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The interaction of natural convection with surface radiation in a differentially heated square cavity filled

with air is considered under large temperature differences. The study has been investigated by direct

numerical simulations with a two-dimensional finite volume numerical code solving the time-

dependent NaviereStokes equations under the Low Mach Number (LMN) approximation. Calculations

were performed for cases with strong non-Boussinesq effects. The results reveal that the fluid flow and

heat transfer are influenced significantly by the surface radiation. At steady state, the top wall is cooled

and the bottomwall is heated compared to the case without radiation. The air flow is reinforced near the

horizontal walls and the thermal stratification at the core is reduced. The surface radiation reduces the

convection heat transfer at the hot wall and increases it on the cold wall.

Transition from steady to unsteady flow has also been investigated. By comparing the solutions in pure

convection, the results in combined convectioneradiation show that the radiation promotes the

occurrence of instabilities leading to an early transition to the unsteadiness and contributes to the

modification of the physical mechanism responsible for their onset.

1. Introduction

Problems of natural convection coupled to thermal radiation are

encountered in many industrial applications such as furnaces,

combustion equipments, burners, cooling of electronic compo-

nents, printed circuit boards…. Most of these applications proceed

with large temperature differences and require a modeling which

accounts for realistic fluid properties variations and compressibility

effects. Derived from the compressible NaviereStokes equations,

the Low Mach Number (LMN) approximation constitutes an

important numerical problem for low speed compressible flows

and has the advantage that it presents the same mathematical

structure as the incompressible NaviereStokes equations. In this

approximation, the total pressure is split into two terms: a mean

thermodynamic pressure which is spatially uniform and depends

only on time and a dynamic pressure. Since for LowMach flows the

thermodynamic pressure is very high compared to the dynamic

pressure, this decomposition leads to eliminate the acoustic waves

which present a severe limitation on the time steps used for

numerical integration while large variations of density with

temperature are allowed. The interaction between radiation and

convection in solid-fluid domains exists in a case of participating

media but also by the influence of boundary conditions. The

differentially heated cavity problem is a classical case commonly

used in the process of CFD codes verification. The aim of this paper

is to study the effect of surface thermal radiation on natural con-

vection in a differential heated cavity under strong temperature

differences.

Research in radiativeeconvective heat transfer was investigated

in a variety of geometrical configurations and recently they are

considered mainly by numerical methods. Several studies concern

convection flows in transparent media bounded partially or totally

by solid walls: 2D or 3D rectangular cavities [1e5], closed cavities

with a circular or square obstruction inside [6e11], partitioned

cavities with baffles [12e14], partially open cavities [15e17], ver-

tical channels [18]. The coupling natural convection, conduction

and surface thermal radiation has also been investigated in two

[19,20] or three-dimensional rectangular cavities [21].

Among the numerical studies cited above, the physical prob-

lem is described by the NaviereStokes equations under the
* Corresponding author. Tel.: þ33 1 69 47 75 42; fax: þ33 1 69 47 75 99.
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Boussinesq approximation and a radiation algorithm is used for

gray and diffuse surfaces. Note that the Boussinesq approximation

is valid only for low temperature differences and considers all the

physical properties constant except in the buoyancy force. It re-

sults from these studies that radiation influences the heat transfer

substantially. For instance, Akiyama and Chong [1] studied the

interaction of natural convection with radiation in a square cavity

filled with air. Their results have shown that the surface radiation

significantly affects the temperature distribution and the flow

patterns, especially at higher Rayleigh number. The radiation heat

transfer plays an important part in overall heat flux and increases

with the increase of emissivity. The convection Nusselt number

increases with Ra but little variations were observed with the

emissivity. Colomer et al. [2] analyzed the coupling radiation and

natural convection in a three-dimensional differentially heated

cavity. Both transparent and participating media were explored.

For transparent media, the effects of surface radiation on the

heat transfer were investigated for different values of the Rayleigh

number and a given Planck number. A comparison with a two-

dimensional case is presented showing a good agreement be-

tween both solutions. Wang et al. [3] studied numerically the

interaction of convection with radiation in a two-dimensional

differentially heated square cavity. It has been found that the

surface radiation reduces the stratification in the cavity core and

increases the average Nusselt number with increasing the

emissivity. The transition from steady to unsteady flow is also

investigated. The results have shown an early transition to the

unsteadiness compared to the case without radiation.

Merzhab et al. [6] considered a differentially heated cavity with

an inner conducting square body. They found that the radiation

exchange homogenizes the temperature inside the cavity and

produces an increase in the average Nusselt number as the emis-

sivity increases. Sun et al. [7] considered a square air-filled cavity

cooled from below and above, with a heated square body located at

the cavity center. The flow structure is investigated for various

Rayleigh numbers, emissivity of the walls and sizes of the inner

body. Recently, a numerical study has been conducted by Saravanan

and Sivaraj [12] in a differentially heated cavity with a heated plate

placed horizontally or vertically at its center. It has been found that

the convective heat transfer increases with emissivity if the plate is

horizontal and decreases if the plate is vertical. The overall heat

transfer by convection and radiation increases with the emissivity

and the presence of radiation leads to a better homogenization of

the temperature within the cavity for both positions of the central

plate.

Convectioneradiation coupling in the presence of large tem-

perature variations was the purpose of few studies and concerned

participating media. The numerical studies performed by Ioan

Telega et al. [22], Dubroca et al. [23] and Scarella et al. [24] on

various configurations are based on the LMN model. From the

literature, it appears that no work was performed on coupled

convection with surface radiation under large temperature differ-

ences. In this paper two-dimensional simulations under the LMN

approximation are reported for a square cavity with gray and

diffuse surfaces. Following the previous study of Wang et al. [3], the

purpose of this investigation is to analyze the influence of surface

radiation on the flow pattern and heat transfer and on the transi-

tion from steady to unsteady flows for strong non-Boussinesq re-

gimes. The code validation is performed by comparison with the

well-documented results in literature.

2. Problem formulation

2.1. Governing equations

The problem considered here is natural convection in a square

cavity placed into a gravitational field g
!

which is parallel to the

active walls. The inner surfaces are assumed to be diffuse, gray and

opaque. The left and right side walls are isothermal at respective

temperatures Th and Tc (Tc < Th), and the bottom and top walls are

adiabatic. The cavity is filled with a transparent gas initially at a

uniform temperature T0 ¼ (Th þ Tc)/2 and pressure P0. It is assumed

to be an ideal gas with constant specific heat capacities cp and cv
of ratio g ¼ 1.4. Its dynamic viscosity m and thermal conductivity k

are allowed to depend on temperature. As we are interested in

flows induced by large temperature differences, the problem is

governed by the Low Mach approximation equations to describe

such a flow (Paolucci [25]). The equations are made dimensionless

by reference quantities: L0 ¼ L, t0 ¼ L0/V0, T0 ¼ (Th þ Tc)/2,

P0 ¼ r0V
2
0 , V0 ¼ m0/r0L0Ra. The physical properties (density,

Nomenclature

A aspect ratio, A ¼ H/L

cp, cv specific heat capacities

H height

L width

L0 reference length

Nr radiationeconduction number, Nr ¼ sT30 L0=2dk0
Nucv average convective Nusselt number

Nurad average radiative Nusselt number

Nug global Nusselt number, Nug ¼ Nucv þ Nurad

P mean thermodynamic pressure

P0 reference pressure, P0 ¼ r0V
2
0

Pr Prandtl number, Pr ¼ m0/r0a0
Qr dimensionless net radiative flux

Ra Rayleigh number, Ra ¼ 2r0dgL
3
0=m0a0

t0 reference time, t0 ¼ L0/V0

T non-dimensional temperature

T0 reference temperature, T0 ¼ (Th þ Tc)/2

V0 reference velocity, V0 ¼ m0Ra/r0L0
vx horizontal component of the velocity

vz vertical component of the velocity

Greek symbols

a thermal diffusivity, a ¼ k/rcp
d normalized temperature difference, d ¼ DT/2T0
k thermal conductivity

m dynamic viscosity

p reduced pressure

r density

s StefaneBoltzmann constant

DT Temperature difference, Th � Tc
ε wall emissivity

Subscripts

0 values at reference temperature

h hot

b bottom

c cold

l left

r right

t top
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dynamic viscosity, thermal conductivity, thermal diffusivity) are

scaled by r0, m0, k0, a0 where the subscript 0 denotes values at the

reference temperature T0. The governing equations in the dimen-

sionless form are given by Bouafia and Daube [26]:

vr

vt
þ V$ðrVÞ ¼ 0 (1)

r

�

vV

vt
þ ðV$VÞV

�

¼ �VPþ ðRaÞ�1=2
V$t� Pr�1r� 1

2d
z (2)

r

�

vT

vt
þ ðV$VÞT

�

¼
1

Pr Ra1=2
V$ðkVTÞ þ

g� 1

g

dP

dt
(3)

P ¼ rT (4)

V is the velocity vector of components (vx,vz),

t ¼ mðVV þ ðVVÞt � 2=3ðV,VÞIÞ the viscous stress tensor, P ¼ ðP �

P þ r0gzÞ=r0V
2
0 the reduced pressure, d ¼ DT/2T0 the normalized

temperature difference with DT ¼ (Th � Tc) and P the mean ther-

modynamic pressure. dP=dt is calculated by integrating on the

whole domain U the energy equation and taking into account the

continuity equation:

dP

dt
¼

g

APr Ra1=2

Z

G

k
vT

vn
dl (5)

The independent dimensionless parameters are the aspect ratio

A ¼ H/L equal to 1 in this study, the Prandtl number and the Ray-

leigh number defined at the reference temperature T0:

Pr ¼
m0

r0a0
; Ra ¼

2r0dgL
3
0

m0a0
(6)

where a0 ¼ k0/r0cp is the thermal diffusivity. The system of equa-

tions is closed by Sutherland's law for the dynamic viscosity m:

mðTÞ ¼ T3=2
1þ Sm
T þ Sm

(7)

Sm ¼ 110.4K/T0 for air at standard conditions. Since the Prandtl

number is assumed to be constant and the influence of the tem-

perature on cp is neglected, we obtain ~m=m0 ¼ ~k=k0 and then the

thermal conductivity is given by k(T) ¼ m(T). Tilde refers to

dimensional quantities.

2.2. Boundary conditions

At the boundaries, no-slip conditions for velocities are added to

thermal conditions. By considering the surface radiation, the

adiabatic conditions on horizontal walls imply that convection flux

balances net radiative flux.

8

>

>

>

<

>

>

>

:

T ¼ 1þ d at x ¼ 0

T ¼ 1� d at x ¼ 1

�
k

2d

vT

vn
þ NrQr ¼ 0 at z ¼ 0 and z ¼ 1

(8)

n is the normal vector inward the cavity and Nr the radia-

tioneconduction number (inverse of the Planck number) given by:

Nr ¼
sT4

0L0
k0ðTh � TcÞ

¼
sT30L0
2dk0

(9)

s is the StephaneBoltzmann constant and Qr ¼ qr=sT
4
0 the

dimensionless net radiative heat flux. This quantity is determined

from a radiation analysis based on the radiosity method.

2.3. Discrete radiation equations

For non participating media, the thermal radiation equation is

solved using the radiosity method for diffuse-gray surfaces. The

walls are divided in elements according to the mesh used for the

governing equations. The radiosity equation for the ith element is

given by:

Ji ¼ εiT
4
i þ ð1� εiÞ

X

N

j¼1

Fi�jJj (10)

where Ji is the non-dimensional radiosity of the corresponding

element, the first term on the right hand is the emitted power by

the surface i and ð1� εiÞ
PN

j¼1Fi�jJj the reflected radiant energy

coming from surrounding surfaces that can be seen by the surface i.

εi is the emissivity of the element, Fi�j the geometry view factor

from the ith element to the jth and N the total number of elements

along the walls of the cavity. View factors Fi�j are calculated using

analytical expressions according to the relative position between

surfaces [27]. The radiosity equation can be reduced to a simple

linear system aijJj ¼ bi:

X

N

j¼1

�

dij � ð1� εiÞFi�j

�

Jj ¼ εiT
4
i (11)

where aij ¼ dij � (1 � εi)Fi�j and bi ¼ εiT
4
i . The dimensionless net

radiative heat flux Qr leaving the ith element surface is obtained

from equation:

Qr;i ¼ Ji �
X

N

j¼1

Fi�jJj (12)

2.4. Heat transfer

The average Nusselt numbers characterizing the contributions

of convection and thermal radiation through the vertical walls, are

respectively defined as:

Nucv ¼
1

2Ad

Z

A

0

�k
vT

vn
dz; Nurad ¼

1

A

Z

A

0

NrQrdz (13)

The global average Nusselt number is given by:

Nug ¼ Nucv þ Nurad.

2.5. Numerical modeling

The 2D governing equations are solved numerically by a finite-

volume scheme using the staggered arrangement. Equations

(1)e(4) were discretized in time by a second-order backward

Euler scheme in which the diffusive and viscous linear terms

are implicitly treated while the convective nonlinear terms are

explicitly treated using an AdamseBashforth extrapolation. Since

the equations are of incompressible type, the velocityepressure

coupling is handled by a technique derived from the classical pro-

jection method. The spatial discretization applied is based on a

uniform grid in the vertical direction and a non-uniform grid in

the horizontal direction refined in the vicinity of the vertical walls

by using Chebychev collocation points. The Poisson equations for

the pressure correction in the projection method are solved by
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standard multigrid techniques. A detailed description of the algo-

rithm is found in Ref. [26]. For thermal boundary conditions (Eq.

(8)), an explicit assessment of Qr is applied leading to the following

equations at time level n þ 1:

8

>

>

>

<

>

>

>

:

�
k

2d

vT

vz

nþ1

þ Nr

�

2Qn
r � Qn�1

r

�

¼ 0 at z ¼ 0

k

2d

vT

vz

nþ1

þ Nr

�

2Qn
r � Qn�1

r

�

¼ 0 at z ¼ 1

(14)

This treatment allows us to obtain first the temperature Tnþ1 by

solving the NaviereStokes equations and obtain the temperature

on the insulated boundaries, then Qnþ1
r by solving the radiosity

equation (Eq. (11)) with the Gauss elimination method.

2.6. Code validation

The non-Boussinesq code (NBC) was first validated against a

benchmark solution [28] corresponding to convection without ra-

diation in a differentially heated square cavity. Tests have been

carried out for a normalized temperature difference d ¼ 0.6 at

Ra ¼ 106 and 107 with a reference temperature T0 ¼ (Th þ Tc)/

2¼ 600 K and variable properties. Our calculations were performed

on a 257 � 257 non-uniform mesh refined at the walls. A good

agreement is observed from Table 1 with the reference solutions

based on Nu and the normalized thermodynamic pressure P=P0
resulting from this benchmark.

The code validation to predict the interaction between surface

radiation and natural convection was done on a Boussinesq code

(BC) and the results were compared with those obtained by Wang

et al. [3]. Calculations have been carried out with the following

parameters: Ra ¼ 106, DT ¼ 10 K and a reference temperature

T0 ¼ 293.5 K. The radiative number Nr was calculated by taking

H ¼ L ¼ 0.097 m. Note that in order to validate the non-Boussinesq

code, calculations were performed for ε ¼ 0.017 corresponding to

DT¼ 10 K. As shown in Table 2, the results in term of convective and

radiative Nusselt number reveal a good agreement withWang et al.

[3]. A mesh sensitivity analysis (but not presented here) was done

on radiative heat transfer for two grids 129 � 129 and 257 � 257,

have shown independent results of grid size. In what follows, the

computations are performed with a 257 � 257 non-uniform grid.

3. Numerical results

In the LMN approximation, the governing parameters are Ra, Pr,

the aspect ratio A and the normalized temperature difference

d ¼ DT/2T0. By considering the radiation, other parameters are

needed as the width L and the wall emissivity ε to determine the

radiation number Nr and the dimensionless net radiative flux Qr. A

quite extensive analysis would be necessary to cover the possible

effects of each parameters. In the present study, we focused in

interaction of surface radiation with strong non-Boussinesq effects

at steady and unsteady states. For the steady case, the main control

parameter is thewall emissivity while the following parameters are

maintained constant: A ¼ 1 and d ¼ 0.6 which corresponds to

DT ¼ 720 K. The Prandtl number is maintained at its value for air at

300 K, i.e. Pr¼ 0.71. The Rayleigh number is fixed to Ra¼ 106 which

induces a value of the cavity length L ¼ 0.067 m and a radiation

number Nr ¼ 16.36. For the purpose of comparison, the numerical

solutions are performed for air at initial state which is similar to

that used in the 2D benchmark problem [28]: P0 ¼ 101325 Pa,

T0 ¼ 600 K, r0 ¼ P0/(rT0) and vx(x,z) ¼ vz(x,z) ¼ 0.

3.1. Steady flow

3.1.1. Temperature and flow fields

Typical isotherms and streamlines are displayed in Figs. 1 and 2

for different values ofwall emissivity supposed identical on all faces.

Without radiation ε ¼ 0, the structure of temperature fields shows

patterns with thermal boundary layers growing along the vertical

walls and a stratified core region. The contour lines are particularly

characterized by the absence of the centro-symmetry property due

to compressibility effects ((vx,vz,T) ¼ �(vx,vz,T)(1 � x,1 � z)). The

associated streamlines are more dense close to the vertical walls

and display a main peripheral flow including asymmetrical small

rolls shifted to the vertical walls.

The influence of surface radiation on the flow structure and the

temperature distribution is clearly observed. In addition to asym-

metrical character reinforced by the presence of surface radiation,

the most visible effects occur along the horizontal walls. Compared

to the case without radiation, the temperature contours clearly

show the existence of temperature gradients near the top and

bottom walls due to radiative exchanges and the formation of

horizontal thermal boundary layers. Along the vertical walls, the

isotherms are tightened on the cold wall and are more spaced on

the hot wall with increasing ε. This behavior indicates the domi-

nance of convective heat transfer between the fluid and the cold

vertical surface. In the stratified region, the horizontal lines are

more widely spaced as the emissivity increases. The corresponding

streamlines highlight a different pattern at the core compared to

the case without radiation. At the bottom right corner, it can be

seen the streamlines which are smoothly parallel to the horizontal

wall while a slight detached flow is observed in pure convection.

Table 1

Average Nusselt number at the vertical walls and normalized pressure in pure

convection for d ¼ 0.6 and T0 ¼ 600 K.

Ra m Nuh Nuc P/P0

Present 106 Sutherland's law 8.6883 8.8683 0.924436

Le Qu�er�e et al. [28] 106 Sutherland's law 8.6866 8.6866 0.924487

Present 107 Sutherland's law 16.2462 16.2462 0.922547

Le Qu�er�e et al. [28] 107 Sutherland's law 16.2410 16.2410 0.92263

Table 2

Convection, radiation and global Nusselt numbers on the vertical walls; results for Ra ¼ 106, DT ¼ 10 K, L0 ¼ 0.097 m and T0 ¼ 293.5 K.

Mesh ε Hot wall Cold wall

Nucv Nurad Nug Nucv Nurad Nug

Present BC 129 � 129 0.0 8.830 0 8.830 8.830 0 8.830

Present BC 257 � 257 0.0 8.826 0 8.826 8.826 0 8.826

Present NBC 129 � 129 0.0 8.830 0 8.830 8.830 0 8.830

Le Qu�er�e [29] Spectral 0.0 8.825 0 8.825 8.825 0 8.825

Wang et al. [3] N.A 0.0 8.852 0 8.852 8.852 0 8.852

Saravanan et al. [12] N.A 0.0 8.827 0 8.827 8.827 0 8.827

Present BC 257 � 257 0.2 8.338 2.355 10.693 8.374 2.319 10.693

Wang et al. [3] N.A 0.2 8.381 2.355 10.736 8.417 2.319 10.736

Saravanan et al. [12] N.A 0.2 10.671 10.671
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Surface radiation changes substantially the boundary conditions

which significantly affect the temperature distribution and the flow

structure. In Fig. 3(a), (b), are plotted the temperature profiles at the

horizontal walls in both cases without and with radiation ε ¼ 0,

ε ¼ 0.2, ε ¼1. In addition to the centro-symmetry breaking which is

clearly increased by the radiation effect, note the cooling of the top

wall and the heating of the bottomwall. This behavior is explained

by the fact that the upper wall loses heat while the bottomwall gets

heated. Indeed, Fig. 3(c), (d) shows that the net radiative flux is

essentially positive at the top wall and essentially negative at the

bottomwall. By comparing the cases ε¼ 0.2 and ε¼ 1, it can be seen

that the temperature difference between the top and bottomwalls

decreases with increasing the wall emissivity.

It is interesting to note that the bottomwall is more affected by

the wall radiation than the top wall. While the upper wall tem-

perature slightly varies, the temperature of the bottom wall con-

tinues to increase with increasing ε and tends to be close to that of

the top wall for ε ¼ 1. For black walls, the net radiative heat flux at

the bottom wall changes significantly and becomes strongly

negative while at the top wall it remains almost unchanged. The

asymmetric role that plays the wall radiation on the distribution of

radiative heat flux and consequently on the temperature profiles

explains the remarkable difference on the spatial distribution of

temperature in the vicinity of horizontal walls.

Fig. 4 displays the temperature profiles along the vertical mid-

plane and at the mid-height of the cavity. As can be seen the sur-

face radiation induces the heating of air at the cavity core and

reduces the stratification with increasing the emissivity. Fig. 3(c),

(d) showing the net radiative heat flux at the horizontal walls helps

to understand how the wall radiation decreases the thermal

stratification. Owing to the positive flux at the top wall and nega-

tive flux at the bottomwall, the fluid is cooled (slightly) through the

upper wall then heated (strongly) near the bottomwall. It results a

decrease of the temperature difference between the ceiling and the

floor which tends to reduce the thermal stratification. The influence

of surface radiation on the velocity is illustrated in Fig. 5 were

profiles of components vx and vz are plotted at x ¼ 0.5 and z ¼ 0.5

respectively. A careful look to these plots reveals that the radiation

intensifies the flow near the horizontal walls as the emissivity in-

creases. However, the radiation effect on the vz velocity remains

negligible. Recall that the asymmetrical profiles of the vertical

component vz result from nonlinear variations of density and

transport coefficients.

3.1.2. Wall heat transfer

Table 3 sums the results of mean convective and radiative

Nusselt numbers on the vertical walls for different wall emissiv-

ities varying from 0 to 1. Calculations were performed with the

same value ε on the four walls. A closer look at these results

highlights the difference between the convective and radiative

heat transfer when ε is different from zero. Values of convective

Nusselt number are higher on the cold wall than on the hot wall

while the radiative Nusselt number exhibits the opposite evolu-

tion. On the hot wall, the contribution of radiation to the global

heat transfer is about 67% for ε ¼ 0.2 and attains 93% for ε ¼ 1. On

the cold wall, the radiative heat transfer remains substantial with

a contribution which increases from 49% (ε ¼ 0.2) to 86% (ε ¼ 1).

The total Nusselt number of convection and radiation increases

with the wall emissivity and attains its maximum for four black

walls.

In Table 3, note that the discrepancies between the total

Nusselt numbers does not exceed 0.3%. The main error source

comes from nonlinear boundary conditions imposed on the hori-

zontal walls (Eq. (8)). The number of iterations required to solve

the fluid equations coupled to the radiosity ones through the

boundary equations is important for d ¼ 0.6. Further calculations

but not shown here, were carried out to explore the influence of

the parameter d on the results accuracy. The results obtained for

d ¼ 0.05, d ¼ 0.2 and d ¼ 0.4 revealed that the discrepancies be-

tween the total Nusselt number on the left and right sides decrease

or disappear when low values of non-dimensional temperature

differences are considered. For instance, the results in Table 2

confirm this tendency. Further, In Table 4, the same values at the

vertical walls are obtained for a cavity with reflecting horizontal

walls.

Fig. 2. Streamlines for different wall emissivities, Ra ¼ 106 and d ¼ 0.6.

Fig. 1. Isotherms for different wall emissivities, Ra ¼ 106 and d ¼ 0.6.
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Fig. 3. (a, b) Temperature profiles and (c, d) net radiative heat flux at the horizontal walls, Ra ¼ 106.

Fig. 4. Temperature profiles at mid-height z ¼ 0.5 and at vertical mid-plane x ¼ 0.5, Ra ¼ 106.

Fig. 5. Profiles of velocity components for different values of wall emissivity at Ra ¼ 106: (a) vx at x ¼ 0.5, (b) vz at z ¼ 0.5.
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Fig. 6(a) highlights the opposite tendencies for the convective

Nusselt number on the active walls: an increase on the cold wall

with increasing ε and a decrease on the hot wall with predomi-

nance values on the cold wall. For radiative heat transfer, Fig. 6(b)

presents a similar behavior for both walls: an increase of the Nus-

selt number with emissivity but with higher values on the hot wall.

In order to explain the evolution of mean convective Nusselt

numbers with emissivity, it is interesting to examine the variations

of local Nusselt number along the vertical walls. In Fig. 7, the

average Nusselt number on the hot wall is clearly lower in the case

with radiation than that obtained in the case without radiation. The

most difference in the plots is observed at the leading edge (z ¼ 0)

and at the top. When the radiation is taken into consideration, the

fluid in contact with the floor arrives heated at the leading edge. It

follows a reduced temperature difference between the fluid and the

wall and thus a lower heat exchange coefficient. The low level of

heat transfer is maintained on a large height of the wall, except in

the vicinity of the top area where the trend is reversed. The more

the wall emissivity increases, the more the temperature difference

between the fluid and the wall is low. This behavior tends to reduce

the average convective Nusselt number on the cold wall with

increasing the wall emissivity.

Fig. 8 depicts the variation of convective Nusselt number along

the opposite wall for the same values of ε. The corresponding plots

exhibit small areas affected by the surface radiation in the imme-

diate vicinity of the leading edge (z ¼ 1) and the bottom wall. In

these restricted regions, the local Nusselt number show larger

values when the radiation is taken into consideration. However, it

remains almost unchanged on a large distance far from edges. By

considering themean values, the convective Nusselt number on the

cold wall increases with increasing the wall emissivity ε. The plots

related to local radiative Nusselt number on the vertical walls are

shown in Fig. 9 for a large value of emissivity ε ¼ 0.8. Although the

walls are isotherms, it can be seen that the profiles are not uniform

and the maximum values are reached at almost mid-height. The

plots also highlight that the average radiative Nusselt number is

greater on the hot wall than on the cold wall.

In order to explore the influence of horizontal walls on the heat

transfer, further calculations were carried out by testing different

values of emissivity at top and bottom walls. For this purpose, the

Table 3

Convective, radiative and global Nusselt numbers on the vertical walls for different

emissivities at Ra ¼ 106; results for d ¼ 0.6, T0 ¼ 600 K and L0 ¼ 0.067 m.

ε Hot wall Cold wall

Nucv Nurad Nug Nucv Nurad Nug

0 8.6883 0 8.6883 8.6883 0 8.6883

0.2 6.4614 12.9123 19.3737 9.8993 9.5203 19.4196

0.4 5.9127 25.9921 31.9138 10.5489 21.4425 31.9914

0.6 5.6778 40.3771 46.0549 10.8675 35.2842 46.1517

0.8 5.5201 56.6219 62.1420 11.0206 51.2242 62.2448

1 5.3984 75.2478 80.6463 11.06109 69.6708 80.7317

Table 4

Convection, radiation and global Nusselt numbers on the vertical walls; configura-

tions with black vertical walls and different wall emissivity on the horizontal walls,

Ra ¼ 106.

εl εr εt εb Hot wall Cold wall

Nucv Nurad Nug Nucv Nurad Nug

1 1 0 0 8.6883 73.0857 81.7740 8.6883 73.0857 81.7740

1 1 0 1 5.0560 75.5920 80.6480 11.0897 69.6260 80.7157

1 1 1 0 8.9807 72.9406 81.9213 9.0255 72.9157 81.9412

1 1 1 1 5.3984 75.2478 80.6462 11.06108 69.6708 80.7316

Fig. 6. Variation of average Nusselt numbers with emissivity on the vertical walls at Ra ¼ 106; (a) convective Nusselt number, (b) radiative Nusselt number.
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vertical walls are considered black while two values ε ¼ 0 and ε ¼ 1

are imposed on the horizontal walls to obtain extreme conditions

for surface thermal radiation. Table 4 summarizes the studied four

cases and reveals that the total Nusselt number on the vertical walls

is higher with a reflected bottom wall. The configuration (εt ¼ 0,

εb ¼ 1, εl ¼ 1, εr ¼ 1) gives results equivalent to those obtained with

four black walls since the net radiative heat flux at the upper wall is

almost equal to zero for εt ¼ 1. Note finally that these two config-

urations provide the lowest rate of heat transfer including the

convective and radiative heat exchanges.

3.2. Unsteady periodic flow

3.2.1. Onset of unsteadiness and nature of the bifurcation

In this section, we are interested in the initial phase of transition

to unsteady flow. In order to examine the radiation effect on the

instability mechanisms, we first investigate the problem of natural

convection without radiation. For Pr ¼ 0.71 and a fixed aspect ratio

A¼ 1, the transition to unsteadiness in pure convection depends on

the Rayleigh number and the parameter d. As we are interested in

strong non-Boussinesq flow, the dimensionless temperature dif-

ference is set to d ¼ 0.6.

The procedure adopted here consists in increasing the values of

Rayleigh number from a steady state until the flow becomes un-

steady. Its temporal characteristics are then analyzed from time

series of temperature (or velocity) at selected monitoring points.

Starting from Ra ¼ 106 and gradually increasing the Rayleigh

number, the flow loses its stability beyond a critical value yielding

an asymptotic periodic solution. By following this procedure up to

5 � 107, the bifurcation point occurs in the range [3.8 � 107;

4 � 107]. Since the amplitude of periodic solutions evolves like

(Ra � Rac)
0.5 as for a supercritical Hopf bifurcation, the method

followed to determine the bifurcation point is that presented in Ref.

[31]. The critical value is obtained from a linear extrapolation of the

squared amplitude. The transition appears to be a supercritical

Hopf bifurcation (without hysteresis effect) whose threshold lies at

a critical value Rac ¼ 3.9 � 107 (see Fig. 10(a)). Note this value is

slightly larger than that one obtained by Weissman et al. [30]

(Rac x 3.3 � 107 for d ¼ 0.6) in a larger cavity (A ¼ 2) which is

less stabilizing. It is also lower than the critical value in the Bous-

sinesq approximation (Rac ¼ 1.8 � 108) [31].

The investigation is now extended to the convection coupled

with surface radiation. In this case, the transition to unsteadiness

depends on the Rayleigh number and the size of the cavity length L.

The non-dimensional temperature difference is maintained un-

changed d ¼ 0.6. The value L retained in this study is deduced from

the Rayleigh number Ra ¼ 5 � 107 corresponding to a periodic

solution in pure convection (see Fig. 10(a)). Therefore, the value of

the cavity length is equal to L ¼ 0.247 m which leads to a radiative

number Nr ¼ 60.31 (or Planck number ¼ 0.016). It should be noted

that the variation of Ra depends therefore only on the variation of

physical properties of air at the initial state since the parameters L

and d are fixed. Recall that each solution obtained at a given Ra is

used as an initial condition for a subsequent computation at a larger

value of Ra. From a practical standpoint, the variation of Ra can be

obtained by varying the mean pressure. Note that varying the mean

temperature will affect the radiationeconduction number Nr while

the variations of Ra were carried out at fixed Nr.

Once again, the computations start from a steady solution ob-

tained at a moderate value of Rayleigh number Ra ¼ 106 and

L ¼ 0.247 m. The wall emissivity is assumed to be identical on all

faces with value ε ¼ 0.2. By gradually increasing the Rayleigh

number, the asymmetric steady solutions persist up to

Ra ¼ 3.5 � 106 for which the flow is close to becoming unstable.

One notable remark is that the more Ra is close to its critical value,

the more the time becomes long for attaining the asymptotic so-

lution. At Ra¼ 4� 106, the solution displays a periodic signal with a

dimensionless frequency f ¼ 0.3. As expected, the surface radiation

has a strong effect on the transition to unsteadiness. In Fig. 10(b),

the extrapolated value of Ra corresponding to the transition to a

periodic state is Rac ¼ 3.7 � 106. This critical value is much lower

than in the case of pure convection which reveals that the surface

radiation promotes the appearance of convective instabilities.

The critical value of Ra has been obtained for fixed values of

cavity length and wall emissivity. Varying these parameters will

affect the critical value Rac without changing the nature of the

transition.

3.2.2. Mean flow and temperature fluctuations

3.2.2.1. Case with surface radiation. To examine the fluctuating

fields, we have calculated the average flow by integrating the time-

dependent equations over a sufficiently long time and then

computed the fluctuations by subtracting the mean solutions from
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instantaneous fields. Fig. 11 shows the mean fields of temperature,

stream function and contours of mean velocity components for

Ra ¼ 4 � 106. The mean flow is mainly dominated by a large

clockwise cell with inside small rolls located near the bottom wall

and at the top left corner of the cavity. The mean vx-component

show contours which develop smoothly parallel to the horizontal

walls.

Fig. 12 shows snapshots of temperature fluctuations at different

instants over one time period. These fluctuations occur as large

structures with alternating sign which develop essentially on the

left half of the cavity. A careful look to these plots indicates that the

fluctuations with maximum intensity are concentrated near the

walls and travel mainly in the shear layers. Since the boundary

layer is much thicker on the hot wall than that on the cold wall for

d ¼ 0.6, the fluctuations are convected along the hot wall and

vanish on the cold boundary layer. A similar behavior has been

observed by Le Qu�er�e et al. [32] in a tall vertical cavity (A ¼ 8) for

large non-Boussinesq regimes (d¼ 0.6) in pure convection. In their

previous work, the authors have shown the influence of the

parameter d on the structure of unsteady solutions. For low values

of d, the fluctuations travel around the cavity and with increasing d,

the instabilities are amplified in the upward boundary layer and

damped as they travel down on the cold wall. Our numerical re-

sults confirm these observations by performing calculations with

two other values of d and maintaining the wall emissivity ε ¼ 0.2.

In Fig. 13, are displayed spatial distributions of fluctuations for

d ¼ 0.05, d ¼ 0.2 and d ¼ 0.6 at weak supercritical Rayleigh

numbers corresponding to a periodic regime. For d ¼ 0.05 equiv-

alent to a temperature difference DT ¼ 60 K, alternate positive and

negative fluctuations are distributed along the primary flow

around the cavity walls. This scenario reproduces for d¼0.2

(DT ¼ 240 K) but with the alteration of fluctuations in the lower

part of the cold wall.

Wang et al. [3] investigated the transition to unsteadiness in a

two-dimensional square cavity with surface radiation under the

Boussinesq approximation. They suggested that the mechanism

leading to unsteady flow are caused by the onset of thermal in-

stabilities like in cavity with perfectly conducting horizontal walls

(linear temperature profile). The authors observed similar effects

on temperature and flow fields between the cases: coupled con-

vectioneradiation and perfectly conducting lateral walls. It must be

emphasized that the thermal instabilities related to conducting

lateral walls result from an unstable stratification along the hori-

zontal boundary layers (a stable stratification is a function of z only)

and are more destabilizing (Rac ¼ 2 � 106 [31]) than the hydrody-

namic instabilities encountered in cavity with adiabatic horizontal

walls (Rac ¼ 1.8 � 108 [31]).

Fig. 11. Contours of mean fields of temperature, stream function, velocities vx and vz
for Ra ¼ 4 � 106, d ¼ 0.6 and wall emissivity ε ¼ 0.2.

Fig. 12. Snapshots of fluctuating fields of temperature at several instants over one period for Ra ¼ 4 � 106.
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In this study, the origin of instabilities in natural convection

combined to surface radiation are probably due to onset of thermal

instabilities at the horizontal walls before traveling in the vertical

boundary layers. The presence of unstable stratification zones near

the horizontal walls and an earlier onset of instabilities compared

to the case in pure convection are two relevant points to be

considered. However, the spatial distribution of fluctuating fields is

highly influenced by the strong non-Boussinesq regime. Only half

of the cavity is concerned by these disturbances for d ¼ 0.6 while

the distribution becomes more structured and covers all the cavity

walls for d ¼ 0.05.

It is interesting to point out that the similarity observed by

Wang et al. [3] between the coupled convectioneradiation problem

and the case with conducting horizontal walls, is not found when

considering the non-Boussinesq regime. This behavior is due to the

strong non-linear form of radiative heat flux when large tempera-

ture differences are considered. Note that in the Boussinesq

approximation and at very low temperature differences, it is

possible to approximate the dimensional net radiative flux by a

linear expression in DT [3]. To evidence such effects, Fig. 14 dis-

played the temperature and flow fields obtained in a cavity with

perfectly conducting horizontal walls and a cavity with four black

walls at Ra ¼ 106. The later configuration leads to almost similar

temperature profiles at the top and bottom walls (see Fig. 3(b)). In

both cases, it can be seen that the streamlines show peripheral

flows which develop smoothly along the walls but exhibit quite

different patterns at the cavity center. For conducting horizontal

walls, spaced horizontal streamlines settle at the core with a small

eddy located close to the top left corner. In the coupled con-

vectioneradiation case, the cavity core includes two small rolls at

the top left corner and close to the bottom wall. The temperature

fields present qualitatively some similarities: a stable thermal

stratification at the core and unstable stratified zones on the hor-

izontal walls. In the convectioneradiation case, the unstable

stratification is more developed at the bottomwall; the asymmetric

distribution has been discussed previously. Considering the results,

the presence of these unstable zones are probably at the origin of

instability onset.

3.2.2.2. Case without surface radiation. Now compare the fluctu-

ating fields with those obtained in pure convection at Ra ¼ 5 � 107.

In Fig. 15, are displayed the mean fields of temperature, streamlines

Fig. 13. Snapshots of temperature fluctuations for different values of d: (a) scale fluctuations [�0.0023, 0.0026]; (b) scale fluctuations [�0.0029, 0.0049]; (c) scale fluctuations

[�0.0211, 0.0218].

Fig. 14. Isotherms and streamlines for Ra ¼ 106: (a) cavity with four black walls; (b)

cavity with perfectly conducting horizontal walls.

Fig. 15. Contours of mean fields of temperature, stream function, velocities vx and vz
for Ra ¼ 5 � 107, d ¼ 0.6 and wall emissivity ε ¼ 0.
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and velocity components. The mean flow is characterized by a

sudden expansion at the exit of vertical boundary layers causing the

detachment of streamlines on the horizontal walls. Since the flow is

asymmetric, the lower right corner of the cavity exhibits a rebound

of the main stream more pronounced than the one on the top left

corner. Unlike the precedent case, contours of the mean velocity vx
are non smoothly parallel to the horizontal walls. As seen in Fig. 16,

spatial distributions of temperature and velocity fluctuations

highlight the presence of an unstable area only in the lower right

corner. This behavior is due to nonlinear variations of transport

coefficients with temperature near the cold wall which creates

favorable conditions for the formation of disturbances. As the

thermal conductivity and the viscosity decrease with temperature,

the dissipation effects which are stabilizing are reduced at the right

bottom corner and thus the disturbance structures appear.

There is no agreement in the literature for the physical mech-

anism of instabilities. In some previous studies, the corner flowwas

considered to be caused by a wave breaking of the internal hy-

draulic jump. This explanation was supported by Chenoweth and

Paolucci [33] but refuted by Patterson and Armfield [34] and Ravi

et al. [35]. The authors [35] argued that the flow separation at the

corner is due to thermal effects. At high Rayleigh number, the

relatively cold fluid in the upward vertical boundary layer detaches

from the ceiling like a plume after impacting on the top corner.

Note that the thermal stratification at the core is more important in

pure convection. When the surface radiation is taken into account,

the stratification becomes smaller, the velocities are intensified

near the horizontal walls and the typical detached flow at the

corners disappears.

Surface radiation is not the only parameter changing the

instability mechanism. Transition to unsteadiness in natural con-

vection flow induced by a large temperature difference (d¼ 0.6) has

been carried out by Weissman et al. [30] in differentially heated

cavities. The authors investigated the transition for different aspect

ratios (2 � A � 8) and have shown that the instability mechanisms

depend strongly on this parameter.

4. Conclusion

Coupled natural convection and surface radiation is studied

numerically in a differentially heated square cavity. The two-

dimensional flow is described by the Low Mach Number equa-

tions where nonlinear fluid properties and large temperature

differences are taken into account. The heat transfer and flow

characteristics are analyzed at steady state and the first transition

from steady to unsteady flow is investigated for strong non-

Boussinesq regimes. The influence of radiation on the flow struc-

ture and the heat transfer has been clearly established.

At steady state, the surface radiation reduces the convection

heat transfer at the hot wall and increases it on the cold wall. The

total heat transfer on the vertical walls (convection and radiation)

increases with increasing ε for identical wall emissivity on all faces.

The surface radiation leads to the cooling of the top wall and the

heating of the bottom wall. It has also be found that the tempera-

ture difference between the horizontal walls and the thermal

stratification reduce with increasing the emissivity.

Transition to unsteadiness is investigated by increasing the

Rayleigh number. The surface radiation has a non-stabilizing effect

and leads to reduce the critical Rayleigh number by comparison

with the case in pure convection. The flow undergoes a supercrit-

ical Hopf bifurcation in both cases without and with radiation but

the instability mechanisms involved are different. In pure convec-

tion, the detached flow structure is responsible for the transition to

a periodic motion. For the coupled convectioneradiation problem,

the instabilities are probably originated from the onset of thermal

instabilities on the horizontal walls.
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