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Abstract—Wireless sensor network protocols very often use
the Trickle algorithm to govern information dissemination. For
example, the widely used IPv6 Routing Protocol for Low-
Power and Lossy Networks (RPL) uses Trickle to emit control
packets. We derive an analytical model of Trickle to take into
account multiple redundancy constants and the common lack
of synchronization among nodes. Moreover, we demonstrate
message count unfairness when Trickle uses a unique global
redundancy constant because nodes with less neighbors transmit
more often. Consequently, we propose a heuristic algorithm
that calculates a redundancy constant for each node as a
function of its number of neighbors. Our calculated redundancy
constants reduce unfairness among nodes by distributing more
equally the number of transmitted messages in the network. Our
analytical model is validated by emulations of constrained devices
running the Contiki Operating System and its IPv6 networking
stack. Furthermore, results very well corroborate the heuristic
algorithm improvements.
Index Terms—Trickle; protocol fairness; analytical model; prob-
abilistic model; WSN;

I. INTRODUCTION

The Trickle algorithm is a timer based control algorithm re-
lying on recursive doubling time intervals and “polite gossip”
policy. It quickly propagates updates in the network but avoids
unnecessary transmissions. It was initially proposed for system
code versioning [1] in Wireless Sensor Networks (WSN). Due
to its wide-spread use, it has been separately standardized
in RFC 6206 [2]. Most notably, the Routing Protocol for
Low Power and Lossy Networks (RPL) [3] utilizes Trickle
for topology maintenance. Also, Multicast Protocol for Low
Power and Lossy Networks [4] and other protocols [5], [6],
[7] build upon it, leveraging Trickle’s benefits. This makes
the understanding of its behavior crucial for performance
optimization of control overhead.

In this paper, we model and study the operation of Trickle,
which leads to a better understanding of the impact of its
redundancy constant. We demonstrate that the usage of a
unique redundancy constant for the whole network leads
to communication unfairness when the underlying topology
density is not homogeneous. The root cause of this unfairness
is the increased probability of transmission of nodes with
less neighbors in their radio vicinity. This results in uneven
transmission load, e.g. message count, across the network.
Moreover, in battery powered networks, these nodes with a
higher transmission probability will cease functioning sooner
because of on board energy depletion as broadcasting is very
expensive in WSNs. We model the individual transmission

probabilities with individual node redundancy constants across
the network. The model with multiple redundancy constants
can be numerically resolved for arbitrary topologies but also
simplified to closed-form in specific cases, outside of the scope
of this paper.

From the model’s results, we propose a simple heuristic
algorithm in order to improve Trickle fairness by a local
computation of each redundancy constant as a function of the
number of neighbors. We demonstrate the resulting improve-
ments in terms of transmission load balance both by leveraging
our analytical model results and by emulating constrained-
node networks running the full Contiki Operating System
network stack.

The main contributions of the paper are the following:
• A new probabilistic model estimating the message count

and average transmission probabilities of individual nodes
in steady state networks. This model works for arbitrary
topologies without any synchronization requirement, and
accounts for multiple redundancy constants among nodes,

• A demonstration of transmission load unfairness in net-
works utilizing a fixed redundancy constant among nodes,

• A new algorithm improving fairness in the network by
locally computing the redundancy constants as a function
of the number of neighbors in the node’s radio vicinity,

• A validation of the model and an evaluation of the
proposed algorithm improvements. The emulation uses
highly accurate instruction-level execution of the binary
file that contains our code and the Contiki network stack
and normally runs on real hardware.

The paper is structured as follows. Section II reviews the
Trickle algorithm. In Section III, we discuss the related work
in details. Section IV presents our probabilistic model design.
We validate the model and discuss unique redundancy constant
unfairness in Section V. In Section VI, we present our heuristic
algorithm that locally computes each redundancy constant and
discuss its achieved improvements. Finally, we conclude and
discuss future work in Section VII.

II. THE TRICKLE ALGORITHM

The main idea of the Trickle algorithm is on one hand
to exponentially reduce the amount of control traffic in the
network, while there are no detected inconsistencies in a
given state. On the other hand, once an inconsistency has
been detected it quickly propagates the new information state.
Naturally, the ”consistency notion” is defined by the protocol
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Fig. 1: Example of Trickle algorithm in steady state with the
lack of synchronization among nodes. Redundancy constant
K = 1, and all nodes are neighbors.

or application actually using Trickle. For instance, in the case
of IETF RPL routing protocol, consistency is checked by
comparing the advertised DODAG state in the network to the
local one. In the case of firmware updates a similar verification
is usually performed between software versions.

Trickle splits time into intervals of variable length where
transmissions may occur following Trickle’s rules. The three
parameters to configure Trickle are: i) Imin, the minimum
interval size; ii) Imax, the maximum interval size expressed
as the number of times the minimum interval may double;
iii) K, the redundancy constant.

A node following the Trickle algorithm increments a local
counter c for each consistent reception. The node transmits at
instant t if:

c < K, (1)

that is, if the number of consistent receptions is smaller
than the redundancy constant. Counter c is reset to zero at
the beginning of each interval. Instant t at which Trickle
decides if it is going to transmit is selected randomly from
the uniform interval [ 12I , I), where I ∈ {Imin × 2n |
n ∈ N0, n ≤ Imax}. Interval I is doubled upon its expiration
by incrementing n. When a node detects inconsistency, n
becomes 0, which sets interval I to Imin. In this paper,
though, we model Trickle networks in steady state, such that
I = Imin 2Imax , and focus on the effect of the redundancy
constant. Fig. 1 illustrates an example Trickle operation in
steady state and K = 1. As soon as c ≥ K, transmissions are
suppressed. Note that the Trickle intervals among nodes are
not necessarily synchronized.

III. RELATED WORK

Due to its wide-spread use, the Trickle algorithm has been
subject to many studies [8], [9], [10], [11], [12], [13], [14].
Becker et al. [8] develop a model to study the propagation time
of new information in a network using Laplace transforms.

Meyfroyt et al. [11] recently published a model generalizing
the algorithm by introducing the listen-only parameter η. In the
standardized version of Trickle [2] and the original paper [1]
η = 1

2 and is introduced in order to avoid broadcast storms
in unsynchronized networks at the beginning of intervals, by
forcing nodes to keep listening before attempting transmis-
sions (i.e. listen-only period). The authors demonstrate that
using a short listen-only period provides advantage in terms

of smaller propagation time, but in the same time increases the
number of transmitted messages in the network. They derive
the cumulative distribution function of inter-transmission times
for large number of nodes in a steady state, unsynchronized,
single cell network.

Kermajani et al. [9] approach the problem of estimating the
Trickle message count in steady state by deriving the average
probability P that a node in the network will transmit in a
given interval. Then, the average message count in a given
interval is simply N×P , where N denotes the number of nodes
in the network. In respect to the model of Meyfroyt et al. [11],
the approach implicitly supports multi-cell topologies.

A common point on published Trickle models [8], [11], [9]
(and deployments) is that they all consider a unique, fixed
redundancy constant among nodes. The unique redundancy
constant leads to unfairness as nodes with less neighbors have
less incoming packets and thus a higher probability to transmit,
and will therefore deplete their available energy source sooner.
Note that Trickle messages translate to L2 broadcast frames
that are very expensive in WSNs.

Other authors [10], [12], [13], [14] have studied Trickle
and its performance in the specific use case of RPL and how
it affects the convergence and route optimality of the DODAG
building process.

IV. MODELLING THE TRICKLE MESSAGE COUNT

Our model calculates the message count of individual
nodes in a steady state Trickle-based network. Similarly to
Kermajani et al. [9], we derive the average probability of
transmission. However, we use a different decomposition that
allows us to extend their approach in order to calculate per
node probabilities, rather than the network average. Hence we
can give insights on the fairness of the algorithm. To render the
model more practical, we do not make explicit assumptions on
topology. Rather, we assume that each node i is able to know
its number of neighbors yi. Therefore, our model requires for
each node its redundancy constant Ki, and its neighbors list.

The main idea of our analysis is to express the average
probability of transmission of a node as a function of the
transmission probabilities of its neighbors. This will yield a
system of N equations with N unknowns, where N is the
number of nodes in the network, that can be numerically
resolved.

Distribution of Transmission Times. In networks with
synchronized Trickle intervals, transmission times simply fol-
low a uniform distribution [9]. However, with the lack of
synchronization, this does not longer hold. Let X1, . . . , Xyi

be i.i.d. random variables of uniform distribution modeling the
transmission time positions of the yi nodes into an interval of
length I . Let T be the selected transmission time of node i,
T ∈ [ 12 I, I]. Let YT denote the number of selected transmission
times before T . Let n be the positive integer that denotes
the position of transmission time of node i in the set of
increasingly ordered transmission times. The probability that
n is selected by node i and by its neighbors is equal to



P (YT = n − 1). YT can be shown to follow a binomial

distribution with parameters yi and
T

I
.

A. Probabilistic Model

The average probability that node i will send a message in a
given interval is denoted PTX [i]. A node will surely transmit
in the case where its number of neighbors yi is less than its
redundancy constant Ki, because the counter c can never reach
Ki. Otherwise, the node transmits in two cases: i) if it selects
any of the first Ki transmission times, ii) if it selects any of
the last yi +1−Ki transmission times and at most Ki− 1 of
its neighbors have already transmitted. Consequently, PTX [i],
can be written as follows:

PTX [i] =

{
1, yi < Ki

PF [i] + PLO[i], yi ≥ Ki.

where:
• PF [i] is the probability that node i selects one of the

first Ki transmission times. We can find this probability

simply as: PF [i] =

Ki−1∑
n=0

P (YT = n).

• PLO[i] is the probability that node i selects any of the
last yi + 1−Ki transmission times and at most Ki − 1
nodes, with a lower transmission time than node i, will
transmit before it. We refer to this probability as the
last opportunity transmission probability. This probability
depends on PTX [j], where j is a neighbor of node i.

Last Opportunity Transmission Probability. We are con-
sidering the case where node i selected one of the last
yi + 1 −Ki transmission times. The probability that at most
Ki − 1 nodes, with a lower transmission time than node
i transmit before, depends on transmission time of node i.
We will compute the probability PLO[i] by conditioning on
transmission time of node i. As YT ∈ {Ki, . . . , yi}, PLO[i]
can be derived as:

PLO[i] =

yi∑
n=Ki

PLO[i | YT = n]× P (YT = n). (2)

Let Bset be the set of n neighbors of node i, denoted by
{1, . . . , n} whose transmission times are lower than the one

of node i. Let < be the set composed of
(
yi
n

)
possible sets

of nodes B that possibly match Bset.
Therefore, PLO[i | YT = n] can be obtained as:

PLO[i|YT = n] =
1(
yi
n

) ∑
B∈<

PLO[i|YT = n∧Bset = B] (3)

The probability that node i transmits in this case,
PLO[i | YT = n ∧ Bset = B], is the probability that
at most Ki − 1 nodes of B transmit before:

PLO[i | YT = n ∧ Bset = B] =

Ki−1∑
j=0

γ(j, n,B), (4)

where γ(j, n,B) denotes the probability that j nodes of the
set B = {1, . . . , n} transmit before node i. By definition of
PTX , we have:

γ(0, n,B) =

n∏
l=1

(1− PTX [l]).

More generally:

γ(k, n,B) =

n∑
i1=1

n∑
i2=1
i2 6=i1

. . .

n∑
ik=1,

ik 6=i1,...,ik−1

[PTX [i1]×

. . .× PTX [ik]×
n∏

l=1,
l 6=i1,...,ik

(1− PTX [l])].

By re-organizing the sums, this leads to:

PLO[i] =

yi∑
n=Ki

P (YT = n)× 1(
yi
n

) ∑
B∈<

Ki−1∑
j=0

γ(j, n,B). (5)

For example, let us consider the case where node i has
yi = 4 neighbors, {a, b, c, d}, and n = 2 of them have selected

a transmission time lower than its own. We can have
(
4

2

)
different sets of neighbors B1 = {a, b}, B2 = {a, c}, B3 =
{a, d}, B4 = {b, c}, B5 = {b, d}, B6 = {c, d}, whose nodes
have a lower transmission time. For instance, when B = B1 =
{a, b} and Ki = 2, node i will transmit either if j = 0 nodes
of B transmit, or if j = 1 = Ki− 1 nodes of B transmit. The
probability that j nodes of the set B transmit is γ(j, n,B).

We now have PF [i] and PLO[i] expressed according
to {PTX [j] | j is a neighbor of node i}. In order to find
PTX [i] ∀i ∈ {1, . . . , N}, we need to solve the N equations
with N unknowns, i.e. the system PTX [i] = PF [i] + PLO[i].
The solutions of the system are the average probabilities
of transmission for each node in the network and in the
same time the average message count per node during one
interval. In its general form, the system of equations models
arbitrary network topologies and can be resolved numerically.
For specific topologies which are outside of the scope of this
paper, a closed form solution may be obtained.

Due to its complexity, the general form of the model does
not allow a direct practical implementation for constrained de-
vices. However, its numerical resolution gives precise insights
on node behavior and where the imbalance in the network
occurs. Based on this, in Section VI we propose a practical,
heuristic approach that is easily computable locally.

V. MODEL VALIDATION AND TRICKLE UNFAIRNESS

To validate our model we implemented a tool resolving the
model in Python and Sage 1, an open-source computational
software program. We emulate the Tmote Sky sensor motes
running Contiki Operating System, by using the MSPSim
emulator, and the Cooja simulator, in order to obtain real

1http://sagemath.org
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Fig. 2: Message count in networks with fixed redundancy
constant.

world results of Trickle. We use the Trickle application level
library code available in Contiki. The same binary file used for
emulations runs on real hardware without any modifications.
Note that due to the use of the emulator, some imperfections
of results in respect to the real deployments come from the
Unit Disk Graph (UDG) radio model in Cooja. We validate the
model for 49 node networks: i) using a 7 × 7 grid topology,
to demonstrate unfairness, ii) using a randomly generated
topology, to demonstrate the validity of the model for the
general case. Transmission range for the grid topology was
R =

√
2, with the average node degree of 6.37. In the case

of randomly generated topology, the average node degree was
3.92. We average emulation results over 30 runs, and calculate
the model for the same topology based on the list of neighbors
of each node. We count the number of transmissions of each
node over 10 steady state Trickle intervals of 16 seconds. We
calculated 95 % confidence intervals but do not present them
on the graphs for the sake of clarity, as they are graphically
indistinguishable from the plotted averages.

Fig. 2 presents the results for the total message count in
the network using a unique, fixed redundancy constant among
nodes. The model accurately predicts the number of messages
in the network. Numerical values of maximum, minimum
probabilities, variance and their comparison with the emulation
results are shown in Tables I and II. The imperfections of the
model come from the fact that with the lack of synchronization
of Trickle intervals among nodes, if we consider a node with
y neighbors, y is only the mean number of transmission
times that can occur during one interval. Also, the assump-
tion that transmission probabilities of nodes are independent
events does not hold. As discussed by Kermajani et al. [9],
a transmission performed by a node causes the increment
of the counter c and therefore decreases the transmission
probability of its neighbors. Nevertheless, emulation results
are obtained by running the binary file that normally executes
on real hardware. They show that our model provides accurate
estimations of the average transmission probabilities of nodes
in the network, and consequently of the message count.

Trickle Unfairness with Fixed Redundancy Constant. As
most real world deployments using Trickle utilize a unique,
fixed redundancy constant among nodes, we demonstrate the
transmission unfairness that arises due to the heterogeneous
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Fig. 3: Transmission probability of nodes in the grid estimated
by the model for fixed redundancy constant.

network topologies, as nodes do not have the same number
of neighbors. Fig. 3 presents the three dimensional graphs
on probability of transmission calculated by our model for
the grid topology, where the effects are easily noted. We
present results for K ∈ {1, 2, 3, 4}, as the probabilities quickly
approach 1.0 for larger K (average node degree of 6.37).
Inside the grid with 8 neighbors (R =

√
2), for K = 1, we

can see that the nodes have average transmission probabilities
of approximately 0.2, while the nodes on the edges with
5 neighbors have around 0.5, and the nodes in the corners
with 3 neighbors on the average transmit with the probability
of approximately 0.7. Increasing the redundancy constant in-
creases the transmission probabilities in the network. However,
as the number of neighbors can be considered fixed, nodes
with less neighbors are affected more and their transmission
probabilities increase faster in respect to those in the middle of
the grid. This can be best seen for the case K = 4 in Fig. 3(d),
as the nodes in the corners of the grid transmit with probability
1.0, while nodes on the edges have probability 0.85, and nodes
inside the grid have probability 0.45.

To validate the estimations of our model, we have con-
fronted the results with emulations. Fig. 4 presents the compar-
ison for K ∈ {2, 3}, in the grid and the randomly generated
topology.

VI. LOCAL COMPUTATION OF THE REDUNDANCY
CONSTANT TO IMPROVE FAIRNESS

As discussed, the average transmission probability of a node
in the network depends on the number of neighbors and the
redundancy constant. The usage of a fixed redundancy constant
in the network causes unbalanced transmission load and may
cause early depletion of energy sources of nodes with less
neighbors. Notice that the number of neighbors is generally
available locally due to the common use of either Neighbor



TABLE I: Model and emulation results on 7× 7 grid, R =
√
2, for K ∈ {1, 2, 3, 4, 5, 6}

results / redun-
dancy constant

model
K = 1

emul.
K = 1

model
K = 2

emul.
K = 2

model
K = 3

emul.
K = 3

model
K = 4

emul.
K = 4

model
K = 5

emul.
K = 5

model
K = 6

emul.
K = 6

max probability 0.673 0.606 0.887 0.896 0.980 0.983 0.999 1.0 0.999 1.0 0.999 1.0
min probability 0.070 0.05 0.084 0.05 0.116 0.153 0.173 0.22 0.295 0.38 0.501 0.493
variance 0.03217 0.02466 0.06402 0.05030 0.08261 0.05736 0.08553 0.06077 0.06401 0.05158 0.03268 0.03339

TABLE II: Model and emulation results on 49 node random topology and 3.92 average node degree, for K ∈ {1, 2, 3, 4, 5, 6}
results / redun-
dancy constant

model
K = 1

emul.
K = 1

model
K = 2

emul.
K = 2

model
K = 3

emul.
K = 3

model
K = 4

emul.
K = 4

model
K = 5

emul.
K = 5

model
K = 6

emul.
K = 6

max probability 0.853 0.773 0.999 0.996 0.999 1.0 0.999 1.0 0.999 1.0 0.999 1.0
min probability 0.070 0.056 0.033 0.083 0.095 0.146 0.233 0.28 0.427 0.396 0.663 0.623
variance 0.04783 0.03346 0.08453 0.07687 0.08518 0.07773 0.05276 0.04963 0.0237 0.02392 0.00772 0.00750
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Fig. 4: Transmission probability of nodes in the grid and random topology.

Advertisement/Solicitation control packets or L2 synchroniza-
tion mechanisms. We leverage this fact to introduce multiple
redundancy constants among nodes in the network, dependent
on the number of neighbors.

Although our first attempt was to derive a closed form
expression that will provide a locally optimal value of Ki, due
to the complexity of the model this remains an open problem.
Instead, we propose a simple calculation of Ki feasible on
constrained devices. The idea is to increment Ki for each
redundancy step number of neighbors. On the other hand,
parameter redundancy offset, specifies the number of neighbors
for each node that corresponds to the minimal value of K = 1.
The calculation is outlined in Algorithm 1.

Algorithm 1 Local calculation of the redundancy constant Ki

1: procedure CALCULATE K(num neighbors, step, offset)
2: if num neighbors ≤ offset then return 1
3: else
4: return dnum neighbors−offset

step e

We show the effect estimated by the model of the lo-
cally computed redundancy constant for the most interesting
combinations of parameters in Fig. 5. We also confront the
estimations with emulation results in Table III.

We can see that the use of the locally computed redun-
dancy constant greatly reduced the effects observed in Fig. 3.
Depending on the parameters passed to the procedure, we note
that the effect can be either reversed such that the nodes in
the corners transmit with smaller probability than the nodes
inside the grid, or reduced which is the case for nodes on the
edges of the grid. Clearly, the absolute value of the ideally
balanced transmission probability in the network depends on
the requirements of the application actually using Trickle.

Parameter Selection. In original Trickle, the redundancy
constant K is a parameter that effectively depends on the
application requirements. With our algorithm, we extend this
concept in order to catch the topology characteristics and to
provide a better transmission load distribution among nodes.
However, both redundancy step and redundancy offset ef-
fectively depend on the application using Trickle and are
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(b) Offset = 0, Step = 3
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Fig. 5: Transmission probability of nodes in the grid estimated by the model and compared to emulation results for locally
computed redundancy constant.

TABLE III: Model and emulation results for the locally com-
puted redundancy constant on the grid. To obtain K ∈ {1, 2},
we used offset = 2, step = 3, and for K ∈ {1, 2, 3},
offset = 0, step = 3.

results / redun-
dancy constant

model:
K ∈
{1, 2}

emulation:
K ∈
{1, 2}

model:
K ∈
{1, 2, 3}

emulation:
K ∈
{1, 2, 3}

average
message count

15.734 15.326 21.587 21.66

max probability 0.479 0.493 0.520 0.586
min probability 0.011 0.15 0.239 0.213
Variance 0.01188 0.00947 0.00511 0.00800

semantically equivalent to K. The notion of ”redundancy”
from the application point of view is in our case defined as a
function of the network topology, i.e. how many transmissions
are needed for a given neighborhood to reach application
needs. For instance, with step = 2 and offset = 0 application
specifies that a transmission should be suppressed when at
least half of the neighbors have advertised their state as
consistent. In parallel, step regulates the granularity of local
Ki increments This directly affects the distribution of the
transmission load in the network. Thus, instead of blindly
defining K, the application will have a finer control on the
redundancy depending on the topology. In the same time it
achieves better a transmission load distribution.

VII. CONCLUSION

In this paper we presented a model of the Trickle algorithm
that estimates the message count in steady state. We do this
by calculating average transmission probabilities of individual
nodes in the network. This allowed us to demonstrate load
misbalance and unfairness of the algorithm when used with a
unique redundancy constant in the network. The root cause of
the unfairness is the heterogeneity of the underlying topology
as nodes do not have the same number of radio neighbors
in their range. As a consequence, with a unique redundancy
constant, nodes with less neighbors transmit Trickle broadcast
messages more often. We validated our model by comparing it
with emulation results and demonstrated its high accuracy. In
order to improve the fairness of Trickle, we proposed a sim-
ple heuristic algorithm that locally computes the redundancy
constant of a node based on the number of neighbors in its

vicinity. We demonstrated that by using our algorithm, nodes
in the network achieved better transmission load distribution.
However, deriving an optimal value of the redundancy constant
that will perfectly balance the transmission probabilities of
nodes in heterogeneous topologies remains an open problem
that we plan to study as future work.
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