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ABSTRACT

Conjugated trienones and isomeriel-gyrans were found to engage in a novel
cycloisomerization cascade toward cyclopdsjfafan derivatives. Knoevenagel chemistry

and pericyclic reactions meet again to expand thgepe-carbonyl manifold.
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Cycloisomerization reactions do not cease to armsheenists who stand still trying
to grasp the circle dance of atoms in their mokesulndeed Nature also makes use of these
atom-economical transformations to construct mahyhe rings found embedded in its
precious products. One notable example of thisiespericyclic oxa-fi-electrocyclization
reaction of dienone (or dienal) structures to yidld well-known B-pyran isomers. This
reversible process is usually masked by subseqtramsformations, mostly [4+2]
cycloadditions, accounting for the biosynthesis »@nthipungolide, torreyanic acid,
epoxyquinols A-C, pinnatal, and so many other elegatural molecules of intere$t.

The domino Knoevenagel condensation/oxeeectrocyclization reaction between
enals and 1,3-dicarbonyl substrates, usually redeto as formal [3+3] cycloaddition, has
become a very useful strategy for the synthesis nafural 2H-pyran-containing
compound$:®> Our studies on this condensation usiag,y,d-unsaturated aldehydes
revealed that, depending on the substitution patiad electronic properties, apart from the
expected Teconjugated dicarbonyl products and theid-R@yran isomers 1 and 2),
previously unrelated cyclopenbdfuran isomers of typ& can also be obtained (Scheme
1)® To account for the formation of these unexpectembdpcts, a domino
Knoevenagel/cationic bicyclization pathway was sy featuring a pentadienyl-
cyclopentenyl cation rearrangement at the end efpiblyene chain of the putative, non-
isolable, trienone intermediates. Indeed, iron(dhloride was shown to catalyze the
isomerization of stable isolable trienones of typ@ato these heterocyclic isomer®) @nd

the process was hence classified as an interruiigtbgous iso-Nazarov reactidn.
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Scheme 1. Manifold of the Knoevenagel chemistry using 1,3-dicarbonyl substrates and

a,B,y,0-unsaturated aldehydes
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Due to the wide application of molecular switchesthe fabrication of novel
materials and devices, the dienom&f@yran isomerism has received considerable
attention®® Krasnaya and Hsung have both independently prdvidemples of dienones
that rearrange to their pyranic isomers upon thetraatment>** In order to test whether
vinylogous systems of typk behave in such a way, a toluene solution of medbktrate
la, prepared via Knoevenagel condensation betweencyt/8hexanedione and
sorbaldehyde, was heated under reflux (Scheme P&)our surprise, after 30 hours of
heating, cyclopentfffuran isomer3a was found as the only isolable product of the
reaction. The same reactivity profile was found dtier related substrates (Scheme 2B).
Although the use of higher-boiling solvents or sdalsystems provided faster
transformations, marked reduced yields ensued. pbssibility to incorporate the
Knoevenagel condensation and cycloisomerizatiortgs® into a one-pot transformation
was explored as well but, unfortunately, no sugabtperimental conditions for making it a

valuable process could be found.
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Although only moderate yields could be obtained andeed more efficient
transformations were found using our previously allewed acid-promoted approach to
these cyclopenth[furan derivatives:;*? from a mechanistic viewpoint we were completely
amazed by this notable cycloisomerization. To antéar cyclopentdj|furan formation, a
mechanistic proposal was elaborated indeed invglemginally sought B-pyran isomers
as intermediates (Scheme 2C). An initial oxaetectrocyclic ring closure/opening
sequence, similar to that proposed to account Herisomerization of retinafs, would
provide reactivey,d-Z-diastereomer of trienon&a substrate. Strain could then force
polyene chain to a conformation in which it is dig®d into two #ie’ moieties.
Intramolecular f4.+-44 cycloaddition would then afford cyclopentidfuran producta. *H
NMR monitoring of these reactions carried out iluémeds at 100 °C threw no evidence
of any of the proposed intermediates. DFT calooiteti at the M06/6-31+G** level of
theory were then performed to assess the feagilfithe proposed pathway (Scheme 3
and Supporting Information; for other DFT functit®also see Supporting Informatio#).
Overall, the bicyclization of substratta into cyclopentdj]furan isomer3a takes six
elementary steps and liberates 7.8 kcal/mol of &ifsbe energy:i) conversion ofs-
trangs-transE/E la into thes-cigs-transE/E isomerA; (ii) oxa-@t electrocyclization to
give 2a; (iii) retro oxa-@t leading to thes-cigs-transZ/E isomerB; (iv) conversion oiB
into thes-trangs-transZ/E isomerC; (v) formation of thes-trangs-cisZ/E isomerD; and
(vi) [{4at+d4s] cycloaddition giving rise to the final produg8a. As shown by the lengths of
the forming C-O and C—C bonds S D-3a (2.68 A and 1.94 A respectively), the

construction of the two rings occurs in an asynocbus fashion in favor of the
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cyclopentene framework. This last step is the m¢ermining one AG's = 28.1

©CoO~NOUTA,WNPE

kcal/mol).
11 Scheme 2. Thermal isomerization of conjugated trienones 1 to cyclopenta[b]furan

13 derivatives 3
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37 Scheme 3. Calculated energy profile (AGaes, kcal/mol) for the bicyclization of

40 conjugated trienone 1a
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Our unexpected findings made us revisit the origindandem
Knoevenagel/polycyclization reaction betweddidiketones or (-ketoesters anda-
substituted dienals, for which conjugated trienowese proposed as direct precursors of
the cyclopentdjjfuran products3, and H-pyrans of type2 were regarded rather as
products of an unrelated dead-end pathdy.order to find evidence of any intermediate
that could be involved, condensation between msdlestrates dimedoné)(and 2-methyl-

5-phenyl-penta-2,4-dienab) was carried out in an NMR tube (Figure 1).

Figure 1. '"H NMR monitoring of the tandem Knoevenagel-bicylization sequence

toward cyclopenta[b]furans (EDDA = ethylenediammonium diacetate)
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MeZ 02equiv Ha |, He PN
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H H .
d a H
H, b
|
‘\H 1 5min
U 4 M
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As soon as reaction commenced and before any préduas producedH NMR
monitoring indeed revealed the presence of a mtdecspecies that was gradually

consumed and completely depleted after 30 hougai(€il). This presumable intermediate

ACS Paragon Plus Environment



Page 7 of 17 The Journal of Organic Chemistry

gives rise to signals which can be tentativelyilaited to the structure oH2pyran2i. The

uncrowded vinyl region of thtH NMR spectrum features a broad singlet at 6.32 (i)

©CoO~NOUTA,WNPE

11 two doublets centered at 6.62 and 5.25 ppgaittl H, J = 16.0 and 7.5 Hz, respectively)
13 and a doublet of doublets at 6.22 ppm, (B = 16.0, 7.5 Hz). In addition, the oxygen
bearing methine carbon would account for'tf&@NMR signal at 81.1 ppm (see Supporting
18 Information). Since all attempts to isolate thieermediate foundered, possibly due to rapid
20 isomerization to producdi, we envisioned that hydrogenation would allowtitpping'®
After considerable experimentation using differaldehydes and dicarbonyl substrates,
o5 pyran2j.eq could be isolated in low yield along with expecteduced cyclopentaffuran

27 3jres When reaction between dimedon®) @nd 2,5-diphenyl-penta-2,4-dienad) (was

29 interrupted before completion and submitted to bgdnation under heterogeneous

conditions using Adam’s catalyst (Scheme 4).

36 Scheme 4. Further evidence for the intermediacy of 2H-pyrans en route to

cyclopenta[b]furan isomers

41

42

43 j/HEDDA Hy (1 atm) 7&
cat PtOz cat

44 7@\ CH,Cl,  EtOAc

45 3ired (55%) 2red (10 %)

50 This finding that B-pyrans could be transient intermediates en rowe t
52 cyclopentap]furans prompted us to evaluate whether the cyminerization of stable,

54 isolable H-pyrans, may be feasible. As a proof-of-concepmpound2k was chosen as
model substrate (Scheme 5). Thid-gyran was prepared via Knoevenagel condensation

59 between aldehyd® and 4-hydroxy-1-methyl-2f)-quinolone {) as previously reported.
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When a toluene solution of2k was subjected to reflux conditions,
cyclopentap]furoquinolone3k was indeed found as the only isolable productZith §ield
(Scheme 5). In addition, the one-pot Knoevenagehdeasation/cycloisomerization
sequence, in this case, was shown to be acce¢489e yield). The isomerization of pyran
2k could also be promoted using ferric chloride (Liepin dichloromethane at reflux,
albeit in lower yield (40%). In this case, the ig@T would proceed through initial Lewis
acid promoted heterolytic C-O bond cleavage geimgy&iey polyenyl catioric which, after

a 4re conrotatory electrocyclization and subsequenest®lective trapping of brand new
cyclopentenyl cation intermediate by enolic oxygewould provide cis-fused

cyclopentap]furan producBk.

Scheme 5. Rearrangement of a stable 2-vinyl-2H-pyran
OH
A
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In summary, a novel cycloisomerization pathway lagbr Knoevenagel chemistry
was disclosed. Trienones anHl-pyrans were found to smoothly rearrange to preshou
unrelated isomers, cyclopentifirans. Indeed, this heterocyclic scaffold is vapieead in

Nature® Taking into account the ease with which theserabfes are stereoselectively
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constructed from simple precursors, the questitsesaas to whether this approach could

©CoO~NOUTA,WNPE

account for the biosynthetic origin of natural pots such as citridone A (Scheme'5),
11 which shares the same tricyclic cyclopentafuropymi core present in produgk. Efforts

13 to clarify this scenario are underway.

18 EXPERIMENTAL SECTION

20 Unsaturated aldehyd&sand6 have been previously prepared by our grdup.
General procedure for the preparation of substrates 1 and 2 via condensation of 1,3-

o5 dicarbonyl compounds and unsaturated aldehydes. A mixture of 1,3-dicarbonyl

27 compound (1 mmol), unsaturated aldehyde (1 mmol, efuiv) and 1,2-
29 ethylenediammonium diacetate (EDDA, 36 mg, 0.2 mrimICH,Cl, (5.0 ml, 0.2 M) was
heated at reflux until complete consumption of hidke substrate (TLC monitoring,
34 approximately 3-4 hours). The solvent was then eratpd under reduced pressure and the
36 residue was purified by flash column chromatographysilica gel (eluent hexanes/ethyl
acetate) to afford the desired unsaturated substftor 2. Conjugated dicarbonyl
41 substratesla-h and H-pyran substrat@k have been previously prepared by our group
43 using this protocal:’ For the'H NMR monitoring of the tandem Knoevenagel-bicyliaa
sequence between dicarbonyl substrate and unsaturated aldehyd® toward

48 cyclopentalp]furan 3i®®, this same protocol was used employing Gi6lsolvent instead of
50 CH.Cl,.

52 General procedure for the thermal cycloisomerization toward cyclopenta[b]furans 3.

55 A solution of conjugated dicarbonyl substrater 2H-pyran2 (1 mmol) in toluene (10.0
57 ml, 0.1 M) was heated at reflux until complete aonption of substrate (TLC monitoring).

59 The solvent was then evaporated under reducedypeeasd the crude product was purified
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by flash column chromatography on silica gel (etusexanes/ethyl acetate) to afford the
following compounds.

Cyclopenta[b]furan3a.’” Yield: 114 mg (60%). Colorless to pale yellow dolinp 46.0-
47.0 °C.*H NMR (300 MHz, CDCY): §6.02 (ddJ = 5.6 Hz,J = 2.2 Hz, 1H), 5.82 (df] =
8.6 Hz,J = 1.8 Hz, 1H), 5.74 (df] = 5.6 Hz,J = 2.0 Hz, 1H), 3.27 (dgl = 8.5 Hz,J = 1.8
Hz, 1H), 2.84 (qquint) = 7.3 Hz,J = 1.9 Hz, 1H), 2.39 (td] = 6.4 Hz,J = 1.6 Hz, 2H),
2.32 (t,J = 6.3 Hz, 2H), 2.00 (quing = 6.4 Hz, 2H), 1.18 (d] = 7.3 Hz, 3H).
Cyclopenta[b]furansb.” Yield 147 mg (55%). Colorless solid. mp 70.0-7400*H NMR
(300 MHz, CDC}): 07.37-7.29 (overlapping m, 4H), 7.28-7.20 (overiagpm, 6H), 6.08-
6.02 (overlapping m, 2H), 5.92-5.84 (overlapping2H), 5.80-5.72 (overlapping m, 2H),
3.47-3.27 (overlapping m, 4H), 2.95-2.83 (overlagpm, 2H), 2.67-2.54 (overlapping m,
8H), 1.23-1.17 (overlapping m, 6H).

Cyclopenta[b]furan3c.®® Yield 162 mg (55%). Pale yellow solid. mp 95.0-96@®. *H
NMR (300 MHz, CDCY): 6 7.34-7.27 (m, 2H), 7.23-7.17 (m, 3H), 5.90 (dins 8.5 Hz,
1H), 5.67 (gJ = 1.6 Hz, 1H), 3.83 (bs, 1H), 3.58 (din= 8.3 Hz, 1H), 2.31-2.26 (m, 2H),
2.25-2.22 (m, 2H), 1.65 (bs, 3H), 1.11 (s, 3H) 81§, 3H).

Cyclopenta[b]furan3d.” Yield 135 mg (66%). Colorless liquidH NMR (300 MHz,
CDCL): 06.09-6.01 (m, 1H), 5.84-5.74 (m, 2H), 3.34 (dh% 8.4 Hz, 1H), 2.81-2.71 (m,
1H), 2.24 (bs, 2H), 2.19 (bs, 2H), 1.67-1.38 (m),2H08 (bs, 3H), 1.06 (bs, 3H), 0.961t,
= 7.3 Hz, 3H).

Cyclopenta[b]furan3e.” Yield 191 mg (64%). Colorless to pale yellow ligutH NMR

(300 MHz, CDC4): 56.00 (d,J = 2.9 Hz, 1H), 5.89 (dm] = 8.2 Hz, 1H), 5.85 (d] = 2.2
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Hz, 1H), 5.58-5.54 (m, 1H), 3.84 (bs, 1H), 3.78,(b& 8.3 Hz, 1H), 2.27 (bs, 2H), 2.25-
2.19 (overlapping signals, 5H), 1.69 (s, 3H), (®X8H), 1.07 (s, 3H).
Cyclopenta[b]furan3f.” Yield 194 mg (75%). Pale yellow solid. mp 98.0®9C.'"H NMR
(300 MHz, CDC}): §5.72 (dtd,J = 8.8 Hz,J = 2.2 Hz,J = 0.6 Hz, 1H), 5.41 (q] = 1.8
Hz, 1H), 3.31 (dg) = 8.8 Hz,J = 1.8 Hz, 1H), 2.50 (dm] = 13.2 Hz, 1H), 2.422.31(m,
2H), 2.25 (d,J = 1.3 Hz, 2H), 2.20 (s, 2H), 1.97 (btd,= 13.2 Hz,J = 5.4 Hz, 1H),
1.90-1.79 (m, 1H), 1.79-1.69 (m, 1H), 1.37 (& 13.3 Hz,J = 3.3 Hz, 1H), 1.17 (qt] =
12.9 Hz,J = 3.8 Hz, 1H), 1.08 (s, 3H), 1.07 (s, 3H), 0.98,(#= 13.1 Hz,J = 3.4 Hz, 1H).
Cyclopentalb]furar3g.’ Yield 109 mg (40%). Colorless to pale yellow solith 42.0-43.0
°C.*H NMR (300 MHz, CDCJ): 6.02 (dd,J = 5.6 Hz,J = 2.2 Hz, 1H), 5.84 (d] = 8.5
Hz,J = 2.0 Hz, 1H), 5.74 (dt] = 5.6 Hz, J = 2.0 Hz, 1H), 3.29 (db= 8.5 Hz,J = 1.8 Hz,
1H), 2.84 (qquint]) = 7.1 Hz,J = 2.2 Hz, 1H), 2.24 (d] = 1.6 Hz, 2H), 2.20 (bs, 2H), 1.18
(d,J = 7.3 Hz, 3H), 1.08 (s, 3H), 1.06 (s, 3H).

Cyclopenta[b]furan3h. Yield 171 mg (55%). Colorless to pale yellow liduiR (film)
(cmi): 3024, 2918, 1665, 1614, 1589, 1377, 124¥ NMR (CDChk, 300 MHz): & 7.36-
7.27 (m, 2H), 7.25-7.18 (m, 1H), 7.18-7.11 (m, 25i)5 (dm, J = 8.7 Hz, 1H), 5.66-5.61
(m, 1H), 3.76 (dm,) = 8.7 Hz, 1H), 3.67 (bs, 1H), 2.23 (kb= 1.2 Hz, 3H), 2.18 (s, 3H),
1.58 (bs, 3H)**C NMR (CDC}, 75 MHz): §194.4 (C), 167.1 (C), 150.1 (C), 143.1 (C),
128.6 (2 x CH), 127.3 (2 x CH), 126.5 (CH), 124CH{, 116.9 (C), 91.5 (CH), 63.0 (CH),
55.8 (CH), 29.6 (Ch), 15.3 (CH), 15.2 (CH). HRMS (ESI)m/zcalcd. for G/H1s0,Na [M

+ NaJ 277.1199, found 277.1191.
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Cyclopenta[b]furan3k. Yield 204 mg (62%). Pale yellow solidhp 119.0-120.0 °C. IR
(film) (cm™): 3057, 3026, 2970, 2924, 1655, 1636, 1595, 13894.'"H NMR (CDCk,
300 MHz): 07.78 (dd,J = 7.8 Hz,d = 1.3 Hz, 1H, 1-H), 7.57 (ddd,= 8.6 Hz,J = 7.6 Hz,
J=1.4 Hz, 1H, 3-H), 7.50-7.43 (m, 2H, Ar-H), 7.4131 (overlapping m, 3H, 4-H, Ar-H),
7.28-7.18 (overlapping m, 2H, 2-H, Ar-H), 6.11-6.04, 2H, 8-H, 9-H), 4.33 (bs, 1H, 7-
H), 3.73 (s, 3H, N-CH), 3.55 (bd,J = 1.7 Hz, 1H, 6b-H), 1.71 (s, 3H, 9a-@H"*C NMR
(CDCls, 75 MHz): J 161.3 (C, C-6), 160.0 (C, C-10a), 143.6 (C, ABDB (C, C-4a),
137.1 (CH, C-8), 133.8 (CH, C-9), 130.8 (CH, C-B8.5 (2 x CH, Ar), 127.3 (2 x CH,
Ar), 126.5 (CH, Ar), 123.4 (CH, C-1), 121.4 (CH,&}-114.3 (CH, C-4), 112.9 (C, C-10b),
111.4 (C, C-6a), 104.3 (C, C-9a), 58.8 (CH, C-@8§.,5 (CH, C-7), 28.8 (Ckl N-CH),
25.5 (CH, C9a-CH). HRMS (ESI)m/z calcd. for GoHooNO, [M + H]* 330.1489, found
330.1479.

Tandem condensation/hydrogenation for the trapping of 2H-pyran intermediate en
route to cyclopenta[b]furans. A mixture of 1,3-dicarbonyl substrate(140 mg, 1 mmol),
unsaturated aldehyd(234 mg, 1 mmol), and EDDA (36.0 mg, 0.2 mmolXdH,CI, (5.0
mL) was heated at reflux for 4 hours. The solveaswhen evaporated under reduced
pressure and the residue was passed through a phtbrtof silica gel (eluted with
hexanes/ethyl acetate). The solvent was then easgubunder reduced pressure and the
crude mixture was dissolved in ethyl acetate (5 fird this solution was added Bt(30
mg), and the resulting suspension was degassegltihtes (three vacuum/hydrogen cycles

to remove air). The suspension was vigorously estirunder a hydrogen atmosphere
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(balloon, ca.l atm) at room temperature for 30 neisufiltered through celite, and
concentrated under reduced pressure. The residwe puaified by flash column
chromatography on silica gel (hexanes/ethyl acetatafford product®j e (36 mg, 10%
yield) and3j e (197 mg, 55% vyield).

2H-Pyran 2j,eq. Colorless solid. mp 140.0-141.0 °C. IR (KBr) (©m3082, 3059, 3022,
2951, 2926, 2907, 1637, 1491, 1447, 1398, 12130.1H NMR (CDCk, 300 MHz): 0
7.36-7.16 (overlapping m, 10H), 3.78 (bs, 1H), 3(®8, J = 6.9 Hz, 1H), 2.46-2.39
(overlapping m, 4H), 2.32-2.05 (overlapping m, 4H)6 (s, 3H), 1.12 (s, 3H)°C NMR
(CDCls, 75 MHz): §194.2 (C), 174.8 (C), 144.0 (C), 142.5 (C), 1284 CH), 128.3 (2 x
CH), 127.6 (CH), 127.0 (2 x CH), 125.8 (CH), 127x CH), 115.1 (C), 103.8 (C), 59.4
(CH), 51.0 (CH), 50.4 (CH), 39.9 (Ch), 37.7 (CH), 34.1 (C), 29.8 (Ch), 29.0 (CH),
28.0 (CH). HRMS (ESI)m/zcalcd. for GsH2eNaO, [M + Na]* 381.1825, found 381.1815.
Cyclopenta[b]furan3j . Colorless liquid. IR (film) (cril): 3059, 3026, 2953, 2926, 2907,
1625, 1392, 1217*H NMR (CDCk, 300 MHz): & 7.35-7.11 (overlapping m, 8H), 7.10-
7.02 (overlapping m, 2H), 4.29 (dt= 10.0 Hz,J = 3.5 Hz, 1H), 3.20 (td) = 7.0 Hz,J =
3.5 Hz, 1H), 2.81-2.45 (overlapping m, 4H), 2.432(overlapping m, 4H), 1.84-1.53 (m,
2H), 1.11 (s, 6H)**C NMR (CDC}, 75 MHz): 6 197.7 (C), 168.8 (C), 141.1 (C), 139.9
(C), 128.4 (2 x CH), 128.28 (2 x CH), 128.26 (2 W)C127.9 (2 x CH), 126.7 (CH), 125.9
(CH), 109.7 (C), 79.2 (CH), 50.5 (GH 42.3 (CH), 40.2 (CH), 32.1 (C), 32.0 (GH 31.0
(CHy), 28.5 (CH), 28.1 (CH), 21.4 (CH). HRMS (ESI)m/z calcd. for GsHzsNaO, [M +
Na]" 383.1981, found 383.1969.

Lewis acid promoted cycloisomerization of 2H-pyran 2k. To a solution of pyran

derivative2k® (329 mg, 1 mmol) in CkCl, (10.0 ml, 0.1 M), FeGI(167 mg, 1 mmol) was
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added. The mixture was heated at reflux until catglkconsumption of substrate (TLC
monitoring, approximately 3 hours). The solvent when evaporated under reduced
pressure and the residue was purified by flash neolichromatography on silica gel

(hexanes/ethyl acetate) to afford cyclopdnitafan 3k (132 mg, 40% yield).
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