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Abstract. This work is concerned with the finite element modeling of contact/impact

problems between rubber materials. The developed algorithm, namely here Bi-First,

combines the bi-potential method for solution of contact problems and the first order

algorithm for integration of the time-discretized equation of motion. Numerical ex-

amples are given in two cases: multi-contact problem between Blatz-Ko hyperelastic

bodies and Love-Laursen’s test with a novel hyperelastic model.

1 Introduction

Problems involving contact and friction are among the most difficult ones in
mechanics and at the same time of crucial practical importance in many en-
gineering branches. A large number of algorithms for the modeling of contact
problems by the finite element method have been presented in the literature.
See for example the monographs by Kikuchi and Oden [1], Zhong [2], Wriggers
[3], Laursen [4] and the references therein. De Saxcé and Feng [5] have pro-
posed a bi-potential method, in which an augmented Lagrangian formulation
was developed. Feng et al. [6, 7] have successfully applied this method for the
modeling of static contact problems between elastic and Blatz-Ko hyperelastic
bodies.

For dynamic implicit analysis in structural mechanics, the most commonly
used time integration algorithm is the second order algorithm such as New-
mark, Wilson, HHT [8]. The first order algorithm has also been proposed
by Jean [9] for time stepping in rigid-body dynamic contact problems. Re-
cently, Feng et al. [10] have applied this algorithm for the modeling of impact
problems between elastic bodies.

In nonlinear elasticity, there exist many constitutive models to describe the
hyperelastic behavior of foam-like or rubber-like materials, such as Blatz-Ko
[11], Ogden [12], Gent [13], etc. These models are available in many modern
commercial finite element codes. In 1999, Lainé et al. [14] proposed a new
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third order hyperelastic model, namely here the LV F model. The aim of
the present paper is to apply the Bi-First algorithm for contact modeling
in dynamic cases between rubber materials described by Blatz-Ko and the
LV F model. Two numerical examples are performed in this study to show
the validity and efficiency of the algorithm developed.

2 Hyperelastic models

In the case of hyperelastic laws, there exists an elastic potential function W
(or strain energy density function) which is a scale function of one of the strain
tensors, whose derivative with respect to a strain component determines the
corresponding stress component. This can be expressed by

S =
∂W

∂E
= 2

∂W

∂C
(1)

where S is the second Piola-Kirchoff stress tensor, C the right Cauchy-Green
deformation tensor and E the Green-Lagrangian strain tensor. The Blatz-
Ko constitutive law is used to model compressible foam-type polyurethane
rubbers [11]. The strain energy density function is given as follows

W =
G

2

(
I2

I3
+ 2

√
I3 − 5

)
(2)

where I2 and I3 are respectively the second and third invariant of C and G
is the shear modulus. Reporting (2) in (1) gives the constitutive relation as
follows

S = G
[√

I3(2E + I)−1 − (2E + I)−2
]

(3)

The LV F constitutive law is proposed by Lainé et al. [14] to describe the
isotropic compressible or incompressible rubber-like material. New invariants
of E: (x, y, z) are introduced as follows

x =
√

tr(Ed)2 cos ϑ, y =
√

tr(Ed)2 sin ϑ, z =
tr(E)√

3
(4)

where Ed is the distortional part of E and ϑ the Lode’s angle. The strain en-
ergy density function of fourth order expressed in terms of the new invariants
of the strain tensor is given as follows
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4
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4
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(5)

where G is the shear modulus, K the bulk modulus and ai (i = 1, . . . , 5) are
parameters of the model. By deriving the energy density (5) with respect to
the strain tensor, we obtain
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3 Local contact modeling

For notational convenience, we assume that the contact with friction may
occur between some points of two bodies A and B. The contact and friction
laws are written in terms of relative velocity u̇ = u̇A − u̇B and of contact
reactions r. The following contact bi-potential is introduced by de Saxcé and
Feng [5]:

bc(−u̇, r) =
⋃

R−
(−u̇n) +

⋃

Kµ

(r) + µ rn‖ − u̇t‖ (7)

where R− = ]−∞, 0], Kµ is the Coulomb’s cone and
⋃

stands for the indicator
function. In order to avoid nondifferentiable potentials that occur in contact
problems, it is convenient to use the Augmented Lagrangian Method [5, 15].
For the contact bi-potential bc, we have:

∀ r
′ ∈ Kµ, %µ(r

′
n − rn)‖u̇t‖+

(
r
′ − (r− %u̇)

)
(r
′ − r) ≥ 0 (8)

where % is a solution parameter which is not user-defined. The inequality (8)
means that r is the projection of τ onto the closed convex Coulomb’s cone:

r = proj(τ ,Kµ) (9)

For the numerical solution of the implicit equation (9), Uzawa’s algorithm can
be used, which leads to an iterative process involving one predictor-corrector
step:

Predictor τ i+1 = ri − %i
(
u̇i

t + (u̇i
n + µ‖u̇i

t‖)n
)

Corrector ri+1 = proj(τ i+1,Kµ) (10)

4 Global time stepping

Generally, mechanical behaviors of solids under contact/impact conditions are
governed by a set of nonlinear equations

Mü = F + R, where F = Fext − Fint −Au̇ (11)

where M is the mass matrix, Fext the applied forces vector, Fint the inter-
nal forces vector and R the reaction forces vector. Taking the derivative of
Fint with respect to the nodal displacements u gives the tangent stiffness
matrix K. The most common method to integrate Eq.(11) is the Newmark
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method which is based on a second order algorithm. However, in impact prob-
lems, higher order approximation does not necessarily mean better accuracy,
and may even be superfluous. At the moment of a sudden change of contact
conditions (impact, release of contact), the velocity and acceleration are not
continuous, and excessive regularity constraints may lead to serious errors.
For this reason, Jean [16] has proposed a first order algorithm which is used
in this work. This algorithm is based on the following approximations:

∫ t+∆t

t

M du̇ = M
(
u̇t+∆t − u̇t

)
(12)

∫ t+∆t

t

F dt = ∆t
(
(1− ξ)Ft + ξ Ft+∆t

)
(13)

∫ t+∆t

t

R dt = ∆tRt+∆t (14)

ut+∆t − ut = ∆t
(
(1− θ) u̇t + θ u̇t+∆t

)
(15)

where 0 ≤ ξ ≤ 1; 0 ≤ θ ≤ 1. In the iterative solution procedure, all the
values at time t + ∆t are replaced by the values of the current iteration i + 1.
Without going into details, we obtain the recursive form of (11) in terms of
displacements:

K̄i ∆u = F̄i + F̄i
acc + Ri+1

ui+1 = ui + ∆u (16)

where the so-called effective terms are given by

K̄i = ξ Ki +
1

θ ∆t2
Mi (17)

F̄i
acc = − 1

θ∆t2
Mi

{
ui − ut −∆t u̇t

}
(18)

F̄i = (1− ξ)
(
Ft

int + Ft
ext

)
+ ξ

(
Fi

int + Ft+∆t
ext

)
(19)

5 Numerical results

The Bi-First algorithm presented above has been implemented and tested in
the finite element code FER/Impact [17]. Due to the limitation of pages, we
briefly present two examples of application.

The first example, proposed initially by Love and Laursen [18] who con-
sider only linearly elastic materials, accounts for hyperelastic large deforma-
tions in the present work. The simulation consists of two three-dimensional
blocks (Figure 1) that impact with relative tangential motion. The LV F model
is considered here with the initial shear modulus G and bulk modulus K same
as in [18] (scaled units): G = 5000, K = 3333. Other parameters are: a1 = 50,
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a2 = 50, a3 = 0, a4 = 2000 and a5 = 100. The total simulation time is 1
scaled time unit and the solution parameters are: ∆t = 10−2, ξ = θ = 0.5. In
order to investigate the frictional effects on the energy dissipation, different
coefficients of Coulomb friction are used: µ = 0.0, 0.2, 0.5, 0.8.

Figures 2,3 show the plots of the kinetic energy Ek and the total energy
Et. We observe that the total energy is quite well conserved in the case of
frictionless contact. However, in the case of frictional contact, the total energy
decreases. So the total energy is dissipated by frictional effects as expected.
It is worth noting that the dissipated energy is quantitatively calculated.

It is also interesting to examine another question: is the dissipated energy
proportional to the friction coefficient? The answer is negative according to
numerical results. The proof is illustrated by Figure 3 in which we observe
almost the same dissipated energy even with two different friction coefficients
(µ = 0.2, 0.5). In addition, the dissipated energy is less in the case µ = 0.8 than
in the case µ = 0.2 or µ = 0.5. In fact, when the friction coefficient increases,
the friction forces increase. However, the tangential slips will decrease. We
know that the dissipated energy depends not only on the friction forces but
also on the tangential slips on the contact surface.

Figure 4 shows the evolution of the von Mises stress at point A (see Fig-
ure 1). It can be seen that when the friction coefficient increases, the stress
level becomes more important. The trajectory of point B in the plane BCD
(see Figure 1 is depicted in Figure 5. We observe that the amplitude of the
displacements increases with friction coefficient as expected.

The second example simulates the deformable multibody contact between
Blatz-Ko hyperelastic bodies. In doing so, we wish to further explore the per-
formance of the present method and the developed code FER/Impact in a
large strain context and with complicated contact surfaces. In addition, this
example would illustrate the possibility to investigate the heterogeneous be-
havior of granular materials involving both deformations of grains and the
interaction of grains with friction. The problem is displayed in Figure 6. Sev-
eral grains meshed with triangular elements are locked up in a rigid box. The
left side of the box is given an horizontal motion so as to compress the grains.
The contours of von Mises stress are depicted in Figure 7 from which we ob-
serve the effect of friction on the top and bottom surfaces. We observe also
the stress concentrated zones as expected.

6 Conclusion

The main purpose of this paper is to briefly present the recent development of
the bi-potential method applied to dynamic analysis of contact problems with
Coulomb friction between hyperelastic bodies. Numerical results demonstrate
that the Bi-First algorithm for local analysis of frictional contact problems
and for global time integration of dynamics equations is suitable for a wide
range of engineering applications.
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Fig. 1. Initial configurations and meshes
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Fig. 2. Kinetic energy with different µ
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Fig. 3. Total energy with different µ
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Fig. 4. von Mises stress at point A
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Fig. 5. Trace of point B
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Fig. 6. Multibody contact: initial mesh

Fig. 7. Multibody contact: von Mises stress after loading


