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In this paper, we aim to compute numerical approximation integral by using an adaptive Monte Carlo algorithm. We propose a stratified sampling algorithm based on an iterative method which splits the strata following some quantities called indicators which indicate where the variance takes relative big values. The stratification method is based on the optimal allocation strategy in order to decrease the variance from iteration to another. Numerical experiments show and confirm the efficiency of our algorithm.

Introduction

This paper deals with adaptive Monte Carlo method (AMC) to approximate the integral of a given function f on the hypercube [0, 1[ d , d ∈ IN * . The main idea is to guide the random points in the domain in order to decrease the variance and to get better results. The corresponding algorithm couples two methods: the optimal allocation strategy and the adaptive stratified sampling. In fact, it proposes to split the domain into separate regions (called mesh) and to use an iterative algorithm which calculates the number of samples in every region by using the optimal allocation strategy and then refines the parts of the mesh following some quantities called indicators which indicate where the variance takes a relative big values.

A usual technique for reducing the mean squared error of a Monte-Carlo estimate is the so-called stratified Monte Carlo sampling, which considers sampling into a set of strata, or regions of the domain, that form a partition (a stratification) of the domain (see [START_REF] Glasserman | Monte Carlo methods in financial engineering[END_REF] and the references therein for a presentation more detailed). It is efficient to stratify the domain, since when allocating to each stratum a number of samples proportional to its measure, the mean squared error of the resulting estimate is always smaller or equal to the one of the crude Monte-Carlo estimate. For a given partition of the domain and a fixed total number of random points, the choice of the number of samples in each stratum is very important for the results and precision. The optimal allocation strategy (see for instance [START_REF] Étoré | Adaptive optimal allocation in stratified sampling methods[END_REF] or [START_REF] Carpentier | Finite-time analysis of stratified sampling for monte carlo[END_REF]) allows to get the better distribution of the samples in the set of strata in order to minimize the variance. We give in the next section a brief summary of the this strategy which will be the basic tools of our adaptive algorithm.

In the other hand, it is important to stratify the domain in connection with the function f to be integrated and to allocate more strata in the region where f has larger local variations. Many research works propose multiple methods and technics to stratify the domain: [START_REF] Carpentier | Finite-time analysis of stratified sampling for monte carlo[END_REF] for the adaptive stratified sampling for Monte-Carlo integration of differentiable functions, [START_REF] Luigi | Adaptive integration and approximation over hyper-rectangular regions with applications to basket option pricing[END_REF] for the adaptive integration and approximation over hyper-rectangular regions with applications to basket option pricing, [START_REF] Fearnhead | An Adaptive Sequential Monte Carlo Sampler[END_REF], . . . . The paper is organized as follows. Section 2 describes the adaptive method. We begin by giving a summarize of the optimal allocation strategy and then describe the adaptive algorithm consisting in July 21, 2015. † Unité de recherche EGFEM, Faculté des sciences, Université Saint-Joseph, Lebanon. toni.sayah@usj.edu.lb. stratifying the domain. In section 3, we perform numerical investigations showing the powerful of the proposed adaptive algorithm.

Description of the adaptive algorithm

In this section, we will describe the AMC algorithm which is based on indicators to guide the repartition of the random points in the domain. In our algorithm, the indicators are based on an approximation of the variance expressed on different regions in the domain. We detect those where the indicators are bigger than their mean value up to a constant and we split them in small regions. 

I(f ) = D f (x)dλ(x),
where λ is the Lebesgue measure on IR d .

The classical MC estimator of I(f ) is

ĪMC (f ) = 1 N N i=1 f • U i , where U i , 1 ≤ i ≤ N , are independent random variables uniformly distributed over D. ĪMC (f ) is an unbiased estimator of I(f ), which means that E[ ĪMC (f )] = I(f ). Moreover, if f is square-integrable, the variance of ĪMC (f ) is Var( ĪMC (f )) = σ 2 (f ) N where σ 2 (f ) = D f (x) 2 dλ(x) - D f (x)dλ(x) 2 .
Variance reduction techniques aim to produce alternative estimators having smaller variance than crude MC. Among these techniques, we focus on stratification strategy. The idea is to split D into separate regions, take a sample of points from each such region, and combine the results to estimate I(f ). Let {D 1 , . . . , D p } be a partition of D. That is a set of sub-domains such that

D = p i=1 D i and D i ∩ D j = ∅ for i = j.
We consider p corresponding integers n 1 , . . . , n p . Here, n i will be the number of samples to draw from

D i . For 1 ≤ i ≤ p, let a i = Di dλ(x) be the measure of D i and I i (f ) = Di f (x)dλ(x) be the integral of f over D i . We have λ(D) = p i=1 a i and I(f ) = p i=1 I i (f ). Furthermore, for 1 ≤ i ≤ p, let π i = 1 Di a i λ
be the density function of the uniform distribution over D i and consider a set of n i random variables

X (i) 1 , . . . , X (i) 
ni drawn from π i . We suppose that the random variables

X (i) j , 1 ≤ j ≤ n i , 1 ≤ i ≤ p, are mutually independent.
For 1 ≤ i ≤ p, let S i be the MC estimator of I i (f ) defined by:

S i = 1 n i ni k=1 f • X (i) k .
Then, the integral I(f ) can be estimated by:

ĪSMC (f ) = p i=1 a i S i = p i=1 a i n i ni k=1 f • X (i) k .
We call ĪSMC (f ) the stratified Monte Carlo estimator of I(f ). It is easy to show that ĪSMC (f ) is an unbiased estimator of I(f ) and, if f is square-integrable, the variance of ĪSMC (f ) is

Var( ĪSMC (f )) = ni i=1 a 2 i σ 2 i (f ) n i
where

σ 2 i (f ) = D f (x) 2 dπ i (x) - D f (x)dπ i (x) 2 , ∀1 ≤ i ≤ p.
The choice of the integers n i , i = 1, . . . , p is crucial in order to reduce Var( ĪSMC (f )). A frequently made choice is proportional allocation which takes the number n i of points in each sub-domain D i proportional to its measure. In other words, if

N = p i=1 n i , then n i = N a i , i = 1, . . . , p.
For this choice, we have

Var( ĪMC (f )) = Var( ĪSMC (f )) + 1 N p i=1 a i I i (f ) a i -I(f ) 2 ,
and hence, Var( ĪSMC (f )) ≤ Var( ĪMC (f )).

To get an even smaller variance, one can consider The optimal allocation which aims to minimize

V (n 1 , . . . , n p ) = ni i=1 a 2 i σ 2 i (f ) n i , as a function of n 1 , . . . , n p , with N = p i=1 n i . Let δ = 1 N p i=1 a i σ i (f ).
Using the inequality of Cauchy-Schwarz, we have

V a 1 σ 1 (f ) δ , . . . , a p σ p (f ) δ = 1 N p i=1 a i σ i (f ) 2 ≤ 1 N p i=1 a 2 i σ i (f ) 2 n i p i=1 n i ≤ V (n 1 , . . . , n p ).
Hence, the optimal choice of n 1 , . . . , n p is given by

n i = a i σ i (f ) δ , i = 1, . . . , p. (2.1) 
In order to compute the number n i of random points in D i using (2.1), one can approximate σ i (f ) by:

σ2 i (f ) = 1 n i ni j=1 (f • X (i) j ) 2 - 1 n i ni j=1 f • X (i) j 2 . (2.2) For 1 ≤ i ≤ p, we will denote ni = a i σi (f ) δ (2.3) where δ = 1 N p i=1 a i σi (f ). (2.4) 2.
2. Description of the algorithm. The adaptive MC scheme aims to guide, for a fixed global number N of random points in the domain D, the generation of random points in every sub-domain in order to get more precise estimation on the desired integration. It is based on an iterative algorithm where the mesh (repartition of the sub-domains in D) evolves with iterations. Let L be the total number of desired iterations and D , 1 ≤ ≤ L, be the corresponding mesh such that

D = p i=1 D i and D i ∩ D j = ∅ for i = j,
where p is the number of the sub-domains in D . We start the iterations with a subdivision of the domain D 1 = D using p 1 identical sub-cubes with given equal numbers of random points n i,1 in each sub-domain

D 1 i , i = 1, . . . , n i,1 , such that N = p1 i=1 n i,1 .
The main idea of the algorithm consists for every iteration 1 ≤ ≤ L, to refine some region D i , 1 ≤ i ≤ p , of the mesh D where the function f presents more singularities (big values of the variance) and hence must be better described. This technique is based on some quantities called indicators and denoted V i, which give informations about the contribution of D i in the calculation of the variance of the MC method at this level, approximated by

V = p l i=1 V i, (2.5) 
where

V i, = a 2 i, σ2 i, (f ) ni, . (2.6) 
Our goal is to decrease V during the iterations. Then, for every refinement iteration with a corresponding mesh D and corresponding numbers ni, , we calculate σi, (f ) and δ , and update ni, by using the optimal choice of the numbers of samples based on the formulas (2.2), (2.4) and (2.3) for all the subdomains D i , i = 1, . . . , p . For technical reason, we allow a minimal number, denoted by M rp (practically we choose M rp = 2), of random points in every sub-domain and then if ni, < M rp we set ni, = M rp . Next, we calculate the indicators V i, and V , and then, we adapt the mesh D to obtain the new one D +1 . The chosen strategy of the adaptive method consists to mark the sub-domains D i such that

V i, > C m V mean ,
where C m is a positive constant bigger than 1 and V mean is the mean value of V i, defined as

V mean = 1 p p l i=1 V i, , (2.7) 
and to divide every marked sub-domains D i into small parts, four equal sub-squares for d = 2 and eight equal sub-cubes for d = 3, with equal number of random points in each part given by

     max( ni, 4 , M pr ) for d = 2 max( ni, 8 , M pr ) for d = 3.
Remark 2.1. We stop the algorithm if the number of iterations reaches L or if the calculated variance is smaller that a tolerance denoted by ε. We denote by ε the stopping iteration level of the following algorithm which corresponds to a desired tolerance ε or at maximum equals to L.

The algorithm can be described as following :

(Algo 1) : For a chosen N with corresponding numbers n i,1 , and a given initial mesh D 1 with corresponding sub-domains D 1 i , i = 1, . . . , p 1 , Generate ni,1, i = 1, . . . , p1 random points X i j , j = 1, . . . , ni,1 in every sub-domain D 1 i . set = 1. calculate V by using (2.5). While l≤L or V ≤ ε calculate σi, (f ) and, δ and update ni, , i = 1, . . . , p by using (2.2), (2.4) and (2.3). Generate corresponding random points X i j , j = 1, . . . , n i,l in each sub-domain D i , i = 1, . . . , p . calculate V i, , i = 1, . . . , p l and V mean by using (2.6) and (2.7). for (i = 1 : p ) if (V i, ≥ Cm V mean ) Divide the sub-domain D i in m small parts (m = 4 in 2D and m = 8 in 3D).

Associate to every one of this small parts the number of random points max( ni,l m , Mpr).

set p = p + m. end if end for = + 1. end loop ε = -1. calculate the adapt MC approximation IAMC = p ε i=1 a i, ε ni, ε n i, ε k=1 f • X i k .
The previous algorithm calculate an approximation of I(f ) with an adaptive Monte Carlo method. If we are interested by the numerical variance, we repeat the previous algorithm N ess times and approximate the I(f ) by the corresponding mean value

ĪAMC = 1 N ess Ness i=1 I i AM C ,
where I i AM C corresponds to the i th essay using (Algo 1). The estimated variance will by given by the formula

V AM C = 1 N ess -1 Ness i=1 (I i AM C ) 2 -N ess Ī2 AM C .
In fact, it is useless to repeat the (Algo 1) N ess times to calculate ĪAMC and V AM C , and it is expensive for the CPU time. We can reduce the coast by running (Algo 1) one time to define the mesh and to get I 1 AM C and then, we use the corresponding sub-domains D ε i , i = 1, . . . , p ε with the corresponding number of random points n i, ε , i = 1, . . . , ε to perform the rest of calculations (N ess -1 essays). The corresponding algorithm can be describe as follow :

(Algo 2) :

Call algorithm (Algo 1) to define the mesh D ε i , i = 1, . . . , p ε and calculate I 1

AM C

Set ne = 2 While ne≤Ness Generate corresponding random points X i j , j = 1, . . . , n i, ε in each sub-domain

D ε i , i = 1, . . . , p ε . Calculate I ne AM C = p ε i=1 a i, ε ni, ε n i, ε k=1 f • X i k Set ne = ne + 1 end loop calculate ĪAMC = 1 Ness Ness i=1 I i AM C calculate VAMC = 1 Ness -1 Ness i=1 (I i AM C ) 2 -Ness Ī2 AM C

Numerical experiments

In this section, we perform in MATLAB several numerical experiments to validate our approach and we compare between the MC and AMC methods.

3.1. 2D validations. We consider the unit square D = [0, 1[ 2 , C m = 2, M pr = 2 and ε = L. The initial mesh is constituted by a regular partition with N 0 = 4 segments in every side of D 1 = D (see figure 1).

0 1 0 1 Figure 1. Initial partition D 1 i , i = 1, . . . , p 1 (p 1 = 16)with N 0 = 4.
In this section, we show two particular cases of the function f . The first treats an integrable but not continuous function which presents a discontinuity along the border of the unit disc. The second one treats a function concentrated in a part of D and vanishes in the rest on this domain. Both examples show the powerful of the proposed AMC method.

First test case.

For the first test case, we consider the function f c given on D by

f c (x, y) = 1 if x 2 + y 2 ≤ 1 0
elsewhere.

The exact integration of f c over D is equal to

I = D f c (x, y)dxdy = π 4 ,
which is the quarter of the surface of the unit disc.

We begin the numerical tests with the algorithm (Alog 1). Figures 234567show for N = 10000 and L = 6 the evolution of the mesh and the repartition of the random points during the iterations. We remark that this points are concentrated around the curve x 2 + y 2 = 1 where the function f c represents a singularity. I corresponding to the AMC method with respect to the number of random points N where the total number of the iteration L = 4. As we can see in figure 8, the AMC method is more precise than the MC method. Still we have to compare the efficiency of the AMC method with respect to the CPU time of computation. In fact, figure 9 shows that for the considered N , the corresponding CPU times for the AMC are smaller from those with MC. In particular, the MC method gives for N = 10 7 an error of E M C = 0.00052 with a CPU time of 0.44s, but the AMC gives for N = 10 6 an error of E AM C = 0.00008 with a CPU time of 0.4s. Hence, the powerful of the AMC method. It is also clear that to get more precision with the AMC method, we can increase the number of iterations L.

Next, we consider the algorithm (Algo 2) with N ess = 100, L = 4.

Figure 10 shows the comparison of the estimated variance between the classical Monte Carlo (V M C ) and adaptive Monte Carlo method (V AM C ) in logarithmic scale. As the adaptive algorithm consists to minimize the variance, it is clear in this figure that the goal is attended. Figure 11 shows in logarithmic scale the efficiency of the MC and AMC methods versus the number of random points N by using the following formulas (see [START_REF] Ecuyer | Efficiency Improvement and Variance Reduction[END_REF]) 

E ef f M C = 1 T M C * V M C
E ef f AM C = 1 T AM C * V AM C ,
where T M C and T AM C are respectively the CPU time of the MC and AMC methods. It is clear that the efficiency of the AMC method is more important than the MC method. 

f 2,g (x, y) = e -α(x 2 +y 2 ) ,
where α is a real positive parameter. We begin the adaptive algorithm with the same initial mesh as the previous case and we choose N = 10000. Figures 12-15 show for L = 6 the meshes and random points repartition with respect to α. When α increase, the mesh and the random points follow the function f 2,g and focus more and more around the origin of axis. Figure 16 shows for α = -50, N ess = 100 and L = 4, the comparison of the estimated variance between MC and AMC methods with respect to N in logarithmic scale. Figure 17 shows in logarithmic scale the efficiency of the MC and AMC methods versus the number of points N . One more time, it is clear that the efficiency of the AMC method is more important than the MC one. 3.2. 3D validations. In this section, we consider the unit cube D = [0, 1[ 3 . We consider the function f 3,g (x, y) = e -α(x 2 +y 2 +z 2 ) , where α is a real positive parameter. The initial mesh is constituted by a regular partition with N 0 = 4 segments in every side of D 1 = D. Figure 18 shows the repartition of the random points for α = -50, L = 6 and N = 10000. As for the previous case, figure 19 shows for N ess = 100 and L = 4, the comparison of the estimated variance between MC and AMC methods with respect to N in logarithmic scale. Figure 20 shows in logarithmic scale the efficiency of the MC and AMC methods versus the number of points N . We can deduce the same remark for the efficiency of the AMC method in dimension three. 
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 1 Optimal choice of the numbers of samples. Let D = [0, 1[ d be the unit hypercube of IR d , d ∈ IN * , and f : D → IR a Lebesgue-integrable function. We want to estimate
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 10 Figure 10. First test case: Estimated variances V M C and V AM C with respect to N in logarithmic scale.

Figure 12 .Figure 13 .Figure 14 .Figure 15 .

 12131415 Figure 12. AMC mesh, α = -5.
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 16 Figure 16. Second test case (α = -50): Estimated variances V M C and V AM C with respect to N in logarithmic scale.
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 18 Figure 18. Mesh Gaussian for α = -50.
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 19 Figure 19. 3D test case (α = -50):Estimated variances V M C and V AM C with respect to N in logarithmic scale.
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 20 Figure 20. 3D test case (α = -50): Efficiencies E ef f M C and E ef f AM C with respect to N in logarithmic scale.
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