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RIGID AFFINE SURFACES WITH ISOMORPHIC A2-CYLINDERS

ADRIEN DUBOULOZ

Abstract. We construct families of smooth affine surfaces with pairwise non isomorphic A1-cylinders but whose
A2-cylinders are all isomorphic. These arise as complements of cuspidal hyperplane sections of smooth projective
cubic surfaces.

Introduction

The Zariski Cancellation Problem, which asks whether two, say smooth affine, algebraic varieties X and Y with
isomorphic cylinders X ×An and Y ×An for some n ≥ 1 are isomorphic themselves, has been studied very actively
during the past decades culminating recently with a negative solution in dimension 3 and positive characteristic
for the case X = A3 [7]. The situation in the complex case, and more generally over any algebraically closed field
of characteristic zero, is more contrasted: cancellation is known to hold for curves [1] and for A2 [6], but many
counter-examples in every dimension higher or equal to 2 have been discovered (see [14] for a survey), inspired by
the two pioneering constructions of Hochster [8] and Danielewski [2].

Essentially all known families are counter-examples to the cancellation of 1-dimensional cylinders which arise
from the existence of nontrivial decompositions of certain locally trivial A2-bundles over a base scheme Z. Namely,
Hochster type constructions rely on the existence of non free, 1-stably free, projective modules which in geometric
term correspond to non trivial decompositions of the trivial bundle Z × Ar+1 → Z into a trivial A1-bundle over a
nontrivial vector bundle E → Z of rank r ≥ 1. For every such bundle, the varieties X = E and Y = Z × Ar have
isomorphic cylinders X×A1 and Y ×A1, and one then gets a counter-example to the cancellation problem whenever
X and Y , which by definition are non isomorphic as schemes over Z, are actually non isomorphic as abstract algebraic
varieties [10]. In contrast, Danielewski type constructions usually involve non trivial decompositions of a principal
homogeneous G2

a-bundle W → Z into pairs W → X → Z and W → Y → Z consisting of trivial Ga-bundles over
nontrivial Ga-bundles X → Z and Y → Z with affine total spaces, with the property that W is isomorphic to the
fiber product W = X ×Z Y . The isomorphism X ×A1 ≃W ≃ Y ×A1 is granted by definition, and similarly as in
the previous type of construction, one obtains counter-examples to the cancellation problem as soon as X and Y
are not isomorphic as abstract varieties.

Non-cancellation phenomena with respect to higher dimensional cylinders are more mysterious. In fact, it seems
for instance that not even a single explicit example of a pair of non-isomorphic varieties X and Y which fail the
A2-cancellation property in a minimal way, in the sense that X × A2 and Y × A2 are isomorphic while X × A1

and Y × A1 are still non isomorphic, is known so far. In this article, we fill this gap by constructing a positive
dimensional moduli of smooth affine surfaces which fail the A2-cancellation property minimally. That such varieties
exist was certainly a natural expectation, and their existence is therefore neither really surprising, nor probably
exciting in itself due to the abundance of simpler counter-examples to the cancellation problem. Their interest lies
rather in the fact that they provide additional insight on the algebro-geometric properties that a variety should
satisfy in order to fail cancellation.

Indeed, it follows from Iitaka-Fujita strong Cancellation Theorem [9] that a smooth affine variety X which fails
cancellation has negative logarithmic Kodaira dimension, a property conjecturally equivalent in dimension higher
or equal to 3 to the fact that X is covered by images of the affine line and equivalent for surfaces to the existence
of an A1-fibration π : X → C over a smooth curve [12], i.e. a flat fibration with general fibers isomorphic to
the affine line. In the particular case of the cancellation problem for 1-dimensional cylinders, a further striking
discovery of Makar-Limanov is that the existence of nontrivial actions of the additive group Ga on X is a necessary
condition for non-cancellation. Namely, Makar-Limanov semi-rigidity theorem [11] (see also [5, Proposition 9.23])
asserts that if X is rigid, i.e. does not admit any nontrivial Ga-action, then the projection prX : X × A1 → X
is invariant under all Ga-actions on X . As a consequence, if either X or Y is rigid then every isomorphism
between X ×A1 and Y ×A1 descends to an isomorphism between X and Y . Combined with Fieseler’s topological
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description of algebraic quotient morphisms of Ga-actions on smooth complex affine surfaces [4], these results imply
that a smooth affine surface which fails A1-cancellation must admit a nontrivial Ga-action whose algebraic quotient
morphism π : X → X//Ga = Spec(Γ(X,OX)Ga) is not a locally trivial A1-bundle. This holds of course for the two
smooth surfaces xz − y(y + 1) = 0 and x2z − y(y + 1) = 0 used by Danielewski in his celebrated counter-example,
showing a posteriori that his construction was essentially optimal in this dimension. The rich families of existing
counter-examples to A

1-cancellation in dimension 2 lend support to the conjecture that every smooth affine surface
which is neither rigid nor isomorphic to the total space of line bundle over an affine curve fails the A1-cancellation
property.

In view of this conjecture, a smooth affine surface X which fails the A2-cancellation property in a minimal way
must be simultaneously rigid and equipped with an A1-fibration π : X → C over a smooth curve, and the well
known fact that A1-fibrations over affine curves are algebraic quotient morphisms of nontrivial Ga-actions implies
further that C must be projective. This is precisely the case for the family of surfaces we construct in this article,
a particular example being the smooth affine cubic surfaces

X = {(−1+α 3
√
2x2+α

3
√
2x3)

3+8(x31+x
3
2+x

3
3) = 0} and X ′ = {(−1+2αx1+α

3
√
2x2+α

3
√
2x3)

3+8(x31+x
3
2+x

3
3) = 0}

in A3 = Spec(C[x1, x2, x3]), where α = exp(iπ/3), which are both rigid and equipped with an A1-fibration over P1.
These arise as the complements in the Fermat cubic surface V = {x30+x31+x32+x33 = 0} in P

3 of the plane cuspidal

cubics C = {−(x2 + x3)
3 +4(x31 + x32 + x33)} = 0 and C′ = {−(( 3

√
2)2x1 + x2 + x3)

3 +4(x31 + x32 + x33) = 0} obtained

by intersecting V with its tangent hyperplane at the points p = [α 3
√
2 : 0 : 1 : 1] and p′ = [α 3

√
2 : 3
√
2 : −1 : 1]

respectively. The group of automorphisms of V being isomorphic to Z3×S4, where Z3 is the 3-torsion subgroup of
PGL(4;C) and where S4 denotes the group of permutations of the variables, the fact that p and p′ do not belong
to a same Aut(V )-orbit implies that the pairs (V,C) and (V,C′) are not isomorphic. Our main result just below
then implies in turn that X and X ′ are non isomorphic, with isomorphic A2-cylinders X × A2 and X ′ × A2.

Theorem. Let (Vi, Ci), i = 1, 2, be non isomorphic pairs consisting of a smooth cubic surface Vi ⊂ P3 and a

cuspidal hyperplane section Ci = Vi ∩ Hi. Then the affine surfaces Xi = Vi \ Ci are non isomorphic, with non

isomorphic A1-cylinders Xi × A1 but with isomorphic A2-cylinders Xi × A2, i = 1, 2.

As a consequence, all smooth affine surfaces arising as complements of cuspidal hyperplane sections of smooth
projective cubic surfaces have isomorphic A2-cylinders. Noting that the projective closure in P3 of the surface
X0 ⊂ A3 = Spec(C[x, y, z]) with equation x2y + y2 + z3 + 1 = 0 is a smooth cubic surface intersecting the plane at
infinity along the cuspidal cubic x2y + z3 = 0, we obtain the following:

Corollary. Let X be a smooth affine surface isomorphic to the complement of a cuspidal hyperplane section of a

smooth projective cubic surface. Then X×A2 is isomorphic to the affine cubic fourfold Z ⊂ A5 = Spec(C[x, y, z][u, v])
with equation x2y + y2 + z3 + 1 = 0. Furthermore, X is isomorphic to the geometric quotient of a proper action of

the group G
2
a on Z.

The scheme of the proof of the Theorem given in the next section is the following. The fact that the affine
surfaces X1 and X2 are non-isomorphic follows from the non-isomorphy of the pairs (V1, C1) and (V2, C2) via an
argument of classical birational geometry of projective cubic surfaces, which simultaneously renders the conclusion
that X1 and X2 are rigid. The non isomorphy of the cylinders X1 × A1 and X2 × A1 is then a straightforward
consequence Makar-Limanov’s semi-rigidity Theorem.

The existence of an isomorphism between the A
2-cylinders X1 × A

2 and X2 × A
2 is derived in two steps: the

first one consists of another instance of a Danielewski fiber product trick argument, which provides a smooth affine
threefold W equipped with simultaneous structures of line bundles π1 : W → X1 and π2 : W → X2 over X1 and
X2. But here, in contrast with the situation in Danielewski’s counter-example, the fact that the A1-cylinders over
X1 and X2 are not isomorphic implies that these two line bundles cannot be simultaneously trivial. Nevertheless,
the crucial observation which enables a second step, reminiscent to Hochster construction, is that the pull-backs
via the isomorphisms π∗

i : Pic(Xi) → Pic(W ) of the classes of these lines bundles in the Picard groups of X1 and
X2, say L1 and L2, coincide. Letting q : E → W be a line bundle representing the common inverse in Pic(W ) of
π∗
1L1 = π∗

2L2, the composition πi ◦ q : E → Xi is then a vector bundle of rank 2 isomorphic to the direct sum
Li ⊕ L∨

i , where L∨
i denotes the dual of Li, hence isomorphic to det(E) ⊕ A1

Xi
= (Li ⊗ L∨

i )⊕ A1
Xi
≃ A1

Xi
⊕ A1

Xi
by

virtue of result of Pavaman Murthy [13] asserting that every vector bundle on a smooth affine surface birationaly
equivalent to a ruled surface is isomorphic to the direct sum of a trivial bundle with a line bundle.
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The construction of these isomorphisms suggests the following strengthening of the above conjecture character-
izing smooth affine surfaces failing the A1-cancellation property, which would settle the question of the behavior of
smooth affine surfaces under stabilization by affine spaces:

Conjecture. A smooth affine surface X with negative logarithmic Kodaira dimension is either isomorphic to the

total space of a line bundle over a curve, or it fails the A2-cancellation property. Furthermore, every non rigid X
which fails the A2-cancellation property also fails the A1-cancellation property.

1. Proof of the theorem

1.1. Rigid affine cubic surfaces. Given a smooth cubic surface V ⊂ P
3 and a hyperplane section V ∩H consisting

of an irreducible plane cuspidal cubic C, the restriction of the projection P3
99K P2 from the singular point p of C

induces a rational map V 99K P2 of degree 2 with p as a unique proper base point. Its lift to the blow-up α : Y → V
of V at p coincides with the morphism θ : Y → P2 defined by the anti-canonical linear system | − KY | and it
factors through a birational morphism Y → Z to the anti-canonical model Z = ProjC(

⊕
m≥0H

0(Y,−mKY )) of Y ,

followed by a Galois double cover Z → P
2 ramified over a quartic curve. The nontrivial involution of the double

cover Z → P2 lifts to a biregular involution of Y exchanging the proper transform of C and the exceptional divisor
E of α. This involution descends back to a birational map Gp : V 99K V , called the Geiser involution of V with

center at p, which contracts C to p and restricts to a biregular involution jp : X → X of the affine complement X
of C in V .

Lemma 1. Let Xi be the complements of cuspidal hyperplanes sections Ci = Vi ∩Hi with respective singular points

pi of smooth cubic surfaces Vi ⊂ P3, i = 1, 2. Then for every isomorphism ψ : X1
∼→ X2, the birational map

ψ : V1 99K V2 extending ψ is either an isomorphism of pairs (V1, C1)
∼→ (V2, C2) or it factors in a unique way as

the composition of the Geiser involution Gp1 : V1 99K V1 followed by an isomorphism of pairs (V1, C1)
∼→ (V2, C2).

In particular, X1 and X2 are isomorphic if and only if so are the pairs (V1, C1) and (V2, C2).

Proof. Letting αi : Yi → Vi be the blow-up of Vi at pi, with exceptional divisor Ei, Xi is isomorphic to Yi \ (Ci∪Ei)
where we identified Ci and its proper transform in Yi. The birational map ψ : V1 99K V2 lifts to a birational
Ψ = α−1

2 ◦ ψ ◦ α1 : Y1 99K Y2 extending ψ, and the assertion is equivalent to the fact that Ψ is an isomorphism

of pairs (Y1, C1 ∪ E1)
∼→ (Y2, C2 ∪ E2). Since Y1 and Y2 are smooth with the same Picard rank ρ(Yi) = 8, this

holds provided that either Ψ or Ψ
−1

is a morphism. So suppose for contradiction that Ψ or Ψ
−1

are both strictly

birational and let Y1
σ1← W

σ2→ Y2 be the minimal resolution of Ψ. Since Y1 and Y2 are smooth and Ψ and Ψ
−1

are
both strictly birational, σ1 consists of a non-empty sequence of blow-ups of smooth points whose centers lie over
C1 ∪ E1, while σ2 is a non-empty sequence of contractions of successives (−1)-curves on W supported on the total
transform σ−1

1 (C1∪E1) of C1∪E1. Furthermore, the minimality assumption implies that the first curve contracted
by σ2 is the proper transform in W of C1 or E1. Since C1 and E1 are (−1)-curves in Y1, the only possibility is thus
that all successive centers of σ1 lie over E1 \ C1 (resp. C1 \ E1) and that the first curve contracted by σ2 is the
proper transform of E1 (resp. C1). But since C1 and E1 are tangent in Y1, so are their proper transforms in W ,
and then the image of C1 (resp. E1) by the contraction τ :W →W ′ of E1 (resp. C1) factoring σ2 :W → Y2 would
be singular. Since it cannot be contracted at any further step, its image by σ2 would be a singular curve contained
in Y2 \X2 = C2 ∪ E2, which is absurd. �

Corollary 2. Let X be the complement of a cuspidal hyperplane section C of a smooth cubic surface V ⊂ P3. Then

there exists a split exact sequence

0→ Aut(V,C)→ Aut(X)→ {idX , jp} ≃ Z2 → 0,
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where Aut(V,C) is the automorphism group of the pair (V,C) and jp : X
∼→ X is the biregular involution induced

by the Geiser involution of V with center at the singular point p of C. In particular, Aut(X) is a finite group,

isomorphic to Z2 for a general smooth cubic surface V .

Proof. We view Aut(V,C) as a subgroup of Aut(X) via the homomorphism which associates to every automorphism
of V preserving C, hence X , its restriction to X . Since by virtue of the previous lemma, the extension of every
automorphism ϕ of X to a birational self-map ϕ : V 99K V is either an automorphism of the pair (V,C) or the
composition of the Geiser involution Gp : V 99K V with an automorphism of this pair, the first assertion follows.
The second assertion is a consequence of the fact that the automorphism group Aut(V ) of a smooth cubic surface
V is always finite, actually trivial for a general such surface. �

The following proposition provides the first part of the proof of the theorem:

Proposition 3. Let Xi be the complements of cuspidal hyperplanes sections Ci = Vi ∩Hi of smooth cubic surfaces

Vi ⊂ P3, i = 1, 2. If the pairs (V1, C1) and (V2, C2) are not isomorphic then the A1-cylinders X1 ×A1 and X2 ×A1

are not isomorphic.

Proof. The rigidity of Xi asserted by Corollary 2 implies by virtue of [5, Proposition 9.23] that the Makar-Limanov
invariant ML(Xi × A1) of Xi × A1 is equal to the sub-algebra Γ(Xi,OXi

) of Γ(Xi,OXi
)[t] = Γ(Xi × A1,OXi×A1).

Since every isomorphism between two algebras induces an isomorphism between their Makar-Limanov invariants,
it follows that every isomorphism X1 ×A1 ∼→ X2 ×A1 descends to a unique isomorphism ψ : X1

∼→ X2 making the
following diagram commutative

X1 × A1 ∼ //

pr
X1

��

X2 × A1

pr
X2

��

X1

ψ
// X2.

On the other hand, the hypothesis that the pairs (V1, C1) and (V2, C2) are not isomorphic combined with Lemma
1, implies that X1 is not isomorphic to X2 and so, X1 × A

1 is not isomorphic to X2 × A
1. �

1.2. Isomorphisms between A2-cylinders. As explained above, the first step of the construction is a Danielewski
fiber product trick creating a smooth affine threefold W which is simultaneously the total space of a line bundle
over X1 and X2. To setup such a fiber product argument, we first construct a certain smooth algebraic space
δ : B → P1 with the property that every complement X of an irreducible cuspidal hyperplane section C of a smooth
cubic surface V ⊂ P3 admits the structure of an étale locally trivial A1-bundle ρ : X → B.

1.2.1. Letting P1 = Proj(C[z0, z1]), the algebraic space δ : B → P1 is obtained by the following gluing procedure:
1) We let U∞ = P1 \ {0} ≃ Spec(C[w∞]), where w∞ = z1/z0, and we let δ∞ : B∞ → U∞ be the scheme

isomorphic to affine line with a 6-fold origin obtained by gluing six copies δ∞,i : U∞,i
∼→ U∞, i = 1, . . . , 6 of U∞,

by the identity outside the points ∞i = δ−1
∞,i(∞).

2) We U0 = P
1 \ {∞} ≃ Spec(C[w0]), where w0 = z0/z1, we let ξ : Ũ0 ≃ A

1 = Spec(C[w̃0])→ U0 ≃ Spec(C[w0]),

w̃0 7→ w0 = w̃3
0 be the triple Galois cover totally ramified over 0 and étale elsewhere, and we let δ̃0 : B̃0 → Ũ0

be the scheme isomorphic to the affine line with 3-fold origin obtained by gluing three copies Ũ0,1, Ũ0,ω and

Ũ0,ω2 of Ũ0 by the identity outside their respective origins 0̃0,1, 0̃0,ω and 0̃0,ω2 . The action of the Galois group

µ3 = {1, ω, ω2} of complex third roots of unity of the covering ξ lifts to fixed point free action on B̃0 given locally

by Ũ0,η ∋ z̃0 7→ ωz̃0 ∈ Ũ0,ωη. Since the latter has trivial isotropies, a geometric quotient exists in the category of

algebraic spaces in the form an étale locally trivial µ3-bundle B̃0 → B̃0/µ3 = B0 over a certain algebraic space

B0. Furthermore, the µ3-equivariant morphism δ̃0 : B̃0 → Ũ0 descends to a morphism δ0 : B0 → Ũ0//µ3 ≃ U0

restricting to an isomorphism over U0 \ {0} and totally ramified over {0}, with ramification index 3.
3) Finally, δ : B → P1 is obtained by gluing δ∞ : B∞ → U∞ and δ0 : B0 → U0 along the open sub-schemes

δ−1
∞ (U0 ∩ U∞) ≃ Spec(C[w±1

∞ ]) and δ−1
0 (U0 ∩ U∞) ≃ Spec(C[w±1

∞ ]) by the isomorphism w∞ 7→ w0 = w−1
∞ .

Remark 4. Letting p0 be the unique closed point of B over 0 ∈ U0 ⊂ P1, we have δ−1(0) = 3p0 while the restriction
of δ over U0 \ {0} is an isomorphism. This implies that B is not a scheme, for otherwise the restriction of δ over
U0 would be an isomorphism by virtue of Zariski Main Theorem. In fact, p0 is a point which does not admit any
affine open neighborhood V : otherwise the inverse image of V by the finite morphism B̃0 → B̃0/µ3 = B0 would be

an affine open sub-scheme of B̃0 containing the three points 0̃0,1, 0̃0,ω and 0̃0,ω2 which is impossible.
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1.2.2. Since the automorphism group of A1 is the affine group Aff1 = Gm ⋉ Ga, every étale locally trivial A1-
bundle ρ : S → B is an affine-linear bundle whose isomorphy class is determined by an element in the non-abelian
cohomology group H1

ét(B,Aff1). Equivalently ρ : S → B is a principal homogeneous bundle under the action of
a line bundle L → B, considered as a locally constant group scheme over B for the group law induced by the
addition of germs of sections, whose class in Pic(B) ≃ H1

ét(B,Gm) coincides with the image of the isomorphy class
of ρ : S → B in H1

ét(B,Aff1) by the map H1
ét(B,Aff1) → H1

ét(B,Gm) in the long exact sequence of non-abelian
cohomology

0→ H0 (B,Ga)→ H0 (B,Aff1)→ H0 (B,Aff1)→ H1
ét (B,Ga)→ H1

ét (B,Aff1)→ H1
ét (B,Gm)

associated to the short exact sequence 0 → Ga → Aff1 → Gm → 0. Isomorphy classes of principal homogeneous
under a given line bundle L→ B are are in turn classified by the cohomology group H1

ét(B,L).

Proposition 5. The complement X of a cuspidal hyperplane section C of a smooth cubic surface V ⊂ P3 admits

an A
1-fibration f : X → P

1 which factors through a principal homogeneous bundle ρ : X → B under the action of

the cotangent line bundle γ : Ω1
B → B of B.

Proof. Since C is an anti-canonical divisor on V , it follows from adjunction formula that every line on V intersects
C transversally in a unique point. The image of C by the contraction τ : V → P2 of any 6-tuple of disjoint lines,
L1, . . . , L6, on V is therefore a rational cuspidal cubic containing the images qi = τ(Li), i = 1, . . . , 6, in its regular
locus. The rational pencil P2

99K P1 generated by τ(C) and three times its tangent line T at its singular point lifts
to a rational pencil f : V 99K P1 whose restriction to X is an A1-fibration f : X → P1 with two degenerate fibers:
one irreducible of multiplicity three consisting of the intersection of the proper transform of T with X , and a reduced
one consisting of the disjoint union of the curves Li ∩ X ≃ A

1, i = 1, . . . , 6. Choosing homogeneous coordinates
[z0 : z1] on P1 in such a way that 0 and ∞ are the respective images of T and C by f , the same argument as in
[3, §4] implies that f : X → P1 factors through an étale locally trivial A1-bundle ρ : X → B. Letting γ : L → B
be the line bundle under which ρ : X → B becomes a principal homogeneous bundle, it follows from the relative
cotangent exact sequence

0→ ρ∗Ω1
B → Ω1

X → Ω1
X/B ≃ ρ∗L∨ → 0

of ρ that det Ω1
X ≃ ρ∗(Ω1

B⊗L∨). Since detΩ1
X is trivial as C is an anti-canonical divisor on V and since ρ∗ : Pic(B)→

Pic(X) is an isomorphism because ρ : X → B is a locally trivial A1-bundle, we conclude that L ≃ Ω1
B. �

Remark 6. By construction of δ : B → P1, we have δ−1(0) = 3p0 and δ−1(∞) =
∑6

i=1∞i. The Picard group Pic(B)
of B is thus isomorphic to Z6 generated by the classes of the lines bundle OB(p0), OB(∞i), i = 1, . . . , 6, with the

unique relation OB(3p0) = OB(
∑6

i=1∞i). Furthermore, since δ is étale except at p0 where it has ramification index
3, we deduce from the ramification formula for the morphism δ : B → P1 that the cotangent bundle γ : Ω1

B → B of
B is isomorphic to

δ∗ΩP1 ⊗OB
OB(2p0) ≃ δ∗(OP1(−{0} − {∞}))⊗OB

OB(2p0) ≃ OB(−p0 −
6∑

i=1

∞i).

1.2.3. Now we are ready for the second step of the construction, which completes the proof of the theorem. Letting
Xi, i = 1, 2, be the complements of irreducible plane cuspidal hyperplanes sections Ci = Vi ∩Hi of smooth cubic
surfaces Vi ⊂ P3, Proposition 5 asserts the existence of principal homogeneous bundles ρi : Xi → B under the
action of the cotangent line bundle γ : Ω1

B → B of B. The fiber product W = X1 ×B X2 inherits via the first
and second projections respectively the structure of a principal homogeneous bundle πi : W → Xi under ρ∗iΩ

1
B ,

i = 1, 2. Since Xi is affine, the vanishing of H1
ét(Xi, ρ

∗
iΩ

1
B) implies that these bundles are both trivial, yielding

isomorphisms ρ∗1Ω
1
B ≃W ≃ ρ∗2Ω1

B. Letting q : E →W be the pull-back of the dual (Ω1
B)

∨ of Ω1
B by the morphism

ρ1 ◦ π1 = ρ2 ◦ π2 : W → B, πi ◦ q : E → Si is a vector bundle over Xi isomorphic to the direct sum of ρ∗iΩ
1
B and
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ρ∗i (Ω
1
B)

∨:

X1 × A2 ≃X1
ρ∗1Ω

1
B ⊕ ρ∗1(Ω1

B)
∨

��

∼ // E

q

��

ρ∗2Ω
1
B ⊕ ρ∗2(Ω1

B)
∨ ≃X2

X1 × A2

��

∼oo

ρ∗1Ω
1
B

∼ //

��

X1 ×B X2

π1

ttjjj
jj
jjj

jj
jj
jj
jjj

jj
π2

**TT
TT

TT
TT

TT
TTT

TT
TT

TT
ρ∗2Ω

1
B

��

∼oo

X1

ρ1

**UU
UUU

UUU
UUU

UUU
UUU

UUU
UU X2

ρ2

ttiii
iii

iii
iii

iii
iii

iii
i

B

So by virtue of [13, Theorem 3.1], E is isomorphic as a vector bundle over Xi to det(ρ∗iΩ
1
B ⊕ ρ∗i (Ω1

B)
∨) ⊕ A1

Xi
≃

A
1
Xi
⊕ A

1
Xi

providing the desired isomorphisms X1 × A
2 ≃ E ≃ X2 × A

2.

Example 7. Let V ⊂ P3 be a general smooth cubic surface and let ∆ ⊂ V be the curve consisting of points p of V
at which the projective tangent hyperplane TpV ⊂ P3 of V at p intersects V along a cuspidal cubic. Let V = ∆×V
and let C ⊂ V be relatively ample Cartier divisor with respect to pr∆ : V → ∆ whose fiber Cp over every point
p ∈ ∆ is equal to the intersection Cp = V ∩ TpV . Since Aut(V ) is trivial, the pairs (V,Cp), p ∈ ∆, are pairwise non
isomorphic, and so Θ = pr∆ |X : X = V \ C → ∆ is a family of pairwise non isomorphic rigid smooth affine surfaces
whose A

2-cylinders are all isomorphic.

Remark 8. The A2-cylinder X × A2 over the complement X of a cuspidal hyperplane section C of a smooth cubic
surface V is flexible in codimension 1, that is, for every closed point p outside a possible empty closed subset
Z ⊂ X × A2 of codimension at least two, the tangent space TX×A2,p of X × A2 at p is spanned by tangent vectors
to orbits of algebraic Ga-actions on X×A2. This can be seen as follows: one first constructs by a similar procedure
as in [3, §3.2] a flexible mate S for X , in the form of smooth affine surface flexible in codimension 1 admitting an
A1-fibration π : S → P1 which factors through a principal homogeneous bundle π̃ : S → B under the action of a
certain line bundle γ′ : L→ B. The fiber product S×BX is then a smooth affine threefold which is simultaneously
isomorphic to the total spaces of the line bundles π̃∗Ω1

B and ρ∗L over S and X via the first and second projection
respectively. Since S is flexible in codimension 1, it follows from [3, Lemma 2.3] that S ×B X and the total space
F → S ×B X of the pull-back of L∨ by the morphism π̃ ◦ prS = ρ ◦ prX are both flexible in codimension 1. By
construction, F is a vector bundle of rank 2 over X , isomorphic to ρ∗(L ⊕ L∨) hence to the trivial vector bundle
X × A2 by virtue of [13, Theorem 3.1].
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