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A ballistic walking gait is designed for a planar biped equipped with a wearable walking
assist device. The biped is a seven-link planar biped with two legs, two feet, and a trunk.

The wearable walking assist device is composed of a bodyweight support, two upper legs,
two lower legs, and two shoes. The dynamic model of the biped with its walking assist
device, containing two closed kinematic chains, is calculated by virtually cutting each of
both loops at one of their point. In the single support phase, the biped with its assist
device moves due to the existence of a momentum, produced mechanically, without
applying active torques in the inter-link joints. The biped and this assist device are
controlled with impulsive torques at the instantaneous double support to obtain a cyclic
gait. The impulsive torques are applied in the six inter-link joints of the biped and in
several inter-link joints of the wearable walking assist device. The following distributions
of impulsive torques, in the knees or the ankles, hips and knees, hips and ankles, or knees
and ankles and the fully assist device, are compared with the case of no assistance for
the biped. Each time, an infinity of solutions exists to find the impulsive torques. An
energy cost functional defined from these impulsive torques is minimized to determine a
unique solution. Numerical results show that for a given time period and a given length
of the walking gait step, the assistance of the hips is a good compromise to help the
biped.

Keywords: Walking gait; Kinematic closure loop; Impulsive torque; Optimization; In-
stantaneous double support; Walking assist device.

1. Introduction

Research in powered human exoskeleton devices began in the late 1960s for military

purposes.1 Currently the assistive robotics is still an active research field because

there are many needs for industrial applications to avoid the musculoskeletal dis-

orders as well as for patients and elderly people with mobility impairments.2 As a

consequence during the last few years, several biomechanical studies and realiza-

tions of walking assist devices are carried out. To name a few, Priebe and Kram3

compare the metabolic power consumption for ten young, healthy adults walking

without assist and using two-wheeled, four-wheeled and four-footed walker devices.

1
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At the same speed, 0.30m/s, using a four-footed walker devices is energetically more

expensive than walking unassisted, with a four-wheeled walker and a two-wheeled

walker respectively. Zhang and Hashimoto4 propose a trajectory generation method

for a robotic suit to assist walking by supporting the hip joints. This robotic suit

consists of two links and two actuators. Krut et al5 propose a lower limb exoskele-

ton, MoonWalker, able to sustain part of a user’s bodyweight based on gravity

compensation. Through a passive force balancer MoonWalker requires low energy

to work on flat terrains. A motor can provide also a part of the energy to climb

stairs or slopes. Ikeuchi et al6 propose a wearable walking assist device. This device,

with a seat, two upper legs, two lower legs, and two shoes is disposed along the inner

side of the user’s legs. It can always maintain the assist force vector in the direction

from the center of pressure of floor reaction to the center of mass of the user’s body

by using two actuators. Renquan et al7 describes a novel development of a lower

limber exoskeleton for physical assistance and rehabilitation. The experiments illus-

trate the ability of the exoskeleton to enable the leg shank to track trajectories with

different periods and ranges of motion. Alonso et al8 quantify the contributions of

muscles and active orthosis to the net joint torques, so as to assist the design of

active orthoses for spinal cord injuries. The orthosis is included as a set of external

torques added to the ankles, knees, and hips to obtain net joint patterns similar

to those of normal unassisted walking. Kazerooni proposes a description of the

Berkeley exoskeleton BLEEX in,9 which is devoted to military applications. Rosen

and Perry,10 through a profound understanding of the kinematics and dynamics

of the human arm, designe a seven degree of freedom exoskeleton arm. Caldwell

and et al,11 with the use of a new range of pneumatic muscle actuators, develop

an ultra low-mass, full-body exoskeleton system. With the objective to increase

the load-carrying capacity and to preserve autonomy, Walsh et al12 propose a very

interesting quasi-passive leg exoskeleton.

Despite this great activity the design of a wearable walking assist device with an

optimal structure from point of view of small moving mass and low energetic dis-

pense is still an open problem. The human walking without or with an assist device

is a very complex coordination of muscle forces, actuator torques, joint motions,

and closed kinematic chains. The place and the number of actuators of a wearable

walking assist device and its autonomy remain a difficult challenge. This paper aims

to respond to the question of the best distribution of the impulsive torques and their

number for a given wearable walking device to assist a seven-link planar biped. The

study of ballistic walking of biped with assist device may provide insight in human

walking with an assist device. Human motions comprise alternating periods of mus-

cle activity and relaxation, and the double support phase is relatively short with

respect to the single support phase. Then it is logical to consider the problem of

purely ballistic swing phases and double support phases with impulsive interlink

torques. Similar statement of the problem is proposed by Formal’skii,13,14,15 Mo-

chon and McMahon,16 McGeer,17 Asano18 and Aoustin and Formalskii.19
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The aim of this paper is to determine an optimal distribution of the actuators of

a given assist device with respect to the locomotor system of an anthropomorphic

biped. This biped has a torso, two identical legs with feet. The walking assist device

is composed of a seat, two upper legs, two lower legs, and two shoes. Therefore a

boundary value problem is solved for this biped with its walking assist device to

find a walking ballistic gait, which is cyclic, with instantaneous double supports and

impulsive torques, and to study the optimal distribution and the minimum number

of the torques provided by the walking assist device. The impulsive control torques,

which are applied in the inter-link joints between the neighboring single support

phases are described by delta-functions of Dirac. Of course this approach cannot

be considered as a realistic control method but as a design tool, because it is not

possible to realize these impulsive control torques. However when the number of the

degrees of freedom of a mechanical system is equal to the number of its actuators,

the ballistic trajectory can be modified around the impact with the ground in order

to have a feasible motion with finite torques; see.20

The rest of the paper is organized as follows. Section 2 is devoted to the modeling of

the biped with its walking assist device. Problem definition of the ballistic walking

is given in Sect. 3. In the same Sect. 3, the algebraic equations for the instantaneous

double support are designed. An energy cost functionals for the impulsive control is

presented in Sect. 4. The results of simulation are shown in Sect. 5. Our conclusion

and perspectives are offered in Sect. 6.

2. Modeling of the biped with its wearable walking assist advice

2.1. Physical parameters of the biped

For the seven-link biped, depicted in fine line Fig. 1 (a), we use the physical parame-

ters from.14 The wearable walking device assist, in thick line Fig. 1 (a), is composed

of a seat, attached to the base of the trunk, two upper legs, two lower legs, and two

shoes. Figure 2(a), the distances are Ss = 0.324 m between the knee joint and the

center of mass for the shin, St = 0.18 m between the hip joint and the center of

mass for the thigh, ST = 0.386 m between the hip joint and the center of mass for

the trunk. The distance between the center of mass of the upper leg and the joint

with the seat is: S1 = 0.1127 m, the distance between the center of mass of the

lower leg and the joint with the upper leg is: S2 = 0.169 m, the distance between

the center of mass of the seat and the joint with the upper leg is: S3 = 0.05 m, the

distance between the base of the seat and the hip joint is: l3 = 0.1 m. The head

mass is included in the trunk that its length is lT . Table 1 gathers the masses, the

lengths and the inertia moments for each link of the biped and the walking assist

device.
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Fig. 1. The kinematic model with its degrees of freedom and link frames of the biped and its
walking assist device.

2.2. Modeling including the seven-link biped and the walking assist

device, in single support phase

Several methods have been proposed in the literature to compute the dynamic

models of robots containing closed kinematic chains; see21 for a survey. The dynamic

model developed is based on firstly computing the dynamic model of an equivalent

tree structure. This equivalent tree structure is constructed by virtually cutting each

of both loops at one of their point. Let us choose the middle point of the upper

link of each leg link, which composes the walking assist device. The computation of

dynamic model of the biped equipped with the walking assist device is calculated

using the equivalent tree structure in which the generalized variables satisfy the

constraints of both loops and after adding external forces and moments between

the cut links as external forces and moments. The closed-loop geometric constraints

for each loop, their first and second time derivatives are detailed in Appendix 6.

Through the virtual work principle, these constraint equations can be expressed in

the dynamic model by adding terms J⊤

i λi, i = 1, 2. Here Ji is the 3× 15 Jacobian

matrix such as equations (22), (23), (24), and (25) can be rewritten under the

compact forms:

[

J1

J2

]

ẋ = 06×1 (1)
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Fig. 2. Position of the center of mass of each link of the planar biped and its walking assist device
and detail parameters of both, foot and shoe.

and
[

J1

J2

]

ẍ+

[

J̇1

J̇2

]

ẋ = 06×1. (2)

and vector λi = fci=[fxi
, fyi

,mzi ]
⊤ defines the wrench, which is composed of the

external forces and moments for each loop closure (see Figure 1(a)). The generalized

vector x is such as

x = [q1, q2, q3, q4, q5, q6, q7, q8, q91, q92, q101, q102, q11, x, y]
⊤.

Here x and y are the hip coordinates; see Fig. 1 (b). Angles q1, q2, q3, and q4
define the absolute orientation of the shin and thigh for both legs. The absolution

orientation of the trunk and seat is defined through q5. Angles q6 and q7 describe

the absolute orientation of feet. The absolute orientations of the two branches of

the upper legs and the lower legs are respectively described with q8, q91, q92, q101,

q102, and q11. The biped modeling with its walking assist device is:

A(x)ẍ + h(x, ẋ) =
[

D J⊤
1 J⊤

2

]

[

Γ

fc

]

+ J⊤

r1

[

r1

m1z

]

+ J⊤

r2

[

r2

m2z

]

, (3)

with the constraint equations,

Jri ẍ+ J̇ri ẋ = 0 for i = 1 to 2,
[

J1

J2

]

ẍ+

[

J̇1

J̇2

]

ẋ = 0.
(4)
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Mass (kg) Length (m) Inertia (kg.m2) center of

mass (m)

Foot mf = 0.678 Lp = 0.207 If = 0.012 spx = 0.0135

and shoe lp = 0.072 spy = 0.0321

Hp = 0.064

Shin ms = 4.6 ls = 0.497 Is = 0.0521 ss = 0.324

Thigh mt = 8.6 lt = 0.41 It = 0.7414 st = 0.18

Trunk mT = 17.5 lT = 0.625 IT = 11.3 sT = 0.386

Seat m3 = 2.0 l3 = 0.1 IT = 0.3 s3 = 0.05

Upper leg m1 = 3.0 l1 = 0.392 I1 = 0.04 s1 = 0.1127

Lower leg m2 = 2.0 l2 = 0.3645 I2 = 0.02 s2 = 0.169

Table 1. Physical parameters of the seven-link biped and of the walking assist device.

Γ is the 12 × 1 vector of the applied joint torques,
[

ri miz

]⊤

, with i = 1 to 2, are

the resultant wrenches of the contact efforts with the ground reaction in both feet,

and fc=[f⊤c1 , f
⊤
c2
]⊤. Jr1 and Jr2 are the 3 × 15 Jacobian matrices for the constraint

equations in position and orientation for both feet, respectively. A(x) is the 15× 15

symmetric positive definite inertia matrix, h(x, ẋ) is the 15×1 vector, which groups

the centrifugal, Coriolis effects, and the gravity forces. Because the generalized

vector is composed of absolute angle variables instead of joint variables we applied

the principle of virtual work to calculate D; see.22 Let us detail this calculation.

The virtual work δWi (i = 1, ..., 12) of each torque Γi, applied to the corresponding

joint variable δθi, is as follows

δWi = δθiΓi

= D⊤

i δxΓi

(5)
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Then the matrix of torques is D = [D1, ...,Di, ...,D12] with:

Di =
∂

∂Γi

(

∂δW

∂δx

)

. (6)

The principle of virtual work can be also used to obtain both matrices J⊤
r1

and J⊤
r2
.

Considering several distributions of torques for the walking assist device. The

number of nonzero torques na is such as 6 ≤ na ≤ 12. In the single support, with

a stance foot with a flat contact on the ground the number of degrees of freedom

is six and there are na ≥ 6 nonzero torques. With unlimited torque amplitudes, it

means that the biped is a over actuated or a fully actuated mechanism during the

single support phase. With a limited torque at the ankle of the supporting leg, a

rotation of the stance foot is possible and this mechanism becomes under-actuated;

see for example.23

2.3. Modeling including the biped and the walking assist device, in

double support phase

During the biped’s gait, an impact occurs at the end of a single support phase,

when the swing leg tip touches the ground. At the instant of impact, denoted by T ,

the double support phase is assumed instantaneous. At the instant of the passive

inelastic impact, the biped looses energy. Therefore, the velocity vector after the

impact will not be the desired one, if the bearing surface is horizontal. Then for

the next ballistic step the desired initial velocity vector will not be reached. As a

consequence, a complete walking cyclic gait of the biped with its assist device cannot

be realized on a horizontal surface without active torques. However, theoretically,

around the instantaneous double support it is possible to define impulsive torques

in order to ensure the desired velocity jump; see Formalskii,14,15 Hurmuzlu, and

Chang.24 In the next Section, it is shown how to calculate these impulsive torques.

3. Ballistic motion and impulsive control: Problem definition

3.1. Single support

In the single support phase, the stance leg foot (let it be foot 1) is assumed to have

a flat foot contact on the ground, no sliding motion, no take-off, and no rotation.

Let x(0) be the initial configuration of the biped with its wearable assist device

at time t = 0; see Fig 3. We assume, the front and hind legs are the stance and

swing legs respectively. The final configuration of the biped in the single support

phase at the given time t = T is noted x(T ). Let this given configuration be similar

to the initial configuration with the swapped legs. Let L be the length of the step

corresponding to a single support. We consider a ballistic motion during the single

support phase with Γ = 0na×1. As a consequence, the matrix equations (3) for the

ballistic motion become:

A(x)ẍ + h(x, ẋ) =
[

D J⊤
1 J⊤

2

]

[

0na×1

fc

]

+ J⊤

r1

[

r1

m1z

]

, (7)
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Fig. 3. Starting from the left side to the right side, initial and final configurations of the biped
(side view), of the wearable assist device (blue line), assisted biped (black line). The stance leg
with its assistance is drawn in solid line

with the constraint equations,

Jr1 ẍ+ J̇r1 ẋ = 0
[

J1

J2

]

ẍ+

[

J̇1

J̇2

]

ẋ = 0.
(8)

To design the ballistic walking, it is necessary to find the solution x(t) of the

matrix equations (7) and (8) with the given boundary conditions x(0) and x(T ).

We have to find the initial velocity vector ẋ(0) such that solution x(t), starting

from the given initial configuration x(0) with the velocity vector ẋ(0), reaches the

given final configuration x(T ) at the given time T . The given boundary conditions

x(0) and x(T ) are chosen such that the positions of the locomotor system with

its assist device and the trunk of the biped are similar to human configurations.

This boundary value problem can be numerically solved using a Newton method

with unknown vector ẋ(0). The motion of the biped is admissible, if the vertical

component of the ground reaction in the stance leg is positive (directed upwards),

and if the swing leg moves over the ground for 0 < t < T . We check these constraints

after solving the boundary value problem - a posteriori. The wrench of the ground

reaction is calculated from (7) and (8).
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After solving the boundary value problem, the vector of the initial velocities ẋ(0)

is known. We denote it by ẋa. If the initial conditions x(0), ẋa are known, then

by integration of the system (7) − (8) the vector of the terminal velocities ẋ(T )

can also be found. We denote it by ẋb. This problem is numerically solved with the

fsolve function based on the Newton-Raphson Algorithm of Matlab R©.

3.2. Structure of double support phase

Similarly to25, 15 or19 let us consider the current ballistic motion on the stance leg 1

and the following ballistic motion on the stance leg 2. Let the final velocity vector

ẋb of the current ballistic swing motion and the initial velocity vector ẋa of the next

ballistic swing motion be known from the solution of the boundary value problema

and the numerical integration of the matrix equations (7) − (8). Let us apply the

impulsive torques in the joints with the intensity vectors I− and I+, respectively

just before and just after the passive impact with the ground to create a complete

cyclic motion. Then we divide the instantaneous double support phase into three

sub-phases and detail these sub-phases, which are presented in Figure 4.

Fig. 4. Decomposition of the impulsive impact; see25, 15 or.19

• The swing leg 2 touches the ground at the end of the ballistic single support

motion on leg 1, and an impact occurs. Just before contact with the ground,

in the first sub-phase at time T−, impulsive torques Γ−(t) = I−δ(t− T−)

are applied at the na inter-link joints. Here δ(t − T−) is the Dirac delta-

function. At the same instant T−, the impulsive ground reaction r−1 =

I−
r1
δ(t − T−) is applied in the hind leg tip. Here I−

r1
(I−

r1x
, I−

r1y
, I−

m1z
) is the

vector of the magnitudes of the impulsive reaction in leg 1. Furthermore

f−ci=I−
fci

δ(t−T−), with I−
fci

=[I−fxi

, I−fyi
, I−mzi

]⊤ defines the impulsive wrench

for each loop closure. Under the impulsive torques, the velocity vector ẋ of

the biped changes instantaneously from the value ẋb to some value ẋ−. The

aTherefore there is a permutation operation between ẋa and the solution of the boundary value
problem to take into account the exchange of the role of both legs.
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corresponding equations for the velocity jump can be obtained through the

integration of equations of motion (3) for the infinitesimal time from T−

to T . The torques provided by the Coriolis and gravity forces have finite

values. Thus, they do not influence the velocity jump:

A[x(T )](ẋ− − ẋb) =
[

D J⊤
1 J⊤

2

]

[

I−

I−
fc

]

+ J⊤
r1
I−r1 . (9)

The associated constraint equations are:

Jr1 ẋ
− = 03×1

[

J1

J2

]

ẋ− = 06×1.

(10)

Here x(T ) denotes the configuration of the biped at the instant of impulsive

actions (at the double support). This configuration does not change at the

instants of the first, second, and third sub-phases. The velocity of the hind

leg foot with flat contact on the ground remains zero after the first sub-

phase.

Then the biped has the velocity vector ẋ− just before the next (second)

sub-phase, which is a passive impact with the ground.

• The second sub-phase is assumed to be a passive impact, i.e. without

torques applied in the inter-link joints, absolutely inelastic, and such that

the legs do not slip. Given these conditions, the ground reactions at the in-

stant of an impact can be considered as impulsive forces and defined by the

delta-functions r2 = Ir2δ(t − T ). Here Ir2(Ir2x , Ir2y , Im2z
) is the vector of

the magnitudes of the impulsive reaction in leg 2; see.14 The corresponding

equations for the velocity jump can be obtained through the integration

of the matrix equation (3) for the infinitesimal time. The velocity of the

stance leg tip 1 before an impact is equal to zero.

Generally speaking, two results are possible after the passive impact, if we

assume that there is no slipping of the leg tips. The stance leg lifts off the

ground or both legs remain on the ground. Numerical investigations were

carried out after impact to check the ground reaction in the stance leg

tip and the linear velocity of this leg tip. We considered numerically both

cases. From these numerical investigations we concluded that the first case

(stance leg lifts off the ground) takes place in all our variants. In this case,

the vertical component of the velocity of the taking-off leg tip just after

the impact is directed upwards. Also there is no interaction (no friction,

no sticking) between the taking-off leg tip and the ground. The ground

reaction in this taking-off leg tip is null. If we assume that after the impact

the stance leg remains on the ground (second case), the vertical component

of the ground reaction in this leg must be null or directed upwards. But

our calculations show that this component is directed downwards. It means
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that both legs cannot remain on the ground. For the first case, the impact

equations can be written in the following matrix form:

A (ẋ+ − ẋ−) =
[

D J⊤
1 J⊤

2

]

[

0na×1

Ifc

]

+ J⊤
r2
Ir2 (11)

Here ẋ+ is the velocity vector just after an inelastic passive impact. To take

into account of the closure loop, we have to complete (11) with:
[

J1

J2

]

ẋ+ = 06×1. (12)

The swing leg 2 after the impact becomes a stance leg. Therefore, its tip

velocity becomes zero after the impact,

Jr2 ẋ
+ = 03×1 (13)

• The swing leg 1 takes off the ground at the second sub-phase, which is

the passive impact. Then, the next ballistic single support motion on leg

2 starts. However, before the next ballistic swing motion (just after the

take off), in the third sub-phase at time T+, impulsive torques Γ+(t) =

I+δ(t − T+) are applied in the inter-link joints to change the velocity of

the biped instantaneously from the velocity vector just after passive impact

Ẋ+ to the known velocity vector ẋa. Integrating the differential equations

(3) we come to the following matrix relation:

A (ẋa − ẋ+) =
[

D J⊤
1 J⊤

2

]

[

I+

I+
fc

]

+ J⊤
r2
I+
r2

(14)

System (9)-(14) is composed of 63 scalar equations to find 69+na unknown variables,

which are the components of the vectors: ẋ−(15×1), I−(na×1), I−
fc
(6×1), I−

r1
(3×1)

(for the first sub-phase), ẋ+(15×1), Ifc(6×1), Ir2(3×1) (for the second sub-phase),

I+(na× 1), I+
fc
(6× 1), and I+

r2
(3× 1) (for the third sub-phase). Then the problem of

impulsive control has an infinite number of solutions. But if the number of equations

is less than the number of unknown variables, it is possible to extract a unique

solution minimizing some cost functional. The components of the above-mentioned

vectors are the subjects of the minimization. Among this set of components, (69 +

na)− 63 = 6 + na can be defined as parameters to minimize a cost functional.

4. Criteria

The choice of a cost functional is complex. We do not know even if a cost functional

is optimized during a human walking, equipped or not with an assist device. In this

section, an energy Criterion, which was proposed by Formal’skii,13 is presented for

a comparaison for all the studied cases.

This criterion is based on the principle that the actuators of the biped with its

assist device are not regenerative (energy cannot be restored in the drives). Then

the motion energy cost functional is defined as in26, 14, 20:
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• for the biped

Wb
1 =

6
∑

i=1





T
∫

T−

∣

∣

∣
Γ−

i (t)θ̇i(t)
∣

∣

∣
dt+

T+
∫

T

∣

∣

∣
Γ+
i (t)θ̇i(t)

∣

∣

∣
dt



 (15)

• for the assist device

Wad
1 =

12
∑

i=7





T
∫

T−

∣

∣

∣
Γ−

i (t)θ̇i(t)
∣

∣

∣
dt+

T+
∫

T

∣

∣

∣
Γ+
i (t)θ̇i(t)

∣

∣

∣
dt



 (16)

where the joint variables θi for i = 1, · · · , 12 are such as:

θ1 = q1 − q6, θ2 = q2 − q1, θ3 = q5 − q2,

θ4 = q3 − q5, θ5 = q4 − q3, θ6 = q7 − q4,

θ7 = q8 − q6, θ8 = q91 − q8, θ9 = q5 − q92,

θ10 = q3 − q5, θ11 = q4 − q3, θ12 = q7 − q4.

The calculation of the integrals in the expressions (15) and (16) leads14 to the

following formulas:

Wb =

6
∑

i=1

(

W−

i +W+
i

)

, (17)

Wad =
12
∑

i=7

(

W−

i +W+
i

)

. (18)

with

W−

i =

∣

∣

∣

∣

∣

I−i
θ̇i(T

−) + θ̇i(T )

2

∣

∣

∣

∣

∣

if θ̇i(T
−)θ̇i(T ) ≥ 0

W−

i =

∣

∣

∣

∣

∣

∣

I−i
θ̇2i (T

−) + θ̇2i (T )

2
[

θ̇i(T−)− θ̇i(T )
]

∣

∣

∣

∣

∣

∣

if θ̇i(T
−)θ̇i(T ) < 0

W+
i =

∣

∣

∣

∣

∣

I+i
θ̇i(T ) + θ̇i(T

+)

2

∣

∣

∣

∣

∣

if θ̇i(T )θ̇i(T
+) ≥ 0

W+
i =

∣

∣

∣

∣

∣

∣

I+i
θ̇2i (T ) + θ̇2i (T

+)

2
[

θ̇i(T )− θ̇i(T+)
]

∣

∣

∣

∣

∣

∣

if θ̇i(T )θ̇i(T
+) < 0

In simulation, with given length L and time period T of the step, we choose a

unique solution of the system (9) - (14) by minimizing this criterion (17). We take

into account the following constraints: I−r1x > 0, Ir2x > 0, and I+r2x > 0. Furthermore,

we ensure that the linear vector of the swing leg tip just before the passive impact
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is directed to the ground and just after the passive impact is directed to the top.

Therefore, our minimization problem is the problem of parametric minimization

with constraints. We used the SQP method (Sequential Quadratic Programming);

see27 and28 with the fmincon function of Matlab R© to solve this optimization

problem numerically.

We consider the quantity (17) corresponding to this solution as the energy cost

functional for the biped walking with the given data L and T for several actuation

modes of assistance. We will details these modes of assistance in the next section.

5. Simulation

5.1. Ballistic motion

The simulation results about the designed ballistic motion is presented in this sub-

section to see the evolutions of the angular variables, the zero moment point (ZMP )

and the external forces and moments for each loop closure.

The ballistic motion is defined with the following parameters L = 0.45 m and

T = 0.5 s. Figures 5 and 6 describe the joint variables of the biped. The amplitude

of oscillation for θ2 is very small, less than 0.5 ◦. We can consider the stance leg

as a straight leg. It is possible to observe a symmetry with the joint variables θ1,

θ3, and θ4. In first approximation they can be assimilated as odd functions with

respect to T/2. Variable θ5 shows a slight flexion of the swing leg. Figures 7 and

0 0.1 0.2 0.3 0.4 0.5
−20

0

20

0 0.1 0.2 0.3 0.4 0.5
−0.5

0

0.5

0 0.1 0.2 0.3 0.4 0.5
−20

0

20

θ 3
θ 2

θ 1

Fig. 5. Joints variables θ1, θ2, and θ3 (◦) as a function of time (s), respectively of the ankle, the
knee, and the hip for the stance leg of the biped.

8 present the joint variables of the walking assist device. Variables θ9 and θ10 can
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0 0.1 0.2 0.3 0.4 0.5
−20

0

20

0 0.1 0.2 0.3 0.4 0.5
−5

0

5

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

θ 4
θ 5

θ 6

Fig. 6. Joints variables θ4, θ5, and θ6 as a function of time (s), respectively of the ankle, the knee,
and the hip for the swing leg of the biped.

be also assimilated as odd functions with respect to T/2. Variables θ8 and θ11 show

that the amplitude of the flexion between the upper leg and lower leg is relatively

small.

0 0.1 0.2 0.3 0.4 0.5
−50

0

50

0 0.1 0.2 0.3 0.4 0.5
30

32

34

0 0.1 0.2 0.3 0.4 0.5
−40

−20

0

θ 7
θ 8

θ 9

Fig. 7. Joints variables θ7, θ8, and θ9 (◦) as a function of time (s), respectively for the upper leg,
the lower leg and the shoe, connected with the stance leg of the biped.

In Fig. 9, the center of pressure (CoP ) of the stance foot belongs to the convex
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−50
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θ 1
0
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1
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Fig. 8. Joints variables θ10, θ11, and θ12 (◦) as a function of time (s), respectively for the upper
leg, the lower leg and the shoe, connected with the swing leg of the biped.

hull of the supporting area. In this case this CoP is merged with the zero mo-

ment point (ZMP ); see.29 It means that the stance foot stays with flat contact on

the ground. Then the walking ballistic motion is valid. This feature has not been

prescribed in the statement of the problem previously. However, the displacement

magnitude of this CoP is less important than for human; see30 and.31 This dis-

placement magnitude around zero of the CoP can be explained because there is no

torque applied in the ankle of the stance leg. For the human walking gait in single

support, a rotation of the foot is observed with a partial contact of the sole with

the ground, located between the heel and the toe. In Fig. 10, for the biped and

the assist device, during the walking gait, the interaction between the biped and

the assist device is such that the external forces and moments for each closure are

realistic to preserve the mechanical structure.

5.2. Instantaneous double support

For the instantaneous double support, different distributions for the impulsive

torques have been compared. The impulsive torques are applied in hips, knees,

or ankles only, in both hips and knees, knees and ankles, or hips and ankles only.

The case, where the walking assist device is fully actuated, is also considered. In

case of the industrial applications, to compensate the gravity effects, it is important

to minimize the human’s efforts with respect to the assist device. For stroke patients

robot-assisted therapy could be useful in first time to assist their motion intention.

Following the progress of the rehabilitation, the user’s motion could be more active.

In this case it is importante to minimize the efforts of human and of the assistive

device. Then results are primarily devoted to the minimization of the criterion (17)
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Fig. 9. Profile of the Zero moment point, ZMP , in black line, for the stance flat foot. The red line
represents the heel and toe.
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Fig. 10. Profile of the wrench for each loop closure as function of time (s), for the stance leg 1
(dashed line) and the swing leg 2 (solid line). The forces are in (N) and the moment in (N.m)

and secondly to the minimization of global energy criterion:

W = Wb +Wad (19)

minimization of (17): From Fig. 11, we observe that for all cases, excepted for

the assisted ankles, it is possible to preserve the energy consumption of the
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biped. To increase the autonomy of the assist device, which is a critical

problem, it is better to assist the hips only. Furthermore, to have actuators

to assist the hips only means an assist device lighter.
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Fig. 11. Cost functional of the biped: Histogram as a function of different distributions for the
impulsive torques.

minimization of (19): When the criterion (19) is minimized, the energy cost, pro-

vided through the assist device, is logically less than with the minimization

of (19) for all the cases. When only the knees are assisted, the energy cost

of the biped is important, 25.1012 N.m.rad/s while the energy provided

through the assistive device is small, 3.6554 N.m.rad/s. To assist the hips

and the knees, the hips and the ankles, the hips and ankles, the knees and

ankles, or the hips, the knees, and the ankles does not provide an evident

advantage from the point of view of the energy costs of the biped and the

assist device. The best compromise is still to assist the hips only.
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Fig. 12. Global cost functional of the biped and the assist device: Histogram as a function of
different distributions for the impulsive torques.

6. Conclusion

A wearable walking assist device with bodyweight support to assist a planar seven-

link biped is studied through a ballistic walking motion ended by an impact of the

sole of the swing foot, while the rear foot is taking off. This impact is modeled with

an instantaneous double support phase. During this instantaneous double support

phase several solutions are possible to assist the biped: impulsive torques to assist

the hips, knees, or ankles, the hips and knees, knees and ankles, or the hips and

ankles, or to assist all the inter-link joints of the locomotor system of the biped.

Numerical results show that for a given time period T and a given length L of the

walking gait step the fully actuated assist device is the most efficient to help the

biped. To preserve energy the impulsive control of hips only is a good compromise.

These numerical results are preliminary to develop a new wearable walking assist

device designed for uses including industrial applications and for the general public.

We consider here a rigid interaction only. For future some elastic links can be

considered in the conception to permit a soft contact between the device and the

human; their stiffness can be fixed or controlled.
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Appendix: Expressions of the closed-loop geometric constraints,

their first and second time derivatives

Let us write both vectorial equations AB+BC′=AD+DC′′ and AB+BE′=AF+

FE′′ from Figure 1(b). With this vectorial equality, three scalar equations of the

closed-loop geometric constraints for each loop are respectively defined as follows:

−ls sin q1 − lt sin q2 + l3 sin q5 +
l1
2
sin q92 + l2 sin q8 +

l1
2
sin q91 = 0,

ls cos q1 + lt cos q2 − l3 cos q5 −
l1
2
cos q92 − l2 cos q8 −

l1
2
cos q91 = 0,

q91 = q92,

(20)

−ls sin q4 − lt sin q3 + l3 sin q5 +
l1
2
sin q102 + l2 sin q11 +

l1
2
sin q101 = 0,

ls cos q4 + lt cos q3 − l3 cos q5 −
l1
2
cos q102 − l2 cos q11 −

l1
2
cos q101 = 0,

q101 = q102.

(21)
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Their first time derivatives for each loop are respectively:

−lsq̇1 cos q1 − ltq̇2 cos q2 + l3q̇5 cos q5 +
l1
2
q̇92 cos q92 + l2q̇8 cos q8 +

l1
2
q̇91 cos q91 = 0,

−lsq̇1 sin q1 − ltq̇2 sin q2 + l3q̇5 sin q5 +
l1
2
q̇92 sin q92 + l2q̇8 sin q8 +

l1
2
q̇91 sin q91 = 0,

q̇91 = q̇92,
(22)

−lsq̇4 cos q4 − ltq̇3 cos q3 + l3q̇5 cos q5 +
l1
2
q̇102 cos q102 + l2q̇11 cos q11 +

l1
2
q̇101 cos q101 = 0,

−lsq̇4 sin q4 − ltq̇3 sin q3 + l3q̇5 sin q5 +
l1
2
q̇102 sin q102 + l2q̇11 sin q11 +

l1
2
q̇101 sin q101 = 0,

q̇101 = q̇102.
(23)

Finally, their second time derivatives for each loop are respectively:

−lsq̈1 cos q1 − ltq̈2 cos q2 + l3q̈5 cos q5 +
l1
2
q̈92 cos q92 + l2q̈8 cos q8 +

l1
2
q̈91 cos q91

+lsq̇
2
1 sin q1 + ltq̇

2
2 sin q2 − l3q̇

2
5 sin q5 −

l1
2
q̇292 sin q92 − l2q̇

2
8 sin q8 −

l1
2
q̇291 sin q91 = 0,

−lsq̈1 sin q1 − ltq̈2 sin q2 + l3q̈5 sin q5 +
l1
2
q̈92 sin q92 + l2q̈8 sin q8 +

l1
2
q̈91 sin q91

−lsq̇
2
1 cos q1 − ltq̇

2
2 cos q2 + l3q̇

2
5 cos q5 +

l1
2
q̇292 cos q92 + l2q̇

2
8 cos q8 +

l1
2
q̇291 cos q91 = 0,

q̈91 = q̈92,
(24)

−lsq̈4 cos q4 − ltq̈3 cos q3 + l3q̈5 cos q5 +
l1
2
q̈102 cos q92+

l2q̈11 cos q11 +
l1
2
q̈91 cos q91 + lsq̇

2
4 sin q4 + ltq̇

2
3 sin q3−

l3q̇
2
5 sin q5 −

l1
2
q̇2102 sin q92 − l2q̇

2
11 sin q11 −

l1
2
q̇291 sin q91 = 0,

−lsq̈4 sin q4 − ltq̈3 sin q3 + l3q̈5 sin q5 +
l1
2
q̈102 sin q102+

l2q̈11 sin q11 +
l1
2
q̈91 sin q91 − lsq̇

2
4 cos q4 − ltq̇

2
3 cos q3+

l3q̇
2
5 cos q5 +

l1
2
q̇2102 cos q92 + l2q̇

2
11 cos q11 +

l1
2
q̇2101 cos q101 = 0,

q̈101 = q̈102.

(25)


