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SIMULATIONS

Monte Carlo sampling of the Gibbs measure associated to energy E in Eq. (2) of the main text and at fixed
temperature T is done with the fixed-activity constraint,

N∑
i=1

σi = fN . (1)

We start from a configuration that fulfills (1). At each time step we select uniformly at random one active neuron,
say, σi = 1, and one silent neuron, say σj = 0. We compute the variation in energy ∆E resulting from the double
flip (σi = 1, σj = 0) → (σi = 0, σj = 1), and apply Metropolis rule: the double flip is accepted if ∆E < 0 or with
probability exp(−β∆E) if ∆E ≥ 0, and rejected otherwise. This procedure ensures that the system converges to
thermodynamic equilibrium at temperature T = 1/β and fulfills constraint (1). To determine the environment in
which the activity is localized we compute the contribution

E` = −
∑
i<j

J(|~xπ`(i) − ~xπ`(j)|)σi σj (2)

of each map ` to the total energy. The lowest value, if substantially smaller than the PM energy, identifies the retrieved
environment. The center of the bump e.g. used to determine the initial and final locations in Fig. 5b of the main text
is identified as follows. Space is discretized into bins of size roughly equal to the bump width, and the location of the
center is defined as the index of the bin of maximal activity.

One-dimensional maps. We show in Fig. 1 the rates of transitions from one map to another found for network
of various sizes N in the (α, T ) plane, in the case of one-dimensional environments. The same data are plotted as a
function of temperature, for various values of the size N and of the load α in Fig. 2. We observe that the transition
rate increases with T and with α, and is a strongly (approximately, exponentially) decreasing function of the size N .

FIG. 1: Rate of transitions between maps as a function of α and T in the CL phase of the one-dimensional model with L = 2
maps. Rates have been estimated based on Monte Carlo simulations with N = 333 (left), N = 500 (center) and N = 667
units (right). Each point is averaged over 100 simulations of 10,000 rounds each (one round = N Monte Carlo steps). Note
the decrease of the rate as N increases at fixed α, T . Parameter values: f = 0.1, w = 0.05. Maps are one-dimensional, with
periodic boundary conditions.
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FIG. 2: Rate of transitions between maps as a function of the temperature T for two values of α and for three values of the
size N . Same conditions as in Fig. 1.

Two-dimensional maps. The file ‘2Dsimulations.mp4’ shows the outcome of Monte Carlo simulations with L = 3
two-dimensional maps and parameters w = 0.2, f = 0.05, T = 0.004, N = 90 × 90, and a fraction c = 0.6 of cells
having a place field in each map. The top and the bottom left panels represent the activity of the population in each
one of the three maps. Dots locate the place-field centers of active neurons. The black cross shows the position of
the center of mass of the bump in the map where the activity is localized. The bottom right panel shows the time
evolution of the contributions to the energy associated to the three maps, rescaled by the energy in the PM phase.
The sliding bar gives the value of the time. In the first part of the video, the activity is localized in map 1 and the
bump diffuses within this map. We then observe a transition from map 1 to map 2, through a 2-bump transition
state.

FREE ENERGY AND DENSITY PROFILES FOR A GIVEN SAMPLE

Given a sample (set of environments defined by the permutations π`), the free energy associated to the average
neural activities {ρi = 〈σi〉} reads

Fπ({ρi}) = −
∑
i<j

Jij ρi ρj + T
∑
i

[
ρi log ρi + (1− ρi) log(1− ρi)

]
. (3)

where the couplings Jij are defined in Eq. (3) of the main text. This free energy is equal to the sum of the energetic
contributions coming from the different environments, minus the entropy of the ρi-distribution multiplied by the
temperature. We obtained the values of the average neural activities ρi upon minimization of Fπ.

A representative set of average activites ρi obtained upon minimization of Fπ for parameters α, T corresponding
to the CL phase is shown in Fig. 3(a). Despite the granularity due the quenched permutations, the localization of
the activity profile in one map and the lack of coherence in the other map(s) clearly appears after coarse graining.
We observe the presence of a smooth bump-like profile in the retrieved environment. Note that, while bumps can be
translated without affecting the replicated free energy F in the CL phase this is not true for a given realization of the
permutations and finite N . Due to the presence of the quenched disorder, the bump is anchored at a specific position
in the retrieved map (Fig. 3(a)).

When the size N is small enough, repeated gradient descents of Fπ from a large number of initial conditions may
eventually end up in a local minimum {ρi}, partially localized in two maps, see Fig. 3(b), and with higher free energy
than the global minimum CL (Fig. 3(a)). Such local minima are are less and less stable as N grows, in agreement
with the saddle-point nature of TS2.
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FIG. 3: (a) Average activities ρi (dots) in the minimum of Fπ (3), corresponding to CLA, for one random realization of the
permutations πA and πB , and T = 0.005. Neurons i = 1, ..., 600 are sorted in increasing order of their place-field centers in
A and B; the continuous lines show the running averages of ρi over 30 points. (b) average activities ρi (dots) and running
averages over 30 points (continuous lines) in a local minimum of Fπ, similar to TS2, for the same permutations πA, πB as in
panel (a). Same parameter values as in Fig. 2 of the main text.

ROBUSTNESS TO HETEROGENEITIES IN THE COUPLING MATRIX

In order to be analytically tractable, the place cell model we study relies on several simplifying assumptions. Notably,
the coupling matrix we consider in the model assumes that all environments are equally explored and covered by place
fields, with all place cells having a place field in each environment – a hypothesis we know to be unrealistic. In this
Section we check that the transitions scenarios found in our idealized model are also present when the hypothesis is
relaxed. More precisely, we introduce heterogeneities in the coupling matrix in two ways, through the existence of
’silent cells’, and through the presence of more than two maps that induce quenched noise in the couplings.

Silent cells. It has been observed experimentally that in a given environment, only a fraction of the place cells have
place fields, the other cells being ’silent’ [20]. We incorporate this fact in our model by introducing a dilution parameter
c denoting the fraction of cells having place fields in any environment. We have shown in previous publications [9,19]
that this modification does not induce qualitative changes in the phase diagram nor in the quasiparticle properties
of the model. We report in Fig. 4 the results of Monte Carlo simulations with c < 1, which show that the transition
properties are not qualitatively affected either.
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FIG. 4: Monte-Carlo simulations illustrating the transition scenarios in the presence of silent cells, and energy contributions
due to each map in units of f2c2w/2 (absolute value of the PM energy). Left: TS2-like transition. Right: TS1-like transition.
Parameter values: N = 1000, c = 0.7, f = 0.1, w = 0.05, L = 2, T = 0.004 (left) and T = 0.006 (right).
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More maps. We have also looked at simulations with more than two maps. Here again, the two transition scenarios
identified in our analytical solution of the idealized model are still observed. Figure 5 shows examples of TS2 and of
TS1 scenarios, with delocalisation of the activity through the PM phase in the latter case. For parameter values such
that the clump and the SG phases coexist, i.e. for intermediate values of the number of environments, TS2 and TS1

transitions are also observed, as shown in Fig. 6.
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FIG. 5: Monte Carlo simulations illustrating the transition scenarios in the case of L = 4 environments, and energy contributions
due to each map in units of f2w/2 (absolute value of the PM energy). Top: TS2-like transition. Bottom: TS1-like transition,
expected to take place through the PM phase. Parameter values: N = 500, f = 0.1, w = 0.05, L = 4, T = 0.005 (top) and
T = 0.0065 (bottom).

As a conclusion, in both attempts to relax the unrealistic assumption about the homogeneity of the coupling matrix,
we observe in the simulations the two transition scenarios, based on TS1, TS2 found by analytical resolution of the
homogeneous model. We expect the two transition scenarios to hold also in the presence of other sources of noise,



5

2150

2200
M

C
 ro

un
ds

-5 0

2150

2200

M
C

 ro
un

ds

FIG. 6: Monte Carlo simulations illustrating the transition scenarios in the case of L = 10 environments, and energy contribu-
tions due to each map in units of f2w/2 (absolute value of the PM energy). Both TS1-like (expected to take place through the
SG phase) and TS2-like transitions are observed, around, respectively t ≈ 2160 MC rounds and t ≈ 2190 MC rounds. Bottom-
row panels show the activity in the tree maps where it is alternatively localized over time, while the top row corresponds to
the remains seven maps. Parameter values: N = 500, f = 0.1, w = 0.05, L = 10, T = 0.006.

such as uneven exploration of the environment, randomness in the place field centers (instead of a regular grid)...,
which are not believed to lead to a fundamentally different model to the one with c < 1 or α > 0, as discussed in
[9]. Varying the degree of the couplings or the relative weight of environments is likely to favor certain positions over
others and quantitatively change the frequency of transitions, but no qualitative change is expected.
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NUMERICAL SOLUTION OF THE SADDLE-POINT EQUATIONS FOR THE REPLICA-SYMMETRIC
FREE ENERGY

We explain the procedure followed to find the saddle-point solutions of the replica symmetric free energy F . Space
is first discretized into 2n+ 1 bins, b = 1, 2, . . . 2n+ 1. The free-energy functional F is then a function of the density
profiles {ρb} and of the conjugated forces {µb} in each map, and of the Edwards-Anderson overlap q and of its
conjugated force r; η in Eqn. (3) of the main text is determined to fulfill constraint (1) and is not an independent
parameter. The total number of arguments of F is therefore D ≡ 4× (2n+ 1) + 2 = 8n+ 6. The number n of bins is
often chosen to be 100 or 200 in practice.

We write the saddle-point equations for F , Eq. (3) of the main text, as follows:

ρA(~x) = V A({ρA, ρB}, q; ~x) , ρB(~y) = V B({ρA, ρB}, q; ~y) , q = W ({ρA, ρB}, q) , (4)

where

V A({ρA, ρB}, q; ~x) =

∫
d~y Dz m({ρA, ρB}, q; ~x, ~y, z) ,

V B({ρA, ρB}, q; ~y) =

∫
d~xDz m({ρA, ρB}, q; ~x, ~y, z) ,

W ({ρA, ρB}, q) =

∫
d~x d~y Dz m({ρA, ρB}, q; ~x, ~y, z)2 , (5)

and

m({ρA, ρB}, q; ~x, ~y, z) =
1

1 + exp
(
− β

[
µA({ρA, ρB}, q; ~x

)
+ µB({ρA, ρB}, q; ~y) + z

√
α r(q)− η

] ,
µA({ρA, ρB}, q; ~x) =

∫
d~x′ J(~x− ~x′) ρA(~x′) , µB({ρA, ρB}, q; ~y) =

∫
d~y′ J(~y − ~y′) ρA(~y′) ,

r(q) = 2(q − f2)
∑
~k 6=~0

(
1

Λ~k
− β(f − q)

)−2
, (6)

and the eigenvalues Λ~k of the coupling matrix J are given in the main text. In addition to the saddle-point equations
(4) the value of η is computed such that the average activity in either map is equal to f :

f =

∫
d~x d~y Dz m({ρA, ρB}, q; ~x, ~y, z) . (7)

We find five classes of solutions for the saddle-point equations (Figs. 2 and 3 of the main text):

• the delocalized paramagnetic (PM) solution: ρA(x) = ρB(y) = f, q = f2. This solution is found at high
temperatures T and small loads α.

• the delocalized spin glass (SG) solution: ρA(x) = ρB(y) = f, q > f2. This solution is found at low temperatures
T and large loads α.

• the single-environment localized (clump, CL) solution: ρA(x) localized in space, ρB(y) = f (state CLA) or
vice-versa (state CLB). This solution is stable at low temperature, and unstable at high temperature.

• the two-environment transition state (TS2): ρA(x) = ρB(x) localized in space, but less strongly than in the
CL state, and neurons outside the bump have larger, fluctuating activities. The TS2 solution is unstable with
respect to a small asymmetric perturbation of the densities ρA and ρB .

• the one-environment transition state (TS1): ρA(x) is localized in space, but less strongly than in the CL state,
and ρB(x) = f . The TS1 solution is unstable with respect to a small perturbation of the density ρA. TS1 may
be found only for values of T and α such that the CL and the PM (or the SG) solutions coexist.

To determine the transition-state solution TS2 we simply iterate the saddle-point equations (4) with the constraint
ρA = ρB at any iteration t, until a fixed point is found. This solution is a minimum in the constrained subspace, and
is unstable against any perturbation such that ρA 6= ρB .
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It is harder to determine TS1 for fixed α and T . To do so we iterate the saddle-point equations (4), starting from

ρA(x, t = 0) = (1− z) f + z ρCL(x) , (8)

and ρB(y, t = 0) = f . Here, ρCL(x) is the profile of activity for the CL phase, and z is an arbitrary coefficient chosen
in the [0; 1] range. After many iterations convergence is reached for ρA (ρB = f is a fixed point), either towards the
PM or SG (for sufficiently low values of z) or the CL (for sufficiently large z) solution. The separatrix between the
basins of attractions of the two solutions corresponds to a ‘critical’ value of z, see Fig. 7(a). When z is close to this
critical value, ρA(x, t) gets close to the desired unstable fixed-point TS1 for many iterations, until it eventually falls
into one of the two basins (Fig. 7(a)). As a consequence the free energy F , Eq. (3) of the main text, computed for
ρA(x, t), ρB = f shows a plateau behaviour, see Fig. 7(b). The height of the plateau is our estimate for the free energy
of the transition state TS1.

FIG. 7: (a) Sketch of the D–dimensional space of order parameters. The representative points of the PM and CL phases are
local minima of the free-energy functional F , see Eq. (3) of the main text. The (D − 1)–dimensional separatrix between the
basins of attraction of the PM and CL fixed points, solutions of (4), is symbolised by the double line. The transition state TS1

lies in this manifold. We interpolate between the PM and the CL phases through a linear relation parametrized by z ∈ [0; 1],
see (8). This line cut the separatrix for a critical value of z. Choosing z1 and z2 slightly off the critical value leads to either PM
or CL. In both cases the flow spends a long time (number of iterations) close to TS1, which allows us to measure the value of
its free energy with accuracy. (b) Free energy as a function of the number t of iterations for the density ρA(x, t), and for two
close values of z, see legend, on opposite sides of the separatrix. We observe the plateau behaviour corresponding to TS1 for
intermediate values of t, prior to the convergence to the PM (green) or the CL (magenta) activity profile. Parameter values:
T = 0.007, α = 0.


