles can be
represented by several layers of length L and height hj , and can also be separated by a screen (e.g.
thin veil or perforated plate). Each baffle contains a bulk reacting porous material, assumed to be both
homogeneous and isotropic. Finally, the effect of a metallic fairing or a perforated screen at either end
of a baffle is considered. The domain III (outlet duct) represents an anechoic termination. It should
be noted that the geometry is invariant along the y-direction.

2.1 Governing equations

Assuming a time dependence of the form e−iωt, the propagation equations for the inlet duct, the
outlet duct and the silencer section, can be found in each layer j (j = 1, · · · , N) using continuity and
momentum equations:

iωκjpj = ∇·vj , (1)

iωρjvj = ∇pj , (2)

where pj and vj are the acoustic pressure and velocity vector. Quantities κj and ρj are the compress-
ibility and the density of the medium in layer j respectively. In the airways, the fluid is characterized
by air compressibility κ0 and density ρ0. In the baffles, the fibrous material is described as an equiva-
lent fluid using the limp frame model defined in Appendix A. This model gives better results than rigid
frame equivalent models, without the additional computational effort that Biot’s model would require
[14, 15, 16]. It is based on the assumption that the frame has no bulk stiffness, which is relevant for the
mineral wool used in HVAC silencers. Note that other equivalent fluid models can be used, especially if
only the air resistivity of the fibrous material is known [17]. The porous medium is characterized by an
effective compressibility κeq and density ρ` which are frequency-dependent. These effective quantities
are recalled in Appendix A.

At this point, the problem is assumed to be two-dimensional which signifies that there is no variation
of pressure or velocity along the y-axis. We can therefore express vj in terms of the transverse and
axial velocity as vj = (vj , 0, uj). As the airflow Mach number in HVAC systems does not usually
exceed 0.05, its effect on the silencer performance is neglected. The averaged propagation equations
are obtained following a similar process described by Aurégan et al. [13]. By defining the mean pressure
P j and the acoustic volume velocity Uj over the height hj , we obtain the following after integration:

YjP j = (Vj − Vj−1) +
dUj
dz

, (3)

ZjUj =
dP j
dz

, (4)
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where Yj = iωκjhj is homogeneous for an admittance per unit area and Zj = iωρj/hj is homogeneous
for an impedance per unit area. Here, the term Vj is the transverse velocity at the interface xj as
shown in Fig. 2. This quantity is continuous across the interface so we have Vj = vj(xj) = vj+1(xj)
(note the z-dependence is omitted here for clarity). Combining Eq. (3) and Eq. (4) yields(

− d2

dz2
+ Γj

)
P j = Zj(Vj − Vj−1) (5)

where Γj = ZjYj . Now, in order to form an eigenvalue problem for the mean pressure, the transverse
velocity in Eq. (5) must be expressed in terms of the mean pressure in each layer. This can be done
by first assuming that the transverse velocity across the layer j can be fairly well approximated by the
piecewise linear function

vj(x) = N1(x)Vj−1 +N2(x)Vj , (6)

where the shape functions N1 and N2 are the classical linear Lagrange interpolating polynomials

N1(x) =
xj − x
hj

and N2(x) =
x− xj−1

hj
. (7)

Once again we omit the z-dependence for the demonstration. After integrating the momentum equation
(2), we obtain

pj(x) = P j +Hj

[(
3[N2(x)]2 − 1

)
Vj −

(
3[N1(x)]2 − 1

)
Vj−1

]
, (8)

where Hj = iωρjhj/6 is homogeneous for an impedance. To account for the presence of an acoustic
screen with surface impedance Zs between the layers j and j + 1 we require that ZsVj = pj+1(xj) −
pj(xj). This yields the following linear relation:

HjVj−1 +GjVj +Hj+1Vj+1 = P j+1 − P j , (9)

with Gj = Zs + 2(Hj+1 +Hj). Using the rigid wall conditions V0 = VN = 0, Eq. (9) can be expressed
in the matrix form:

G1 H2

H2
. . .

. . . 0
. . .

. . .
. . .

Hj Gj Hj+1

. . .
. . .

. . .

0
. . .

. . . HN−1

HN−1 GN−1





V1

V2

...
Vj
...

VN−1


=



P 2 − P 1

P 3 − P 2

...
P j+1 − P j

...
PN − PN−1


, (10)

After inversion, this yields

Vj =

N−1∑
l=1

cj,l
(
P l+1 − P l

)
(11)

and therefore

Vj − Vj−1 =

N−1∑
l=1

bj,lP l, (12)

where
bj,l = (B)jl = cj,l + cj−1,l−1 − cj,l−1 − cj−1,l , (13)

with the convention that cj,0 = cj,N = 0. Now, by introducing the mean pressure vector P =
(P 1, · · · , P j , · · · , PN )T, Eq. (5) can be recast into the matrix form(

− d2

dz2
+ Γ + ZB

)
P = 0, (14)

where Z = diag(Z1, · · · , Zj , · · · , ZN ) is the diagonal matrix containing the impedance per area of each
layer and Γ = diag(Γ1, · · · ,Γj , · · · ,ΓN ). Eq. (14) can be interpreted as a ‘multi-layered’ propagator
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for the mean pressure field in the duct and is a key result of this paper. Although this layered model
seems somewhat superfluous in the empty part of the duct (domains I and III), it is advantageous to
artificially extend the same layered decomposition in these regions as it considerably facilitates the
matching conditions, as shown in the next sections.

2.2 Modal decomposition

In each domain d = I, II and III, the mean pressure field P
d

may be expanded via the modal decom-
position in forward and backward traveling waves

P
d
(z) = Φd

(
Ed(z)Ad,+ + Êd(z)Ad,−

)
, (15)

where the column vector Ad,± = (Ad,±1 , Ad,±2 , · · · , Ad,±M )T contains the modal amplitudes, the diagonal

matrix Ed(z), and its inverse Êd(z), contains the propagation factors:

Ed(z) = diag(eikd1z, eikd2z, · · · , eikdMz), (16)

Êd(z) = diag(e−ikd1z, e−ikd2z, · · · , e−ikdMz). (17)

and the matrix Φd = (Φd
1,Φ

d
2, · · · ,Φd

M ) contains the transverse eigenvectors satisfying the symmetric
eigenvalue problem (see (Zd)−1× Eq. (14))(

(Zd)−1Γd + Bd
)
Φd = −(Zd)−1Φd(kd)2, (18)

with kd = diag(kd1 , k
d
2 , · · · , kdM ) the diagonal matrix containing the axial wavenumbers and M is the

number of modes taken into account in the numerical model. It should be noted that generally, the
number of modes is equal to the number of layers, although this condition can be relaxed, while in all
cases we must have M ≤ N . Similarly, using Eq. (4), the axial volume velocity is given by the modal
expansion

Ud(z) = i(Zd)−1Φdkd
(
Ed(z)Ad,+ − Êd(z)Ad,−

)
. (19)

The modal amplitudes remain to be determined in order to fully describe the mean pressure field.
This last step is performed by applying the axial matching conditions.

2.3 Mode matching

The matching conditions must be satisfied at the interfaces between each domain. Both interfaces Σ1

and Σ2 , shown in Fig. 1, comprise three kinds of surface: an impervious surface Σf accounting for
metallic fairings, a porous surface Σs accounting for the presence of an acoustic screen and an open
surface Σa . For instance, on the interface Σ1 , we have

• on Σa
1 , the continuity of mean pressure and the volume velocity yields

DaP
I

= DaP
II
, (20a)

DaU
I = DaU

II. (20b)

• on Σf
1 , the kinematic conditions give

DfU
I = 0, (21a)

DfU
II = 0. (21b)

• on Σs
1 , the mean pressure jump with impedance surface Zs and the continuity of the volume

velocity yield

ZsDsU
I = Ds

(
P

I −P
II
)
, (22a)

DsU
I = DsU

II. (22b)
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In these equations, we introduced the diagonal matrices Da,Df and Ds whose role is to simply select
the layer or, equivalently, the lines of the mean pressure vector (and the volume velocity vector)
corresponding to the type of surface. For instance, (Da)jj = 1 if layer j corresponds to an open
surface and (Da)jj = 0 otherwise. In fact, the third scenario on Σs

1 generalizes the first two cases
(Eq. (20a) to Eq. (21b)). This generalized boundary condition is not considered in this paper though
its numerical implementation does not present any particular difficulty.

The modal decomposition of the mean pressure and volume velocity (respectively Eq. (15) and
Eq. (19)) are substituted into Eq. (20a) to Eq. (21b). Using the same formalism as in [18, 19, 20], this
yields the following scattering matrices for both interfaces Σ1 and Σ2 :

X1

(
AI,−

AII,+

)
= Y1

(
AI,+

AII,−

)
on Σ1 , (23a)

X2EX

(
AII,−

AIII,+

)
= Y2EY

(
AII,+

AIII,−

)
on Σ2 , (23b)

where EX and EY are diagonal matrices containing the propagation factors at z = L:

EX = diag
(
ÊII(L),EIII(L)

)
, (24)

EY = diag
(
EII(L), ÊIII(L)

)
. (25)

The scattering matrices have the following form:

X1 =


RI −RII

SI SII

TI 0
0 TII

 , Y1 =


−RI RII

SI SII

TI 0
0 TII

 , (26)

X2 =


RII −RIII

SII SIII

TII 0
0 TIII

 , Y2 =


−RII RIII

SII SIII

TII 0
0 TIII

 , (27)

where block matrices Rd and Sd are of the same size, i.e. Na×M whereas the block matrix Td which
corresponds to the hard wall condition on the metallic fairing is of size Nf ×M :

Rd = DaΦ
d, (28)

Sd = Da

(
Zd
)−1

Φdkd, (29)

Td = DfΦ
dkd. (30)

The number of lines, Na and Nf , corresponds to the total number of layers for the airways and for the
metallic fairings, respectively, thus Na+Nf = N . At this point, it is worth mentioning that scattering
matrices are formed simply, algebraically, at almost no cost once the duct acoustic modes contained
in Φd have been found. This is a considerable simplification when compared to more classical mode
matching techniques (usually using collocation or weighted residual formulations) encountered in the
literature [21, 12, 20, 22]. From then on, and in order to simplify the analysis, the number of modes
M is chosen equal to the number of layers N in our calculations.

The overall system is then solved iteratively [18] for the modal amplitudes. The incident modal
amplitude, AI,+, is set according to the source characteristics. Initially AII,− is fixed at zero. The
system (23a) is then inverted and generates an initial value for the modal amplitudes oriented right-
wards AII,+. This value is then used to solve the system (23b) at the outlet plane for an initial value
of AIII,+. The process is then reiterated until the modal amplitudes show a sufficiently small change
(less than 10−6) in the successive iteration cycles. More complex situations involving more than three
domains (this happens if baffles are misaligned for instance) can be dealt with following the same
principle.

The performances of the baffle-type silencer are usually measured via the Transmission Loss (TL)
which is defined as the ratio of the incident to transmitted sound powers. The incident sound power
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Figure 3: Multimodal UTC test bench [23] - 72 microphones for 10 modes resolution.

may be taken equal to unity without any loss of generality. In the domain III the eigenvalue problem
(see Eq. (18)) involves Hermitian and positive-definite matrices. The corresponding transverse eigen-
vectors are pairwise orthogonal according to (ΦIII)T(ZIII)−1ΦIII = I, with I the identity matrix. After
integration over the cross-section, the transmitted sound power can write:

Wtr =
1

2
Re
(
P

III (
UIII

)†)
=

1

2
(AIII,+)†(kIII)†AIII,+, (31)

where † is the Hermitian transpose. Hence, per unit length in the y-direction and in decibels (dB)

TL = −10 log10

1

2

Mp∑
n=1

kIII
n |AIII,+

n |2
 , (32)

where Mp is the number of propagating modes in the outlet duct, i.e. kIII
n is a real number.

3 Results and validation for symmetrical silencers with peri-
odic arrangements

In order to assess the robustness of the method proposed, simulated results for two silencers presenting
symmetry and with periodic baffle arrangements (see Figs. 4(a)) and 4(b)) are compared with mea-
surements carried out by the authors in our laboratory. It should be noted that for such silencers,
very few narrow band experimental data giving access to higher mode contributions are available in
the literature [6]. Indeed, most of them are octave-band [5] or one-third octave-band [10] data. The
test bench and the geometry of the silencers are described first.
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Figure 4: Plan view (left) of the geometry for (a) one-baffle silencer: silencer A, (b) a two-baffle
silencer: silencer B and (c) a three-baffle silencer: silencer C. Cross-section view (right).

3.1 Test bench and experimental procedure

The measurements were performed on a test bench (Fig. 3) designed for the multimodal characteri-
zation of the acoustic properties of obstacles (the dissipative silencer is considered as an obstacle in
this context) in the presence (or not) of a low Mach number flow [23]. The duct facility is a rigid
rectangular duct of 0.2 m× 0.1 m section with an anechoic termination at either end. The results are
given within the frequency band [200 Hz - 3.5 kHz] which limits the number of propagative modes
in the duct to a maximum of Ms = 10. The 2Ms-port scattering matrix, which contains the modal
reflection and transmission coefficients, is measured using a multi-source method described in [23].

The experimental procedure is carried out for silencer A (Fig. 4(a)) and silencer B (Fig. 4(b)).
These two silencers have the same length and are inserted in a duct with the same cross-sectional area.
Silencer A consists of one baffle 100 mm thick whereas silencer B consists of two baffles both of which
are 50 mm thick. RW mineral wool was chosen to fill the baffles. Its properties were determined by
measurements carried out by the authors and given in Table 1. Both silencers have the same open area
ratio equal to 50%. They were chosen in this way to investigate the effect of the number of baffles on
the silencer’s performances while keeping the same area ratio for the airway. In the airway, the density
and the speed of sound are respectively ρ0 = 1.2 kg.m−3 and c0 = 342.8 m.s−1. The values for the
duct cut-off frequencies are recalled below:

f(n,m) =
c0
2

√( n

0.2

)2

+
( m

0.1

)2

. (33)

For an incident plane wave, it is clear for reasons of invariance in the y-direction that only transverse
modes in the x-direction are generated. The cut-off frequencies of interest are thus: f(1,0) = 857 Hz,
f(2,0) = 1714 Hz, f(3,0) = 2571 Hz, f(4,0) = 3428 Hz and f(6,0) = 5130 Hz.

3.2 Results

The results are given here for a plane wave excitation. Silencer A comprised three layers (two airways
and one baffle) so it was natural to apply our model with N = 3. The corresponding Transmission
Loss is shown in Fig. 5 as is the measured TL. Good agreement can be seen in the low part of the
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Table 1: Material properties for the RW mineral wool.

φ σ α∞ Λ Λ′ ρ1

– (N.s.m−4) – (µm) (µm) (kg.m−3)
0.954 14066 1 91.2 182.4 53
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Figure 5: Convergence of predicted TL for plane wave excitation with respect to the total number of
layer N for the silencer A, N = 3, 9 and 15, N = 45, measurements.

spectrum (below the first cut-off frequency, i.e. 857 Hz). Above this frequency, the 3-layer model was
too coarse and could not correctly simulate higher-order modes or capture the scattering mechanisms
occurring at the junctions Σ1 and Σ2 especially around certain cut-off frequencies.

To remedy this, each layer was subdivided into sublayers in order to refine the model. A convergence
analysis is shown in Fig. 5 by taking successively 3, 9 (3 subdivisions), 15 (5 subdivisions) and 45 (15
subdivisions) for the total number of layers N . The results obtained with N = 45 layers converged
though N = 15 is sufficient to ensure reasonable values for engineering purposes. It should be noted
that these results were computed with modest computational effort: it took only about 4 seconds (4
iterations per frequency step) using Matlab to compute 340 frequencies with the refined model, N = 15
layers, on a laptop computer.

The same analysis was conducted for silencer B and the results are shown in Fig. 6. Good agreement
with the measurements are found in both cases and the results indicate that the noise reduction
performances are quite different. Indeed, for silencer A, the peak at 1714 Hz corresponding to the
cut-off frequency of the first transverse symmetric mode (2,0) is clearly identified both experimentally
and numerically. For silencer B, only a continuous increase of the TL is observed and discrepancies
do not exceed 3 dB even when using only N = 5 layers. The presence of three small peaks at 325 Hz,
486 Hz and 583 Hz are caused by the vibration of the duct wall [23].

The magnitudes of the reflection and transmission coefficients for silencer A are compared with
measurements in Fig. 7. It can be seen that only the fundamental and the first transverse symmetric
modes are shown as the contribution from the other modes is negligible. In fact silencer A behaves as
an acoustic filter for the odd modes; the reasons for this are explained briefly in the next section.

4 Analysis and discussion

4.1 Analysis of Transmission Loss

In this subsection, the performances of silencers A and B are discussed first. More complex configura-
tions involving non-periodic and misaligned silencers are then considered and analyzed.

Predicted performances for an incident plane wave mode are reported (in black lines) in Fig. 8 up
to 5 kHz for silencers A and B. The difference in performance depends on the position of a maximum
peak corresponding to the cut-off frequency of the first transverse symmetrical mode (2,0) for silencer
A and to the mode (4,0) for silencer B. Above this frequency, the TL decreases steadily. This behavior
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Figure 6: Convergence of predicted TL for plane wave excitation with respect to the total number of
layers N for silencer B, N = 5, 15 and 25, N = 45, measurements.

is typical of a periodic and symmetrical silencer. Indeed, it can be shown in this very particular case
that the modes transmitted satisfy the selection rule [9]

n = ninc + 2qK. (34)

Here, ninc is the order of the incident mode (which is zero here as only the plane wave mode is
considered), K is the number of baffles and q is an integer. In the case of silencer A, for instance,
K = 1 and only even modes are allowed to propagate. It can be noted that this could have been
anticipated using symmetry arguments. For silencer B, however, the selection rule indicates that only
modes of order n = 4q are allowed, the other modes being forbidden. When the frequency exceeds the
cut-off frequency of the selected mode, the latter is strongly coupled with higher modes in the silencer
section and is likely to carry a substantial amount of acoustic energy (this energy could not be radiated
below cut-off). This new contribution necessarily implies a reduction in TL and poorer performances.
Fig. 9 typically illustrates the acoustic pressure field in both silencers. It shows the absence of mode
coupling with the mode (2,0) for silencer B.

In order to examine the effects of asymmetry in the spatial arrangement of the baffles: the two
baffles of silencer B were shifted to the bottom (in the x-direction). In the first scenario, we took
h1 = 12.5 mm and h1 = 0 mm for the second configuration (see Fig. 4). The TL are shown in Fig. 8.
These configurations are no longer symmetrical and in both cases, all modes are allowed to radiate.
This yields poorer performances beyond the cut-off frequency of the first symmetric mode (2,0) as well
as a smoothing of the TL curves around the peak. Note also that the second configuration shows a
slight improvement of the performances below this frequency.

To push the analysis one step further, the three-baffle silencer C, shown in Fig. 4(c), is now
investigated. Two scenarios are considered: the first corresponds to a conventional arrangement L1 =
L2 = 0 and in the second scenario, two baffles have been shifted along the axial direction with
L1 = 53.5 mm and L2 = 19 mm. In the latter case, there are seven domains and therefore six junctions
for each of which a scattering matrix must be calculated. In order to give a fair comparison, the open
area ratio and the length of the baffles are identical to those of silencers A and B. The results are shown
in Fig. 10. The dark dashed curve corresponds to a standard three-baffle silencer, i.e. symmetrical and
periodic. In the low frequency regime, before the first cut-off frequency, all three-baffle silencers give
the same performances whereas in the medium frequency regime, silencer C produces the best results.
Above the third cut-off frequency, the standard three-baffle silencer performs better. The effect of
shifting the baffles axially is only visible in the high frequency range. This is partly due to the fact
that the mode (6,0) is less excited and the acoustic power transmitted is reduced, showing a difference
of nearly 8 dB in noise reduction. This illustrative example shows that the performance of parallel
baffle-type silencers also depends on their geometrical configurations (namely the height of each baffle
as well as their positions) and can be tailored to meet specific noise reduction targets. Silencer C, for
instance, appears to be a good trade-off between the one-baffle and the three-baffle silencers.

Finally, the effect of a resistive screen is investigated. The presence of a resistive screen between
each layer of air and fibrous material can be easily taken into account in the numerical model. It is
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Figure 7: Magnitude of the modal reflection coefficients (a) and transmission coefficients (b) for an
incident plane wave for the silencer A. Numerical results, measurements.

sufficient to modify the parameter Gj = Zs + 2(Hj+1 + Hj) in Eq. (9) accordingly. To make things
simpler, we consider the same screen for all the interfaces and, neglecting the reactance part, the
impedance is given by the classical formula Zs = σsd where σs is the resistivity and d the screen
thickness. Fig. 11 shows the influence of the resistivity on the performances of silencer B. As long as
σs remains below that of the absorbing material, there is no visible effect on the TL curve. However, for
higher values, i.e. σs = 200 kN.s.m−4 and 500 kN.s.m−4, a secondary peak appears. This is the result
of a resonant effect within the baffle induced by the resistive screen. Finally, as resistivity increases the
screen acts as a rigid wall and the shape of the TL curve resembles that of a purely reactive expansion
chamber.

4.2 Analysis in terms of acoustic power

The performance of symmetrical and periodic parallel-baffle silencers is now discussed using power
balance. The energy conservation condition implies that the incident sound power is equal to the sum
of the reflected, dissipated and transmitted sound powers. The evolution of the reflected, transmitted
and dissipated sound powers is then examined as a function of the frequency in Fig. 12 for both
silencers A and B. It can be seen that three regimes stand out: (i) dissipation increases sharply until
reflection becomes higher than transmission; (ii) reflection increases to the detriment of dissipation,
while transmission keeps decreasing until it reaches nearly zero at the cut-on of the mode (2,0) for
silencer A and (4,0) for silencer B; (iii) finally, the transmitted sound power starts increasing slowly
once the selected mode (2,0) (or (4,0)) becomes propagative. This occurs at the cost of the reflected
sound powers. These three regimes allow interpreting the different slopes of the TL.

4.3 Low frequency approximation

The evolution of sound powers for silencers A and B, show that dissipation prevails until reflection
becomes higher than transmission (first regime). Therefore silencer performance is almost entirely due
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Figure 9: Sound pressure reconstruction, using the scheme presented, at 1000 Hz and 2500 Hz for
silencer A (top), and at 2500 Hz and 4500 Hz for silencer B (bottom); here the minimum of the
normed pressure field is in black.
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Figure 10: Predicted transmission loss for plane wave excitation. Silencer A; standard
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(53.5 mm, 19 mm).
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line for silencer B for σs = 0 N.s.m−4, in grey lines from light to dark, for silencer B for σs =
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Figure 12: Evolution of the sound powers: (a) silencer A, (b) silencer B; dissipated sound power,
reflected sound power, transmitted sound power.
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Figure 13: Numerical transmission loss and analytical attenuation for plane wave excitation with
symmetrical geometries; numerical TL and ◦ analytical attenuation. (a) silencer A, (b) silencer B.

to dissipative effects. We show here that at low frequencies the TL of symmetrical silencers, with
periodic arrangement of the baffles, can be approximated by determining only the attenuation in the
silencer section.

This periodic arrangement of the baffles allows obtaining a simplified equivalent geometry of the
silencer by taking into account the different symmetries [10]. Thus for silencers A and B, the equivalent
geometry is made up of two layers: one airway and one baffle of height h1. The two axial wavenumbers
k1 and k2 in the silencer section are then determined using the model presented above. The final
eigenvalue problem can be solved analytically as described in Appendix B. The attenuation of the
silencer is finally given by the least attenuated mode [9]:

Att = 8.686 Im(k1)L. (35)

Comparison between numerical TL and analytical attenuation is shown in Fig. 13 for silencers A
and B. Good agreement is found in both cases up to a limit frequency above which reflection becomes
higher than transmission (grey zones). For silencers A and B the limit frequency is respectively 700
Hz and 1200 Hz.

5 Conclusion

In this paper, we presented a two-dimensional multimodal model for the simulation of acoustic prop-
agation through parallel-baffle silencers. The numerical model relies mainly on the computation of
approximate acoustic modes for the mean pressure in each layer corresponding either to the airway or
the baffle. In this respect, it bears some resemblance with classical FEM as each layer or sublayer can
be viewed as a constant element approximation with the subtle difference that the degrees of freedom
are not the nodal values of the pressure but its average value across the layer. The method offers the
advantage that it greatly simplifies the mode matching procedure at the junction between successive
domains and it can be used to tackle relatively complex geometrical configurations with the possibility
of taking into account the presence of resistive screens between the porous baffle and the air domain.
It is also an easy-to-implement and relatively inexpensive model suitable for optimization purposes.

For a plane wave excitation, comparisons with experimental data were carried out by the authors
for two standard configurations: a one parallel-baffle silencer and a two parallel-baffle silencer with
the same open area ratio. Good agreement was found in both cases even in the vicinity of the peaks
in the TL curves.

More complex configurations were simulated in order to examine the influence of silencer symmetry
and periodicity on the modal coupling and acoustic performances. Investigations were conducted by
varying the number of baffles, the height of each baffle and their relative positions along both the axial
and transverse directions. The impact due to the presence of resistive screens on noise reduction was
also examined. Although symmetrical and periodic configurations provide very good performances it
was shown that more complex configurations can be useful in order to meet specific noise reduction
targets. A low-frequency analytical model was developed to determine the axial wavenumbers of
silencers with periodic baffle arrangements. It was shown that, up to a limit frequency, it is possible to
approximate transmission loss accurately. This analytical model can be used as a preliminary design
tool for parallel baffle silencers.

14



Work is ongoing by the authors to develop optimization procedures for larger size systems, based on
a selected number of design parameters (height, position and material properties) and more complex
configurations which accentuate the reactive behaviour of the silencer with resonant cavities.
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Appendix A: the limp frame model

The limp frame model [14, 15, 16] assumes that the bulk stiffness of the porous skeleton is neglected.
Sound propagation can be characterized by an effective compressibility κeq and density ρ`, which are
complex-valued and frequency dependent. As in the rigid frame model [17], the compressibility of the
limp model is the modified compressibility of the saturating fluid and is given by

κeq(ω) = φκ0

(
γ − (γ − 1)

1− 8µ
iωρ0PrΛ′2G′(ω)

)
, (36)

with

G′(ω) =

√
1− i

ωρ0PrΛ′2

16µ
, (37)

where φ is the porosity, γ the ratio of the specific heats of the air, µ the air viscosity, Pr the Prandlt
number and Λ′ the thermal characteristic length. The inertia of the solid phase is accounted for in the
effective density of the fluid:

ρ`(ω) =
ρeq(ω)ρt − ρ2

0

ρt + ρeq(ω)− 2ρ0
, (38)

where ρt = ρ1 + φρ0 is the total apparent mass of the equivalent fluid limp medium, ρ1 is the density
of the skeleton and ρeq(ω) is the effective density accounting for the rigid frame model given by

ρeq(ω) =
α∞ρ0

φ

[
1− 1

iω̂
G(ω)

]
, (39)

with

G(ω) =

√
1− i

M̂

2
ω̂. (40)

Here, ω̂ = ωα∞ρ0
φσ is the dimensionless frequency and M̂ = 8α∞µ

φΛ2σ the form factor, where σ is the air
flow resistivity, α∞ the tortuosity and Λ the viscous characteristic length.

Appendix B: analytical axial wavenumbers of silencers with two
layers

The method presented in the present paper is applied here for a silencer with two layers which allows
the eigenvalue problem to be solved analytically. The results bear resemblances to those of [13] for a
coaxial cylindrical dissipative silencer. The equality (9) for the transverse velocity at the air-porous
interface x = x1 = h1 (recall that x0 = 0 and x2 = hx = h1 + h2) is simply

G1V1 = P 2 − P 1, (41)

which yields the eigenvalue problem (see Eq. (18)):Γ1 + Z1

G1
−Z1

G1

−Z2

G1
Γ2 + Z2

G1

P 1

P 2

 = −k2

P 1

P 2

 . (42)
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The eigenequation for the wavenumber becomes:

k4 +

(
Γ1 + Γ2 +

(Z1 + Z2)

G1

)
k2 + Γ1Γ2 +

(Γ1Z2 + Γ2Z1)

G1
= 0. (43)

The two wavenumbers are

k2
1 = − (Γ1 + Γ2)

2
− (Z1 + Z2)

2G1
(1−A), (44)

k2
2 = − (Γ1 + Γ2)

2
− (Z1 + Z2)

2G1
(1 +A), (45)

where

A =

√
1 +

(Γ1 − Γ2)G1

(Z1 + Z2)2
[(Γ1 − Γ2)G1 + 2(Z1 − Z2)]. (46)
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