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Abstract 

 

To obtain, over medium term periods, wind speed time series on a site, located in the 

southern part of the Paris region (France), where long recording are not available, but 

where nearby meteorological stations provide large series of data, use was made of 

ANN based models. The performance of these models have been evaluated by using 

several commonly used statistics such as average absolute error, root mean square error, 

normalized mean square error and correlation coefficient. Such global criteria are good 

indicators of the “robustness” of the models but are unable to provide useful 

information about their “effectiveness” in accurately generating wind speed fluctuations 

over a wide range of scales. Therefore a complementary wavelet cross coherence 

analysis has been performed. Wavelet cross coherence, wavelet cross correlation and 

spectral wavelet cross correlation coefficients, have been calculated and displayed as 

functions of the equivalent Fourier period. These coefficients provide quantitative 

measures of the scale-dependence of the model performance. In particular the spectral 

wavelet cross coherence coefficient can be used to have a rapid and efficient 

identification of the validity range of the models. The results show that the ANN models 

employed in this study are only effective in computing large scale fluctuations of large 

amplitude. To obtain a more representative time series, with much higher resolution, 

small scale fluctuations have to be simulated by a superimposed statistical model. By 

combining ANN and statistical models, both the high and the low frequency segments 

of the wind velocity spectra can be simulated, over a range of several hours, at the target 

site. 
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1. Introduction 

 

The planetary boundary layer is the lowest region of the atmosphere, directly influenced 

by the presence of the underlying earth surface. In the lowest part of this area (surface 

layer) wind represents a clean, abundant and inexhaustible energy source. Therefore, in 

the renewable industry, large series of wind speed data are needed: to identify potential 

wind turbine sites, to assess the wind energy resource of selected locations, to evaluate, 

by numerical simulations, the power values produced by wind energy conversion 

systems [1] or to estimate external load situations that drive the design of the structural 

components. As measured data, or records of sufficient duration, are not available for 

most sites, appropriate wind speed time series may be estimated from relationship of 

wind speed among several instrumented sites, submitted to the same climatic constraints.  

In practice, the long term trend of the time series, dominated by macro meteorological 

influences (with time scales of the order of a week), can be successfully estimated with 

Artificial Neural Networks (ANN) based models [2,3]. The short-term turbulent 

variations (with time scales of the order of a minute), due to local topographic and 

terrain effects, can be obtained by using statistical models [4]. In the medium term range, 

i.e. for considerations over several hours to a few days, the wind speed fluctuations are 

influenced by the prevailing large-scale motions as well as by micro-scale phenomena 

such as turbulence. As a result, two models must be combined, one for the large scale 

fluctuations and one for the small [5]. Therefore, when ANN based models are used to 

estimate wind speed, in the medium term range, their performances must be evaluated 

for all the scales between the macro- and micro-scales. Normally, only a few global 

statistical performance measures, such as correlation coefficient (R) or root mean square 

error (RMSE), are employed. But such statistics are not good indicators of the 

“effectiveness” of a model in terms of its ability to accurately predict low, medium, and 

high frequencies fluctuations. Since no appropriate statistic, to quantify the time-scale 

quality of generated wind speed series, has been found in the literature, a wavelet cross 

correlation analysis has been performed. In this work, wavelet based coefficients have 

been used to assess the overall applicability of ANN based models used to estimate 

wind speed data at a given test site, located in Evry (France).  
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2. Wind model  

 

In the atmospheric boundary layer wind is an incompressible, unsteady, air flow 

composed of eddies interacting with each other. It consists of a wide spectrum of eddy 

size ranging from large eddies, corresponding to large atmospheric phenomena, to small 

eddies, corresponding to atmospheric turbulence. In the near surface layer, velocity 

measured at a given point M, fluctuates over time. Over time periods spread, in practice, 

between 10 min and 1 h, in a classical stationary approximation, wind velocity can be 

separated into a constant mean component and a fluctuating component (turbulence) 

considered as a stationary random process, with normal distribution. Over larger time 

period, i.e. over periods of hours and days, 10-min (or hourly) mean wind is subject to a 

significant temporal trend and the instantaneous time-varying wind speed, ),( tMu


, can 

be expressed by a superposition of high frequency oscillation of small amplitude 

),(' tMu


 around a much more slowly varying sustained speed in a prevailing direction, 

),( tMU


[6] 

 ),('),(),( tMutMUtMu


  (1) 

Compared to the stationary wind speed model, which assumes that the first term is a 

constant mean speed, this model introduces a slow time-varying component, which is 

the sum of the overall time-mean value )(MU


 and low frequency fluctuation ),(
~

tMU


 

(see Fig.1) 
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~
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A strong relationship between meteorological scales and frequency of wind speed 

fluctuations is assumed: low-frequency fluctuations are dominated by macro 

meteorological phenomena (large scales flows). Thus, at a target site, slowly time-

varying wind speed series can be successfully computed with models using, as input 

arguments, data recorded in meteorological stations submitted to the same climatic 

constraints (i.e. located within a radius of a few kilometres). On the contrary, the high-

frequency fluctuations, i.e. with typical time scales ranging from seconds to few 

minutes, depend on the neighbouring environment of the place where they are observed. 

On this scale, random behaviour can be assumed and fluctuations can be obtained by 

using suitable statistical models with turbulence intensity, standard deviations and 
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spectrum, which can be characterised by few local parameters, as basic inputs [7]. Since 

several models could be used for generating accurate wind series, the validity range of 

each model must be clearly defined. 

 

Fig. 1. Wind speed components. 

3. Site, methodology and models description 

3.1. Site and methodology 

 

In the southern part of the Paris region (France), in autumn, stable conditions are 

dominant, the prevailing winds (gentle to moderate breeze) are westerly, or south-

westerly, and correspond to air masses coming from the Atlantic and crossing the 

country from west to east. During this season, suitable ANN were set up to obtain wind 

speed data, over medium term periods, at a typical suburban site, located in Evry, using 

data from three airport meteorological stations (Orly, Brétigny, Melun-Villaroche), see 

Fig. 2. The development of such models involves the following steps [2, 3, 8, 9]: (I) 

wind velocity measurement at the test site, selection of the training, test and validation 

data sets, (II) identification of the input and output variables, (III) selection of the 

network’s architecture, training of the models, (IV) validation of the models using 

various global evaluation statistics, and (V) assessment of the time-scale quality of the 

generated wind speed series, as explained in this paper. 

3.2. Selection of data sets 

 

The available data, at the reference stations, were the 10-min average horizontal wind 

speeds, simultaneously recorded, at 10 m above the ground, every 6 min, by the French 
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meteorological office and noted )t,M(Uh


. This wind speed can be split into two 

perpendicular wind components U and V. U is the component of the horizontal wind 

from the east (a positive U component represents wind blowing from the east), and V is 

the component of the horizontal wind from the north. To collect concurrent data at the 

test site, use was made of a cup anemometer and of a potentiometer driven wind 

direction indicator. Data were sampled on a PC and then processed to obtain appropriate 

values. The measurements were performed in November. Two separate data sets have 

been chosen: a training set, which contained 9000 representative meteorological data, 

and a verification set, recorded one year later. The training data set, in which the 

number of high wind speed (>7m/s) was significantly less than the number of low and 

medium wind speed, has been split into two smaller sets and used to adjust and test the 

parameters of the ANN. The verification data set covered a period of 7 days and 

consisted of relatively low wind speed (<3m/s, see Figure 8). It has been used to check 

the quality of the generated data. Both of them corresponded to meteorological 

situations typical of the considered site, in the autumn months. 

 
Fig. 2. Geographical localisation of the test site. 

3.3. Identification of the input and output variables 

 

Comparison of the measurements made at Evry (built-up suburb) with those made at the 

airport stations (flat terrains) indicated that, even when there was an enormous speed 

difference, a shape similarity in wind profiles exists. To get a quantitative measure of 
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the relatedness of the data, a classical cross-correlation analysis has been performed. 

This analysis has confirmed that the measurements, at the test site, were related to those 

made simultaneously at the 3 surrounding stations (even when one of them is leeward). 

But it is clear that such an analysis is biased towards the large-scale dynamic processes 

of large amplitude. Therefore, to obtain useful information concerning the behaviour of 

the intermediate and small-scale dynamics, the P previous measurements have also been 

used as inputs. P was determined using a trial and error procedure: the input vector was 

modified by successively adding antecedent values. A new model was developed each 

time, the best one was selected based on the analysis of the normalized mean square 

training error (see below). We concluded that, to estimate the wind speed components, 

at Evry, at time t (network’s output), the most recent 4 values (P=3), from t-3 

backwards, of both the U and V components, observed in the three stations, were of 

interest.  

3.4. Selection of the network architecture, training of the models 

 

We set up a feed forward artificial neural network for each speed component. Multilayer 

feed forward networks were chosen because they “have been widely used as time series 

forecasters” [10] and allow the prediction of wind speed at one site based on 

measurements at other sites [3]. Since the networks structure is not a key issue in this 

paper, the networks parameters will be outlined briefly, for further details the reader is 

referred to [9]. The architecture that was ultimately selected was composed of a single 

hidden layer. Activation functions were hyperbolic tangent for the hidden layer and 

linear in the output layer.The number of hidden neurons was determined using a trial 

and error procedure. This number was varied from 2 to 20. For each value, the 

Levenberg Marquardt training algorithm was used to minimize the normalized mean 

square training error, at the output layer. The optimum number of hidden neurons was 

determined to be 12 for the U component, and 10 for the V component, see table 1.  
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Table 1. Characteristics of the ANN based models 

 Model for U Model for V 

Activation functions for the input layer Linear 

Activation functions for the hidden layer Hyperbolic tangent 

Activation functions for the output layer Linear 

Inputs (i=Orly, Brétigny, Melun) Ui(t), Ui(t-1)… Ui(t-3) 

Vi(t), Vi(t-1)… Vi(t-3) 

Output Uevry(t) Vevry(t) 

Number of neurons in the hidden layer 12 10 

4. Evaluating model performance 

4.1. By using global statistics 

 

The performance of a model can be defined as its ability to reproduce series of data 

which were unknown during the building phases. Therefore our models can be assessed 

by performing a term by term comparison between the experimental verification data, 

represented by rt (t=1 to N), and the computed data, represented by ct (t=1 to N). At 

each time t, the difference between the computed and observed values, et = ct - rt, can be 

calculated. By averaging the errors over the full data set, the average absolute error 

(AAE) [11] may be computed using the following expression: 

 



N

t

te
N

AAE
1

1
 (3) 

It is clear, from this definition, that small values of this statistics indicate good 

estimation capabilities of the model. As performance measures, other well accepted 

criteria are root mean square error (RMSE) [12] and normalized mean square error 

(NMSE), which is also known as the average relative variance (ARV) (the Nash-Sutcliff 

efficiency (E), used in some references [13], can be derived from the NMSE, E = 1 – 

NMSE). The first one is simply defined as the square root of the mean square error, the 

second is the ratio of the mean square error over the natural variance of the measured 

variable 2

r :  
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A value of NMSE = 0 indicates perfect prediction while a value of NMSE=1 

corresponds to the prediction of the statistical average [14]. The correlation coefficient 

(R) quantifies the degree of similarity between the estimated and the measured values. It 

is defined as: 
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(6) 

where c  is the mean value, σc is the standard deviation of the computed wind series, r  

and σr are the mean value and standard deviation of the observed series. The values of 

(R) close to 1 indicate good model performance. In a traditional evaluation approach, 

these statistics are good indicators of the “robustness” of the model and provide a 

quantitative measure of its “efficiency” in capturing the complex relationships between 

wind data values collected on several locations. However, such error statistics are not 

good indicators of the “effectiveness” in accurately estimating non-stationary wind 

speed data with both high and the low frequency fluctuations: the square terms in 

RMSE and NMSE places a bias on the low frequency fluctuations (large scale 

atmospheric motions) which are of large amplitude, therefore the errors in estimating 

the high frequency oscillation of small amplitude will not get sufficient representation. 

Moreover, the correlation coefficient becomes invalid if the series include non-

stationary components and/or are “characterised by highly variable processes occurring 

over a wide range of scales” [15]. 

4.2. By using wavelets analysis 

 

So, to measure the accuracy of the model, at each scale of fluctuations, we have 

developed a technique based on wavelet cross correlation analysis. During the last 

decade, wavelets have been extensively employed as a tool to analyse measured data, 

but also, in the area of wind engineering, to analyse wind effects on structures [16] or to 

evaluate the quality of synthetic wind speed signals [4]. The aim of a wavelet analysis is 

to determine a time-frequency representation of a series and to assess the temporal 
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variation of the different frequencies involved. The continuous wavelet transform (CWT) 

of a signal c(t) is given as  

 



 dtttcbaWtcCWT bac )()(),()]([ *

,  (7) 








 


a

bt

a
tba 

1
)(, is the analysis wavelet (mother wavelet), it can be real or 

complex and must satisfy strict mathematical conditions, * denotes the complex 

conjugate, a is the dilatation parameter (or scale) and b is the translation parameter, used 

to adjust the shape and localisation of the wavelet, respectively in scale and time 

domains. Low parameters a compress the wavelet, in order to analyse high frequency of 

the series, while high values of a dilate the wavelet so as to analyse low frequency 

components, in the neighbourhood of b. The wavelet analysis results in a set of wavelet 

coefficients which indicate how similar the time series is to the analysis wavelet at 

different scales and positions. It is clear that the results strongly depend on the choice of 

the wavelet function and that this function must reflect the characteristics of the series. 

In this study, the Mexican hat wavelet (MHW), or Maar wavelet, has been chosen. This 

real-value function has been successfully employed for the identification of events such 

as maxima, slow rise or sudden drop in temporal series and has been used in 

atmospheric studies [17]. It is the second derivative of the Gaussian function, given as  

 22

2

)1()(
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The wavelet power spectrum, which is also known as the scalogram, can be defined as  

 
2* ),(),(),(),( baWbaWbaWbaSW cccc   (9) 

A cross wavelet power spectrum, or coscalogram, can be defined between two time 

series, c(t) and r(t), by replacing the square coefficient term with the product of the 

coefficients of each series 

 ),(),(),( * baWbaWbaSW rccr   (10) 

When the analysis wavelet is complex, SWcr(a,b) is complex, and can be separated into 

real and imaginary parts, called wavelet co- and quadratur-spectrum respectively [18]. 

The wavelet cross correlation function [19] for a given scale a and a given time lag  

can be written as  
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 ),(),(),(   baWbaWaWC rccr  (11) 

where the overbar indicates a time average. If the mother wavelet is complex, this 

function consists of a real part RWCcr(a,) and an imaginary part IWCcr(A,). For this 

study, another function, which we had defined in a previous paper [20], could be used: 

the spectral wavelet cross correlation function that can be written as 

 ),(),(),(   baSWbaSWaSWC rccr  (12) 

All these functions permit the definition of complementary wavelet correlation 

coefficients, with values ranging from 0 to 1. The cross wavelet coherence coefficient 

has been introduced [18] to measure the “intensity coherence” of the series 
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The wavelet-cross-correlation coefficient has been defined “to overcome the limitations 

of classical cross-correlation analysis” [19]  
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The spectral wavelet cross correlation coefficient [20] has been defined in order to use 

the concept of cross-correlation to detect spectral similarity 
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To highlight the presence of significant cross-correlation between the computed and 

observed series, but also to detect the scales mainly involved in such cross-correlation 

the wavelet cross coherence can be displayed as a function of scale only, by averaging 

the wavelet cross coherence over the entire time duration. It should be noted that, in 

atmospheric sciences, the results are interpreted in the time-frequency (or time-period) 

domain, rather than in the time-scale domain natural to the wavelet transform. The 

relationship between the equivalent Fourier frequency fa (or period Ta) and the wavelet 

scale can be derived analytically for a particular wavelet function. Formulas for several 

wavelet functions are given in [21]. The global wavelet coherence provides a global 

estimator of the coherence at a given scale:  
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This coefficient lies between 0 and 1, a near zero coherence indicates no relationship 

between the series, coherence close to 1 indicates strong relationship between the series. 

Moreover, to have a rapid and efficient identification of the correlation between the two 

series, at a given scale, the time lag which gives the maximum wavelet cross correlation, 

or spectral correlation, m, can be calculated for each scale. This parameter provides an 

estimator of the temporal synchronisation between two series at a given scale. By 

plotting the peak wavelet-cross-correlation coefficient WRcr(a,m), or the peak spectral 

wavelet-cross-correlation coefficient SWRcr(a,m), and the relative time lag (m/Ta) on 

the same graph, we can check how the model behaves for all the scales: good 

synchronizations correspond to small relative time lag values, high correlations 

correspond to peak correlation coefficients value 1, whereas value 0 indicates a lack of 

correlation. At a given scale, good synchronisation and high correlation indicate good 

model performance.  

5. Results and discussion 

5.1. Global statistics 

 

The results are shown on Fig. 3 and 4. The observed and estimated wind speed series 

appear to display a quite satisfactory match. 

 

Fig. 3. Estimated and observed U component 
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Fig. 4. Estimated and observed V component 

The results in terms of various global statistics are presented in table 2. From these 

statistics, it can be said that the ANN model predictions are in good agreement with the 

experimental data: the values of (R) exceed 0.9 (0.95 for the second model) and the 

(NMSE) values are inferior to 0.09. These good results quantify the “effectiveness” of 

the models in terms of their ability to accurately predict wind speeds at the target site 

using data from neighbouring reference locations. Therefore, this gives a good 

indication of the usefulness of the models in connecting wind data values collected on 

several locations. However, by using these classical performance measures, only the 

overall performances are considered. To measure the accuracy of the models at each 

scale of fluctuations, a complementary wavelet coherence analysis is needed.  

 

Table 2. Performance of the ANN based models 

 Model for U Model for V 

AAE (m/s) 0.19809 0.1794 

RMSE (m/s) 0.24959 0.2368 

NMSE 0.089488 0.072926 

R 0.92251 0.95487 

5.2. Wavelet coherence 

 

The mean wavelet cross coherence coefficients are depicted in Fig. 5(a) and 5(b), as 

functions of the equivalent Fourier period, for the U and V component models 

respectively.  
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For the U component, the mean wavelet coherence increases with scale, reaches a step 

value close to 0.5, and significantly increases for periods superior to 2.104 s, which 

correspond to low velocity fluctuations. Strong mean wavelet coherence, close to 0.8, is 

found at larger scales, while low level of coherence is observed at periods smaller than 

104 s. For the V component, the mean coherence significantly increases for periods 

longer than 104 s and exceeds 0.8 for periods longer than 105 s. It should be pointed out 

that these coefficients only provide a global estimator of the wavelet coherence. 

However they indicate that the model performances increase with scales and that the 

trained models provide satisfactory results only at larger scales.  

 

Fig. 5. Mean wavelet cross coherence coefficients between the estimated and observed wind 

speed components 

5.3. Wavelet cross-correlation 

 

A wavelet cross-correlation analysis is also performed. The peak wavelet-cross-

correlation coefficients and the relative time lag are depicted in Fig. 6(a) and 6(b), as 

functions of the equivalent Fourier period, for the U and V component models 

respectively. These results confirm the wavelet coherence results. For both components, 

the peak wavelet cross correlation coefficients increase with increasing scale, are greater 

than 0.8 for periods longer than 2.104 s and exceed 0.9 for the periods longer than 5.104 

s, while the relative time lags are close to zero. 
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The results provide a quantitative measure of the inefficiency of the models for the 

generation of high frequency fluctuations and of their accuracy to generate the low-

frequency fluctuations. But, since the coefficient continually increases with increasing 

scales, it seems difficult to define the “reasonable level” to which the correlation 

becomes “significant”. Thus it is not possible to clearly define the range of validity of 

the models.  

Fig. 6. Peak wavelet-cross-correlation coefficients (-o-), and relative time lag (----), between 

the estimated and observed wind speed components 

5.4. Spectral wavelet cross-correlation 

 

To complete this wavelet cross correlation study, the peak spectral wavelet-cross-

correlation coefficients, and relative time lag, are depicted in Fig. 7(a) and 7(b), as 

functions of the equivalent Fourier period, for the U and V component models 

respectively. For both components, for periods shorter than 104s, the peak spectral 

wavelet cross-correlation coefficients are low and/or the relative time high. Then, the 

peak correlation coefficients significantly increase as the scale increases, and reach unit 

value in the period range longer than 2.104 s, while relative time lag are close to zero. It 

should be noted that the correlation values observed for periods shorter than 2.103 s, for 

the V component, are not representative since the relative time lag is close to 1. An 

examination of these graphs shows that the peak spectral wavelet cross-correlation 

coefficients reach step value close to 1 for high spectral correlations. As a result, by 

using these coefficients, it is possible to derive the range of validity of the models. Thus, 
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one may conclude that the tested models, based on artificial neural networks, to define 

the time-varying wind speed, can be applied only to obtain large scale components of 

the time series with low frequency fluctuations and typical time periods longer than 

2.104 s. This is a logical result since long-term regional wind data do not contain enough 

information for accurate computation of short term local phenomena.  

 

Fig. 7. Peak spectral wavelet-cross-correlation coefficients (-o-), and relative time lag (----), 

between the estimated and observed wind speed components 

6. Combining ANN and statistical models 

 

Time-varying wind speed can be expressed by a superposition of a rapidly varying 

component of small amplitude superimposed on a much more slowly varying one, see 

Fig. 1. The results presented in the previous section have shown that the ANN based 

models can be used to generate the slowly varying component of large amplitude. To 

generate high-frequency fluctuations, that occur in the form of wind gusts, over a 

typical time interval [t,(t+T)], with T less than 2.104 s, it is necessary to use another 

synthetic data generation technique. Over such an interval, in a classical approximation, 

we assumed that the mean flow, close to surface, is directed parallel to the ground, 

therefore the wind velocity field is represented by the sum of a constant horizontal mean 

component, with constant direction, and a turbulent component considered as zero-mean 

stationary random process, with normal distribution  

 k)t,M('wj)t,M('vi)t,M('ui)M(U)t,M(u h


  (17) 
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)M(Uh  is the mean horizontal wind velocity over the time interval [t,(t+T)], u’(M,t), 

v’(M,t) and w’(M,t) are the longitudinal, lateral, and vertical turbulence components, i


 

is the unit vector in the mean wind direction directed parallel to the ground, k


is vertical 

and directed upwards.  

 

Fig. 8. Wind speed and direction derived from the ANN and velocity fluctuations over 3 

characteristic intervals 

Since the wind series given by the ANN appear to be locally stationary (their statistical 

properties are slowly varying over time), they can be used in order to estimate the mean 

wind speed velocity and direction over the designated time interval: the wind 

components given by the ANN are converted to speed and direction. The direction from 

which the wind is blowing is given by  

 







 

)t,M(V

)t,M(U
tan

180
)t,M( 1


  (18) 
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It increases clockwise from north, when viewed from above, and is expressed in degrees 

(N: 0°, E: 90°, S: 180°, W: 270°). The horizontal wind speed is  

 )t,M(V)t,M(U)t,M(U 22

h   (19) 

The slowly varying wind speed and direction are plotted in Fig. 8(a) and 8(b) 

respectively.  

The mean wind speed )M(Uh  and mean wind direction (the i


vector direction) are 

obtained by averaging these quantities over the time interval T. Then, by using a 

suitable model to describe the statistical properties of turbulence, fluctuating 

components can be obtained by auto regressive moving average (ARMA) models or by 

wave superposition method. A full review of these techniques has been made in [4]. The 

conclusion is that the latter method “appears to give the best results in terms of overall 

quality of the generated signal”. Following this assumption the generation could be 

carried out using inverse FFT techniques. The basic generation parameters are the 

statistical characteristics of the fluctuating wind speed components, such as their power 

spectral density function (PSDF), denoted as )'w,'v,'u()n(S  , which describes the 

wind energy distribution over frequency n, their variance 2

 , which quantifies the 

turbulence intensity I , and their integral length scale in the mean wind direction, L , 

which defines the position of the turbulence spectra content. In practice, these 

parameters vary with height (z is the height of the point M above the ground), with the 

roughness length z0, and with the mean wind velocity. Their choice can be made 

through the use of empirical, semi empirical and theoretical statistical equations. A lot 

of data exist both in literature and in the building codes. In this study, the unified model, 

proposed in [7] and used for Eurocode 1 [22], has been chosen.  
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'u'w'u'v'u 1.025.01    

Measurements on the site of Evry give a roughness length z0 = 0.75m and a longitudinal 

turbulence intensity Iu’ = 0.3, typical of suburban terrain. It should be noted that, since 

the wind speed variance and PSDF depend strongly on the mean wind speed, the 

statistical properties of turbulence will change in accordance with the changing “mean” 

wind speed derived from the ANN. For example, velocity fluctuations given by the 

inverse Fourier transform method are plotted in Fig. 8(c), 8(d) and 8(e) over three time 

intervals of 256 s. Their statistical properties are well functions of the slow varying 

“mean” wind speed: in particular, standard deviation significantly increases with 

increasing mean values.  

7. Conclusion 

 

Wavelet coherence, wavelet cross correlation and spectral wavelet cross correlation 

coefficients can be employed as useful performance estimators of ANN based models. 

These coefficients provide quantitative measures of the cross-correlation relationships, 

in terms of scale and time lag, between the computed and experimental verification data 

sets. If the data are characterized by fluctuations occurring over a wide range of scales, 

the spectral wavelet cross correlation coefficient, initially defined to calculate the 

velocity of a thermal field [20], allows the determination of the scale below which the 

model fails to represent the fluctuations. In practice, the peak spectral wavelet-cross-

correlation coefficient and the relative time lag must be plotted on the same graph as 

functions of the equivalent Fourier period: in the validity range of the model, the peak 

spectral correlation reaches unit value, while relative time lag is close to zero. This 

method provides a simple yet effective way to obtain a quantitative measure of the 

performance of a model at any scale. As a practical application, wavelet cross 

correlation analysis has been used to evaluate the performance of ANN based models 

used to estimate the local wind speed, on a selected site, from wind speed data recorded 

at neighbouring meteorological stations. In our case, it confirms that only the largest 

scales of motion (low speed fluctuations) can be estimated from wind speed data 

recorded at nearby sites. The smallest scales (high speed fluctuations) have to be 

simulated by a superimposed short term statistical model. Based on the above method, 
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both the high and the low frequency segments of the wind velocities spectra can be 

simulated, over a range of several hours, at the target site.  
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