
HAL Id: hal-01178790
https://hal.science/hal-01178790v1

Submitted on 22 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NumaGiC: a Garbage Collector for Big Data on Big
NUMA Machines

Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, Nhan Nguyen

To cite this version:
Lokesh Gidra, Gaël Thomas, Julien Sopena, Marc Shapiro, Nhan Nguyen. NumaGiC: a Garbage
Collector for Big Data on Big NUMA Machines. 20th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems (ASPLOS), ACM SIGOPS, ACM SIGPLAN,
ACM SIGARCH, Mar 2015, Istanbul, Turkey. pp.661-673, �10.1145/2694344.2694361�. �hal-01178790�

https://hal.science/hal-01178790v1
https://hal.archives-ouvertes.fr


NumaGiC: a Garbage Collector for
Big Data on Big NUMA Machines

Lokesh Gidra
LIP6-UPMC/INRIA
lokesh.gidra@lip6.fr

Gaël Thomas
SAMOVAR-Telecom SudParis

gael.thomas@telecom-sudparis.eu

Julien Sopena
LIP6-UPMC/INRIA
julien.sopena@lip6.fr

Marc Shapiro
LIP6-INRIA/UPMC

marc.shapiro@acm.org

Nhan Nguyen
Chalmers University of Technology

nhann@chalmers.se

Abstract
On contemporary cache-coherent Non-Uniform Memory
Access (ccNUMA) architectures, applications with a large
memory footprint suffer from the cost of the garbage col-
lector (GC), because, as the GC scans the reference graph,
it makes many remote memory accesses, saturating the in-
terconnect between memory nodes. We address this problem
with NumaGiC, a GC with a mostly-distributed design. In or-
der to maximise memory access locality during collection, a
GC thread avoids accessing a different memory node, instead
notifying a remote GC thread with a message; nonetheless,
NumaGiC avoids the drawbacks of a pure distributed design,
which tends to decrease parallelism. We compare NumaGiC
with Parallel Scavenge and NAPS on two different ccNUMA
architectures running on the Hotspot Java Virtual Machine
of OpenJDK 7. On Spark and Neo4j, two industry-strength
analytics applications, with heap sizes ranging from 160 GB
to 350 GB, and on SPECjbb2013 and SPECjbb2005, Numa-
GiC improves overall performance by up to 45% over NAPS
(up to 94% over Parallel Scavenge), and increases the perfor-
mance of the collector itself by up to 3.6× over NAPS (up to
5.4× over Parallel Scavenge).

Categories and Subject Descriptors D.4.2 [Software]: Garbage
collection

General Terms Experimentation, Performance

Keywords Garbage collection; NUMA; multicore

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’15, March 14 - 18 2015, Istanbul, Turkey.
Copyright c© 2015 ACM 978-1-4503-2835-7/15/03. . . $15.00.
http://dx.doi.org/10.1145/2694344.2694361

1. Introduction
Data-analytics programs require large amounts of computing
power and memory. When run on modern multicore com-
puters with a cache-coherent Non-Uniform Memory Access
(ccNUMA) architecture, they suffer from a high overhead
during garbage collection (GC) caused by a bad memory ac-
cess locality. A ccNUMA architecture consists of a network
of nodes, each comprising several cores and a local memory
bank. A ccNUMA architecture hides the distributed nature of
the memory from the application. The application thus un-
knowingly creates inter-node references when it stores a ref-
erence to an object located on a given node into the memory
of another node. In turn, when a GC thread traverses the ob-
ject graph to identify live objects, it silently traverses inter-
node references and thus processes objects on any memory
node. Consequently, GC threads access remote memory of-
ten, which increases memory access latency, and causes a
large network traffic that can saturate the network between
the nodes.

Intuitively, to access only local memory, a GC thread that
encounters a reference to a remote object might delegate the
processing of that object to a GC thread running on the re-
mote node. This design, unfortunately, degrades parallelism,
because a GC thread remains idle when it does not have lo-
cal objects to collect, waiting for another GC thread to reach
some object located on its own node.

Based on this observation, we designed the NumaGiC col-
lector to aim for memory access locality during the GC, with-
out degrading GC parallelism. It features a mostly-distributed
design, in which a GC thread can be in two modes. Local
mode focuses on memory access locality and avoids remote
object access. In this mode, when a GC thread finds a ref-
erence to an object located on a remote node, it notifies a
GC thread on the remote node, which processes the object
and its reachable subgraph (i.e., objects that it points to, and
so on recursively) locally. A GC thread enters work-stealing



mode when it runs out of local objects to process. Work-
stealing mode focuses on parallelism and allows a GC thread
to “steal” references to process from any other node, and
to access such references itself, even if they are remote. A
GC thread in work-stealing mode periodically re-enters lo-
cal mode, in order to check whether some local reference has
become available again, either sent by a remote thread, or
discovered by scanning a stolen reference.

NumaGiC also includes a set of NUMA-friendly place-
ment policies that prepare the heap for the mostly-distributed
design. First, the policies aim at minimising the number of
inter-node references. Because sending a reference is slightly
more costly than remotely accessing a small object, sending
a reference is only beneficial if, on average, the referenced
object itself references many objects on its same node. In
this case, the cost of sending the reference is amortised over
the memory access locality of the receiving GC thread. Sec-
ond, the policies aim to balance the amount of live objects
across memory nodes, in order to equalise the work between
GC threads. Indeed, if some nodes are underloaded, their GC
threads quickly enter work-stealing mode and start access-
ing the overloaded nodes, which can potentially saturate their
memory controller.

We implemented NumaGiC in the Hotspot Java Virtual
Machine of OpenJDK 7. NumaGiC targets long-running
computations that use large data sets, for which a throughput-
oriented stop-the-world GC algorithm is suitable.1 Numa-
GiC is based on Parallel Scavenge, the default throughput-
oriented GC of Hotspot. Our experiments compare NumaGiC
with (a slightly improved version of) Parallel Scavenge, and
with an improved version of Parallel Scavenge designed for
ccNUMA architectures called NAPS [10]. NAPS balances
memory access among nodes and improves memory access
locality for only newly-allocated objects, whereas NumaGiC
also improves memory access locality for objects that sur-
vive collection and enforces memory access locality by using
messages when GC threads have local memory to collect.

We evaluate NumaGiC against two widely-used big-data
engines, Spark [23] and Neo4j [17], with Java heaps sized
from 110 GB to 350 GB. We also evaluate two industry-
standard benchmarks, SPECjbb2013 [25], and SPECjbb2005
[24], along with the DaCapo 9.12 and SPECjvm2008 bench-
marks. We experiment both on a 48-core AMD Magny-Cours
machine with 8 nodes and a total memory size of 256 GB, and
on a 40-core Intel Xeon E7 hyper-threaded machine with two
execution units per core, with 4 nodes and total memory size
of 512 GB. Our evaluation shows that:
• On applications with large heap, NumaGiC always in-

creases the overall performance of applications on the
two machines. With heap size that provide the best pos-

1 A stop-the-world GC algorithm suspends the application during collection,
in order to avoid concurrent access to the heap by the application. A stop-the-
world GC is opposed to a concurrent GC [13], which favours response time
at the expense of throughput, because it requires fine-grain synchronisation
between the application and the GC.

sible application performance for the three evaluated GC,
NumaGiC improves the overall performance of applica-
tions by up to 45% over NAPS, and by up to 94% over Par-
allel Scavenge. This result shows that a mostly distributed
design increases substantially the performance of applica-
tions with large heap on ccNUMA machines, and that a
mostly distributed design seems to improve performance
independently of the architecture.

• On applications with large heap with the most efficient
heap size for all the GC, NumaGiC increases collector
throughput, i.e., the number of live bytes processed per
time unit, on the two machines by up to 3.6× and by
up to 5.4×, compared to NAPS and Parallel Scavenge
respectively.

• On applications with large heap, NumaGiC scales sub-
stantially better than NAPS, and Parallel Scavenge with
increasing number of NUMA nodes. NumaGiC scales al-
most linearly in case of SPECjbb2005, and Spark. The
only limiting factor in its scalability is the amount of inter-
node shared objects, which depends on the application’s
execution behavior. The design of NumaGiC itself is scal-
able.

• On 33 applications from DaCapo 9.12 and SPECjbb2008
with smaller working set, NumaGiC improves substan-
tially the performance of 7 applications by more than 5%,
and only degrades the performance of a single application
by more than 5% (by 8%). This result shows that a mostly
distributed design is almost always beneficial and statisti-
cally beneficial for 20% of the applications with modest
workload.
The paper is organized as follow. Section 2 presents Par-

allel Scavenge, the GC at the basis of NumaGiC. Section 3
presents the NUMA-friendly placement policies, and Sec-
tion 4 the design of NumaGiC. Section 5 reports on our eval-
uation results and discusses their implications. Section 6 re-
views related work, and Section 7 concludes the paper.

2. Background
A garbage collector (GC) observes the memory of some
application process, called the mutator. Starting from some
well-known roots, it records which objects are referenced,
scans them for more references, and so on recursively. Reach-
able objects are live; unreachable ones are garbage and are
deallocated.

Parallel Scavenge is the default GC of the Hotspot Java
Virtual Machine, and forms the starting point for this work.
Parallel Scavenge is a stop-the-world, parallel and genera-
tional collector [13]. This means that the application is sus-
pended during a collection, that it spawns several parallel GC
threads, and that it segregates objects into generations. Gen-
erations are justified by the observation that, in the common
case, a young object becomes garbage more quickly than an
older object [2, 14, 29].



Perm
anent 

G
eneration

Old GenerationYoung Generation
Eden
Space

From
Space

To
Space

Copy

Copy
CopyCopy

Figure 1. Memory Layout of Parallel Scavenge

Parallel Scavenge has three generations (see Figure 1): the
young generation contains recently-allocated objects, the old
generation contains older objects, and the permanent gen-
eration contains class definitions. Hereafter, we conflate the
permanent with the old generation to simplify the presenta-
tion. Parallel Scavenge has two kinds of collections. A young
collection collects only the young generation; a full collec-
tion collects both generations. Parallel Scavenge leverages
the generational hypothesis by performing young collections
more frequently than full collections.

In the remainder of this section, we describe the young
and the full collectors, then discuss the parallelism of Paral-
lel Scavenge, and finally discuss the memory placement of
Parallel Scavenge.

2.1 Parallel Scavenge young collection
The Parallel Scavenge young collection is a copying algo-
rithm. When it reaches a live object, it copies it elsewhere in
order to compact the memory. This design fights fragmenta-
tion, and ensures that dead memory can be recycled in large
chunks.

Parallel Scavenge promotes a young object to the old
generation only after it has survived a few young collections.
For this purpose, it divides the young generation into the so-
called eden space and two survivor spaces, called from-space
and to-space.

Parallel Scavenge allocates new objects in eden space. The
from-space contains the young objects that have survived
a few collections, and, before a collection, the to-space is
empty.

Parallel Scavenge copies live objects of both the eden
space and the from-space, either to the to-space or to the
old generation, according to their age (see Figure 1). At
the end of collection, the eden space and the from-space
are empty and can be recycled, and to-space contains the
surviving young objects. In the next cycle, the eden space
again serves to allocate new objects, and the from- and to-
spaces are swapped.

The roots for young collection are the global variables,
the stacks of the mutator threads, and the old-to-young root
objects, i.e., the old-generation objects that reference objects
in the young generation. Parallel Scavenge identifies the old-
to-young root objects by instrumenting writes performed by
the mutator. It divides the old generation into chunks called
cards [21, 30]. Each card has a corresponding bit in a card
table, indicating whether the card might contain a reference

to the young generation. The GC traverses the card table,
in order to identify the cards that potentially contain old-to-
young root objects. Each time an old object is assigned with
a reference towards the young generation, the Java Virtual
Machine marks the corresponding card table entry “dirty,”
indicating the possible existence of a young-generation root.

2.2 Full collection
Full Collection re-uses many of the data structures and algo-
rithms used by young collection. It uses a three-phase mark-
compact algorithm, compacting the old generation by copy-
ing live objects to the beginning of the old generation mem-
ory area to avoid fragmentation. In the first phase, called the
marking phase, the GC threads traverse the object graph in
parallel and mark the live objects. In the second, summary
phase, Parallel Scavenge calculates (sequentially) the desti-
nation address of the live objects; this mapping is organised
in regions of 4 KB each. In the third, compacting phase, the
GC threads process the regions in parallel and copy the live
objects to the beginning of the old generation.

2.3 Parallelism in Parallel Scavenge
Parallel Scavenge uses a master-slave design. The master
thread, called the VM Thread, queues some tasks, described
next, in a single task queue. Then it starts the parallel phase,
in which GC threads dequeue tasks and perform the corre-
sponding work.

A root task records some root of the object graph. Root
tasks are used both in the copying phase of the young col-
lector and in the marking phase of the full collector. A GC
thread that dequeues a root task traverses the object graph
depth first. For this purpose, the thread maintains a so-called
pending queue of references, initialized with the references
indicated in the root task. When the thread dequeues a refer-
ence, if the referenced object was already processed, the GC
thread skips it. Otherwise, it either copies (in the young col-
lector) or marks (in the marking phase of the full collector)
the object, and finally scans the object and appends the ref-
erences it contains to its pending queue.2 When the pending
queue is empty, the root task is finished.

A compacting task is used by a GC thread to compact
the heap during the compacting phase of the full collector,
by copying the regions, according to the mapping computed
during the summary phase. A GC thread copies the objects
from (one or more) source regions to some empty destina-
tion region. The destination region may be originally empty,
or may become empty because its objects have been copied
elsewhere. This requires some synchronisation, which uses
the pending queues. Initially, each GC thread adds to its pend-
ing queue a subset of the empty regions. For each destination
region, the GC thread copies the corresponding objects from
their source regions and updates the references contained in

2 Note that the GC traverses each live reference exactly once, and hence, the
number of reference accesses is equal to the number of references.



the destination region. When a source region becomes empty,
it is added to the GC thread’s pending queue, and so on re-
cursively.

The steal task is the last task on the queue. When a GC
thread reaches the steal task, this means that it has no other
work to do, and should now steal references from randomly-
chosen pending queues.

When, after several random steal attempts, the GC thread
does not find any work, it synchronises with the other GC
threads with a termination protocol. It increments a global
counter, which counts the number of GC threads in the termi-
nation protocol, and waits for the other GC threads. While
it waits, it regularly checks all the pending queues of all
the other GC threads, and leaves the termination protocol by
restarting the steal task if it finds work to perform.

2.4 Parallel Scavenge Baseline
The original Parallel Scavenge suffers from memory access
imbalance on NUMA machines, which drastically degrades
its performance [10]. Furthermore, it suffers from a synchro-
nisation design flaw, unrelated to our study of memory place-
ment [10]. Since it is a rather simple fix, and to ensure a fair
comparison, we hereafter consider a slightly modified version
of Parallel Scavenge, which we shall call Parallel Scavenge
Baseline or PSB. Borrowing from NAPS [10], PSB corrects
the synchronisation flaw, and uses an interleaved memory
placement policy, in which pages are mapped from differ-
ent physical nodes in round-robin. This ensures that memory
is approximately uniformly allocated from all the nodes, and
hence, memory access is expected to be uniformly and ran-
domly distributed among all the nodes.

3. NUMA-friendly placement
Before turning to the GC algorithm itself, we present NUMA-
friendly policies designed to optimise the memory placement
for the mostly-distributed design. As stated in the introduc-
tion, since sending an inter-node reference is slightly more
expensive than remotely accessing a small object, we aim
to minimise the number of inter-node references, improving
what we call the spatial NUMA locality property. Further-
more, also as explained in the introduction, memory alloca-
tion balance is important, to avoid saturating some memory
nodes.

Placement occurs, either when the mutator first allocates
an object, or when the GC copies an object to a new lo-
cation. To be efficient, the placement decision should take
less time than the benefit of improved memory placement.
For instance, we found that the aggressive graph partitioning
heuristics of Stanton and Kliot [26], although highly effective
to minimise the number of inter-node references and to bal-
ance the memory allocation among the nodes, are much too
costly for our purpose.

Therefore, we focus on simple policies that require only
local information, are computed quickly, and have a small

memory overhead. Placement may be somewhat suboptimal,
but should remain satisfactory relative to the low computa-
tion overhead. In order to identify interesting policies, we
first analyse the natural object graph topology created by sev-
eral applications. Then, based on this analysis, we propose
NUMA-friendly placement policies that leverage this topol-
ogy.

3.1 Object graph analysis
In order to improve the spatial NUMA locality and the mem-
ory allocation balance, we first analyse the object graph of
five applications, chosen for their diverse allocation patterns:
Spark, a multi-threaded map-reduce engine [23]; Neo4j,
an embedded, disk-based, fully transanctional Java persis-
tence engine that manages graph data [17]; SPECjbb2013,
a business logic service-side application benchmark that
defines groups of threads with different behaviours [25];
SPECjbb2005, another business logic service-side applica-
tion benchmark where all the threads have the same be-
haviour [24]; and H2, an in-memory database from the Da-
Capo 9.12 benchmark [4, 11].

We analyse the topology created by the applications in
HotSpot 7 running 48 GC threads on an AMD Magny-Cours
machine with 48 cores and eight memory nodes. We use a
customised version of PSB, which ensures that the objects
allocated by a mutator thread running on node i always stay
on node i.3 In this experiment, as in all the experiments
presented in the paper, we let the Linux scheduler places the
mutator threads on the cores. Table 1 reports the following
metrics:
• The heap size that we set for the experiment.
• The proportion of clustered references, defined as the fol-

lowing ratio: the number of references between objects al-
located by the mutator threads of the same node, divided
by the total number of references. We report separately the
proportion of clustered references between young objects,
from old to young objects, and among all the objects. The
first two are traversed during a young collection, while all
the references are traversed during a full collection. In or-
der to gather representative numbers, we ignore the first
few collections to avoid warm-up effects, and thus mea-
sure the proportion of clustered references on a snapshot
of memory taken during the 8th full collection for Spark,
5th for Neo4j, SPECjbb2005 and SPECjbb2013, and 3th

for H2.
• The thread allocation imbalance, defined as the standard

deviation over the average number of objects allocated by
the mutator threads running on each node.
We observe that the proportion of clustered references is

always high, especially between young objects and from old
to young objects. Indeed, our experiment reports a proportion
between 77% and 100% between young objects, between

3 This version of PSB is exactly the pure distributed algorithm described in
Section 5.5.



Heap Proportion of Thread

size clustered references allocation
Young Old-to-young All imbalance

Spark 32GB 0.99 0.91 0.53 0.10
Neo4j 32GB 0.99 0.72 0.27 0.21
SpecJBB2013 24GB 0.99 0.99 0.51 0.07
SpecJBB2005 4GB 1.00 0.18 0.55 0.09
H2 2GB 0.77 0.16 0.50 0.40

Table 1. Analysis of the object graph

16% and 99% from old to young objects and between 27%
and 55% for the other references, whereas, if clustering were
random, we would expect a proportion of clustered reference
equal to 1/8 = 12.5% with eight nodes. This shows that
the applications considered have a natural tendency to cluster
their objects.

Furthermore, we observe that memory allocation imbal-
ance varies between the applications, from highly balanced
for Spark, SPECjbb2013 and SPECjbb2005, to imbalanced
for H2. This confirms the need for placement policies to
counter-balance the latter case.

3.2 NUMA-friendly placement
We have designed our placement policies based on the above
observations. We can leverage the observation that the mu-
tator threads of the same node tend to naturally cluster the
objects that they allocate to the objective of spatial NUMA
locality: all we need to do is to ensure that an object allo-
cated by a mutator thread is placed on the same node as the
mutator thread.

In addition to improving locality for the GC, this memory
placement policy also has the interesting side-effect of im-
proving application locality, because a mutator thread tends
to access mostly the objects that it has allocated itself.

We also observed an imbalanced allocation pattern in
some applications. Therefore, always placing all objects al-
located by a mutator thread on the same node would be detri-
mental to memory allocation balance. Therefore, we should
also design policies to alleviate this imbalance, by migrat-
ing objects from overloaded memory nodes to underloaded
memory nodes during collection.

With this in mind, we designed four different and comple-
mentary policies:
• Node-Local Allocation places the object allocated by a

mutator thread on the same node where the mutator thread
is running.

• The Node-Local Root policy ensures that the roots of a
GC thread are chosen to be located mostly on its running
node.

• During a young collection, Node-Local Copy policy
copies a live object to the node where the GC thread is
running.

• During the compacting phase of a full collection, the
Node-Local Compact policy ensures that an object be-

ing compacted remains on the same node where it was
previously located.
The first policy ensures that a mutator thread allocates to

its own node initially. The other three avoid object migration,
so that the object stays where it was allocated. The middle
two avoid object migration during a young collection because
a GC thread on node i mainly processes objects of node i and
copies them on node i. The node-local compact policy simply
prevents object migration during a full collection.

For applications with an imbalanced allocation pattern, the
Node-Local Copy policy, in conjunction with stealing, also
tends to re-balance the load. Consider the case where Node A
hosts more objects than Node B. Consequently, processing
on Node B will finish sooner than Node A. As presented
in Section 2, rather than remaining idle, the GC threads on
Node B will start “stealing” i.e., to process remaining objects
of Node A. The Node-Local Copy policy ensures that GC
threads on B will copy the objects to B, restoring the balance.

3.3 Implementation details
In order to be able to map addresses to nodes, we make use
of the fragmented spaces of NAPS [10]. A fragmented space
is partitioned into logical segments, where the virtual address
range of each segment is physically allocated on a different
node. In contrast to an interleaved space (which maps pages
randomly from all nodes, see Section 2.4), a fragmented
space allows a GC thread to retrieve the segment and NUMA
location of an object from its address. The GC thread can
also place an object onto a specific NUMA node by using a
segment mapped to the desired node.

NAPS implemented fragmented space for the young gen-
eration, with the goal of memory allocation balance. We ex-
tend NAPS implementation to the old generation, by adding a
per-segment compacting algorithm, which applies the Node-
Local Compacting policy of not migrating objects between
nodes. Beside the goal of enforcing the spatial NUMA-
locality and the memory allocation balance, we have also
optimised the memory access locality during the compacting
phase by ensuring that a GC thread selects the regions of its
node before stealing the regions of the other nodes.

In order to implement the Node-Local Root policy, we
partition the card table into segments. Each segment of the
card table corresponds to a segment of the old generation,
and hence identifies old-to-young roots from a given node.

Also for the Node-Local Root policy, we ensure that a GC
thread processes the stack of a mutator thread running on
its node, which mainly contains references allocated by the
mutator thread, thus allocated on the same node, thanks to
the Node-Local Allocation policy.

4. NumaGiC
NumaGiC focuses on improving memory access locality
without degrading parallelism of the GC. A GC thread nor-
mally runs in local mode, in which it collects its own node’s



memory only. It switches to work-stealing mode when par-
allelism degrades. In work-stealing mode, a GC thread can
steal work from other threads, and is allowed to collect the
memory of other nodes remotely.

We present the two modes and the conditions for switch-
ing between them.

4.1 Local mode
In local mode, a GC thread collects its local memory only.
When processing a reference, the GC thread checks for the
home node of the referenced object, i.e., the node that hosts
the physical memory mapped at the virtual address of the
object. If the home-node is the node of the GC thread, then
the GC thread processes4 the object itself. Otherwise, it sends
the reference to the home node of the object, and a GC thread
attached to the remote home node will receive and process the
reference. Checking the home-node of an object is fast, as it
consists of looking up a virtual address in a map of segments
of the fragmented spaces (see Section 3.3).

Moreover, when a GC thread idles in local mode, it may
steal work from the pending queues (described in Section 2.3)
of the other GC threads of its node, but not from remote
nodes.

Communication infrastructure. Our initial design used a
single channel per node, where other nodes would post mes-
sages; experience shows that this design suffers high con-
tention between senders. Therefore, NumaGiC uses a com-
munication channel per each pair of nodes, implemented with
an array-based lock-free bounded queue [12].

Because multiple threads can send on the same queue,
sending a message is synchronised thanks to an atomic
compare-and-swap, a relatively costly operation. In order to
mitigate this cost, references are buffered and sent in bulk.
The evaluation of Section 5.4 shows that buffering 16 refer-
ences for the full collections, and 128 references for young
collections gives satisfactory performance.

A GC thread checks the receiving end of its message
channels regularly, in order to receive messages: (i) when
it starts to execute a GC task, and (ii) regularly while stealing
from other threads of the same node.

4.2 Work-stealing mode
In work-stealing mode, a GC thread may steal from any
node, and may access both local or remote memory. In
work-stealing mode, a GC thread steals references from three
groups of locations; when it finds a reference to steal in one
of these groups, it continues to steal from the same group as
long as possible, in order to avoid unsuccessful steal attempts.
The first group consists of its own transmit buffers, cancelling
the messages it sent that were not yet delivered. The second
group consists of the receive side of other nodes’ commu-

4 Processing an object means copying it during young collection, and mark-
ing it live during full collection.

nication channels. The third group consists of the pending
queues of other GC threads.

When a GC thread does not find references to steal, it
waits for termination. Classically, asynchronous communi-
cation creates a termination problem [5]. For instance, even
though a GC thread might observe that its pending queues
and its receive channel are all empty, this does not suffice to
terminate it, because a message might actually be in flight
from another GC thread.

To solve this problem, a GC thread does not enter the
termination protocol of the parallel phase (described in Sec-
tion 2.3) unless it observes that all of the messages that it has
sent have been delivered. For this purpose, before entering the
termination protocol, it verifies that the remote receive side
of every of its communication channels is empty, by reading
remote memory.

After having observed that all its sent messages are re-
ceived, a GC thread waits for termination, by incrementing a
shared counter and regularly checking all termination.

4.3 Switching between local and work-stealing modes
A GC thread enters work-stealing mode when its does not
find local work: when its local pending queue is empty, when
its steal attempts from the pending queues of the GC threads
of its node have failed, and when its receive channels are
empty.

Once a GC thread is in work-stealing mode, it adapts to
current conditions by regularly re-entering local mode. The
rationale for this adaptive behaviour is twofold. First, local
work can become available again if a stolen object or one of
its reachable objects is local; in this case, it makes sense to
switch back to the local mode, because the received reference
will often open up a significant sub-graph, thanks to spatial
NUMA locality. Second, re-entering local mode and back to
work-stealing mode ensures that the GC thread will retry to
steal from all the groups, regularly checking all sources of
work again, especially its receive channels.

We tuned the frequency of re-entering local mode, finding
that switching back to local-mode every 1024 stolen objects
gives satisfactory performance in all our experiments.

5. Evaluation of NumaGiC
This section studies the performance of NumaGiC, using
both standard benchmarks and widely-used, industrially-
relevant applications. We first describe the hardware and
software settings, followed by the applications used in the
evaluation. Then, we study the impact of the policies pre-
sented in Section 3, and the impact of some design parame-
ters and trade-offs on a small set of experiments. Finally, we
undertake a full-scale evaluation of the impact of NumaGiC
followed by an analysis of its scalability.

5.1 Hardware and software
We run our experiments with the Hotspot Java Virtual Ma-
chine of OpenJDK 7, on two different machines.



The first one, called Amd48 hereafter, is a Magny-Cours
machine with four AMD Opteron 6172 sockets, each con-
sisting of two nodes. Each node has six cores (2.1 GHz clock
rate) and 32 GB of RAM. In total there are 48 cores and
256 GB of RAM on eight nodes. The nodes are intercon-
nected by HyperTransport 3.0 links, with a maximum dis-
tance of two hops. The system runs a Linux 3.9.7 64-bit
kernel and gcc 4.6.1. NumaGiC is configured with 48 GC
threads on Amd48.

The second machine, called Intel80 hereafter, is a an In-
tel server with four Xeon E7-2860 processors, each con-
sisting of a single node. Each node has 10 cores (2.27 GHz
clock rate) and 128 GB of RAM. Each core carries two hyper
threads. In total, there are 40 cores (80 hardware threads) and
512 GB RAM on four nodes. The nodes are interconnected
by QuickPath Interconnect links, with a maximum distance
of two hops. The system runs a Linux 3.8.0 64-bit kernel and
gcc 4.7.2. NumaGiC is configured with 80 GC threads on In-
tel80.

5.2 Applications and Benchmarks
Our evaluation uses two big-data analytics engines, two
industry-standard benchmarks, and two benchmark suites.

Spark Spark is an in-memory map-reduce engine for large-
scale data processing [23]. We use Spark 0.9.0 to run a page-
rank computation on a dataset consisting of a subset of a
graph of 1.8 billion edges taken from the Friendster social
network [8].

On Amd48, we use two configurations, one with 100 mil-
lion edges, and the other with 1 billion edges. For the first
one, we set the heap size to 32 GB. The computation triggers
approximately 175 young and 15 full collections and lasts for
roughly 22 minutes with PSB (Parallel Scavenge Baseline),
which is sufficiently short to run a large number of experi-
ments. This is also the configuration used for the evaluation
of the memory-placement policies of Section 5.3. The second
configuration is much more demanding; we run it with heap
sizes increasing from 110 GB to 160 GB, in steps of 25 GB.
On Intel80, we measure only the 1.8-billion edge configura-
tion, with heap sizes ranging from 250 GB to 350 GB, in steps
of 50 GB.

The database itself is stored on disk. Following the Spark
developers’ advice, we use the remaining RAM to mount
an in-memory file system tmpfs for Spark’s intermediate
results. Thus, these experiments make use of all the available
RAM. Furthermore, they run on all the cores of the machine.

Neo4j Neo4j is an embedded, disk-based, fully transac-
tional Java persistence engine that manages graph data [17].
Neo4j caches nodes, relationships and properties in the
Java heap, to accelerate computation. We implemented a
driver program that uses Neo4j 2.1.2 as a library package,
and queries the database for the shortest path between a
given source node and 100,000 randomly-chosen destination
nodes. We use the native shortest-path algorithm of Neo4j,

and execute it in parallel using the fork/join infrastructure
provided by the Java library. The database used for this ex-
periment is also created from the Friendster dataset.

On Amd48, we use the first billion edges, and on In-
tel80, we use all the 1.8 billion edges. We run it with heap
sizes ranging from 110 GB to 160 GB, in steps of 25 GB on
Amd48, and from 250 GB to 350 GB, in steps of 50 GB, on
Intel80. We follow the advice of the Neo4j developers, to
leave the rest of the RAM for use by the file-system cache.
This experiment also makes use of all the available RAM and
all the cores.

SPECjbb2005 and SPECjbb2013 SPECjbb2005 and SPEC-
jbb2013 are two business logic service-side application
benchmarks [24, 25] that model supermarket companies.
SPECjbb2005 only models the middle tier server, using a set
of identical threads, each one modelling a warehouse; each
warehouse runs in complete isolation. SPECjbb2013 models
all the components of the company, using a larger number
threads with different behaviours, interacting together.

For SPECjbb2005, we run a warm-up round of 30 sec-
onds, then a measurement round of eight minutes. On Amd48
(resp. Intel80), we evaluate different heap sizes, from 4 GB
to 8 GB, in steps of 2 GB (resp. from 8 GB to 12 GB, in steps
of 2 GB). For SPECjbb2013, we let the benchmark compute
the maximal workload that can be executed efficiently on the
machines, which ensures that all mutator threads are work-
ing. On both Amd48 and Intel80, we evaluate different heap
sizes, from 24 GB to 40 GB, in steps of 8 GB.

DaCapo 9.12 and SPECjvm2008 The DaCapo 9.12 and
SPECjvm2008 benchmarks are widely used to measure the
performance of Java virtual machines. They include 52 real
applications with synthetic workloads; we retained all 33 that
are multi-threaded.

For the DaCapo applications, we selected the largest
workload. For the SPECjvm2008 applications, we have fixed
the number of operations to 40 because this value ensures
that all the mutator threads are working. We do not config-
ure a specific heap size, instead, relying on Hotspot’s default
resizing policy. The experiments execute with one mutator
thread and one GC thread per core.

The resulting heap sizes are the smallest of our evalua-
tion and; therefore, we expect that the impact of GC on over-
all performance will be small. These benchmarks are also
not representative of the big-data applications targeted by
the NumaGiC design. Nonetheless, we include them in our
evaluation, both for completeness, and to evaluate the perfor-
mance impact of NumaGiC’s multiple queues, which should
be most apparent in such applications with a small memory
footprint.

5.3 Evaluation of the policies
This section presents an evaluation of the placement policies
discussed in Section 3.2. For this analysis, we focus on Spark
with a 32 GB heap size running on the AMD Magny-Cours



(a) Spatial NUMA locality (%) Experiment Heap layout Node-Local

(-) 0

 20

 40

 60

 80

 100 Name Young Old Allocation Copy Compact Root
Parallel Scavenge

PSNuma
PSCompact

PSCompRoot
NAPS

Pure Distributed
NumaGiC

PSB Interleaved Interleaved No No No NoParallel Scavenge
PSNuma

PSCompact
PSCompRoot

NAPS
Pure Distributed

NumaGiC

PSB+Numa Fragmented Fragmented Yes Yes Yes Yes
Parallel Scavenge

PSNuma
PSCompact

PSCompRoot
NAPS

Pure Distributed
NumaGiC

PSB+Compact Interleaved Fragmented No Promotion? Yes No

Parallel Scavenge
PSNuma

PSCompact
PSCompRoot

NAPS
Pure Distributed

NumaGiC

PSB+CompRoot Interleaved Fragmented No Promotion? Yes Yes

Parallel Scavenge
PSNuma

PSCompact
PSCompRoot

NAPS
Pure Distributed

NumaGiC

NAPS Fragmented Interleaved Yes Yes No No
?: Only during promotion to the old generation.

(b) Access imbalance (%) (c) Access locality (%) (d) Interconnect traffic (GB/s) (e) GC Throughput (GB/s)

(+) 0

 20

 40

 60

 80

 100

(-) 0

 20

 40

 60

 80

 100

(+) 0

 10

 20

 30

Young Mark Comp (-) 0

 1

 2

 3

Figure 2. Evaluation of the NUMA-friendly placement policies. (+) = lower is better, (-) = higher is better.

with 48 cores and 8 nodes. The results are similar for the
other evaluated applications and on both machines.

Figure 2 reports the following metrics from the experi-
ment:
• Spatial NUMA locality: the ratio of number of local ref-

erences (i.e., between objects on the same node) in the
object graph to the total number of references. As for the
graph analysis (see Section 3.1), we measure the Spatial
NUMA locality on the snapshot of the object graph taken
during the 8th full collection. Higher is better.

• Memory access imbalance: for each GC thread, we com-
pute the standard deviation of the ratio of number of ac-
cesses to each node over the total number of accesses, and
then report the average. Lower is better.

• Memory access locality: the ratio of local memory ac-
cesses (read or write) performed by the GC threads, over
the total number of memory accesses. Higher is better.

• Interconnect traffic: the average number of GB/s transmit-
ted on the interconnect by a node during collection. We re-
port separately traffic during the young collections, during
the marking phases of the full collections, and during the
compacting phases of the full collections. Lower is better.

• GC throughput: the number of gigabytes of live data
scanned per second by the collector. Higher is better.
To characterise the effect of each policy, we compare dif-

ferent variants. The baseline is PSB (see Section 2.4). As in-
dicated in the table of the figure, PSB+Numa extends PSB
with fragmented spaces and the four NUMA-friendly place-
ment policies described in Section 3.2. We observe that the
policies improves spatial NUMA locality, as the PSB+Numa
algorithm increases the fraction of local references from 12%
to 42% (see Figure 2.a). We also observe that memory access
balance is slightly better with PSB+Numa than with PSB,
with a standard deviation of 2.8% vs. 11%, which is already
low (see Figure 2.b).

In the rest of this section, the variants PSB+Compact,
PSB+CompRoot and NAPS [10] enable a finer-grain com-

parison. PSB+Compact turns on fragmented spaces only in
the old generation, does Node-Local Compacting during a
full collection, and does Node-Local Copy when promoting
from young to old generation, but not when copying from
young to young generation. PSB+CompRoot is the same as
PSB+Compact, with the addition of Node-Local Root pol-
icy. NAPS uses fragmented spaces in the young generation
only, and enables the Node-Local Allocation and Node-Local
Copy policies when copying from the young to the young
generation, but not when promoting from the young to the
old generation.

Thanks to the rebalancing effect of the Node-Local Copy
policy used in conjunction with stealing, we observe that
memory access balance remains good in all the experiments,
with a 20% standard deviation in the worst case (see Fig-
ure 2.b). Consequently, we focus only on spatial NUMA lo-
cality in what follows.

Spatial NUMA locality Observe that the Node-Local Com-
pact policy, in conjunction with the Node-Local Copy policy
during object promotion, yields the highest single improve-
ment of spatial NUMA locality, from 12% with PSB to 32%
with PSB+Compact (see Figure 2.a). When a GC thread pro-
motes an object from the young to the old generation, the
Node-Local Copy policy copies a root object and its reach-
able sub-graph to the node of the GC thread, thus avoiding
remote references in the object graph. Thereafter, the Node-
Local Compact policy preserves this placement during full
collections by preventing object migration. We have mea-
sured that 75% of the references are between objects of the
old generation. For this reason, improving spatial NUMA lo-
cality in the old generation has a large impact on the overall
spatial NUMA locality, since it concerns a large part of the
heap.

Comparing PSB+CompRoot with PSB+Compact, we ob-
serve that the Node-Local Root policy alone does not have a
significant effect on spatial NUMA locality. In PSB+Comp-
Root, the young space is interleaved. Memory pages in the



heap are allocated in round robin from every nodes, thus,
old-to-young root references and young-young references are
randomised between the nodes, exactly as in PSB+Compact.

Comparing PSB with NAPS, observe that the Node-Local
Copy and Allocation policies alone do not have a significant
effect on spatial NUMA locality. NAPS improves it inside the
young generation, but old-to-young references are still ran-
dom because the old space is interleaved. We have measured
that only 6% of the references are inside the young genera-
tion in Spark; thus NAPS has only a marginal effect on spa-
tial NUMA locality. NAPS uses these two policies, not to
improve spatial NUMA locality, but only to improve mem-
ory access balance, because the Node-Local Copy policy, in
conjunction with stealing, re-balances the load (as explained
in Section 3.2).

Comparing PSB+Compact with PSB+Numa, observe that
the Node-Local Copy and Allocation policies, when used
in conjunction with the two other policies, improve spatial
NUMA locality from 32% to 42%. In this case, old-to-young
and young-to-old references, which concern 19% of the ref-
erences, have a better spatial NUMA locality (roughly 50%
of these references are local). This is because the conjunction
of all the placement policies ensures that objects allocated by
some application thread are allocated on its same node, and
remain there when they are copied.

To summarise, this study shows that, individually, each of
the policy does not have a drastic effect on spatial NUMA
locality, but that, when they are used in conjunction, they
multiply the spatial NUMA locality by 3.5×.

GC throughput improvements It is interesting to observe
that our NUMA-friendly placement policies have the side-
effect of improving GC throughput (Figure 2.e). This is be-
cause they also improve memory access locality (Figure 2.c).

Node-Local Compaction improves memory access local-
ity, from 13% with PSB to 20% with PSB+Compact. As ex-
plained in Section 3.3, a GC thread first processes the re-
gions of its node before stealing, which avoids many remote
access during the compacting phase (Figure 2.c). This im-
proved memory access locality drastically reduces intercon-
nect traffic during the compacting phase (7.5 GB/s instead of
25.1 GB/s, see Figure 2.d).

Node-Local Root alone also improves memory access lo-
cality substantially, with 33% local access in PSB+CompRoot,
compared to 20% for PSB+Compact (Figure 2.c). This is be-
cause a GC thread selects old-to-young root objects from
its own node during a young collection. Moreover, when
combined with the other policies, the Node-Local Copy and
Node-Local Allocation policies ensure that a root object gen-
erally references objects on the same node. As a result, mem-
ory access locality improves substantially, from 33% with
PSB+CompRoot, to 47% with PSB+Numa (Figure 2.c).

Overall, the improved memory access locality translates
to better GC throughput, reaching 3.0 GB/s with PSB+Numa,
compared to 1.0 GB/s for PSB (Figure 2.e).

(a) Full collector (b) Young collector

G
C

T
hr

ou
gh

.
(G

B
/s

)

 0
 1
 2
 3
 4

1 8 16 32
 0
 1
 2
 3
 4

1 8 16 32 64 128 192

x-axis: # of references per buffer

Figure 3. GC throughput of NumaGiC with varying transmit
buffer sizes (higher is better).

(a) Access locality (%) (c) GC Throughput (GB/s)
(b) Access imbalance (%) (d) Parallelism (%)

(-) 0

 20

 40

 60

 80

 100

(+) 0

 20

 40

 60

 80

 100

(-) 0

 1

 2

 3

(-) 0

 20

 40

 60

 80

 100

Parallel Scavenge
PSNuma

PSCompact
PSCompRoot

NAPS
Pure Distributed

NumaGiC

PSB+Numa

Parallel Scavenge
PSNuma

PSCompact
PSCompRoot

NAPS
Pure Distributed

NumaGiC
Pure Distributed

Parallel Scavenge
PSNuma

PSCompact
PSCompRoot

NAPS
Pure Distributed

NumaGiC NumaGiC

Figure 4. Memory access locality versus parallelism
(-) = higher is better, (+) = lower is better

5.4 Impact of transmit buffer size
One of the internal design parameters of NumaGiC is trans-
mit buffer size (see Section 4.1); we study its impact on per-
formance. For this experiment, we run Spark with the small
workload on Amd48. Figure 3 reports the GC throughput
of NumaGiC, i.e., the number of gigabytes of live data col-
lected per second, with varying transmit buffer sizes. Fig-
ure 3.a varies the buffer size used in the full collector, and
sets a fixed size of 128 references for the young collector.
Figure 3.b varies the buffer size used by the young collector,
and sets the full-collector’s buffer size to 16 references.

We observe that performance increases quickly with
buffer size. However, the increase ceases around 16 refer-
ences (resp. 128) for the full (resp. young) collector. Experi-
ments with other applications, not reported here, confirm that
these values give good performance, on both Amd48 and on
Intel80. Therefore, we retain these values in the rest of our
experiments.

5.5 Memory access locality versus parallelism
As stated in the introduction, enforcing memory access lo-
cality can be detrimental to parallelism. To highlight this is-
sue, we run Spark with the small workload on Amd48 with
three different GC set-ups: PSB+Numa, which adds all the
NUMA-friendly placement policies of Section 3.2 to Paral-
lel Scavenge Baseline (PSB), Pure Distributed, a version of
NumaGiC in which a GC thread always stay in local mode,
and full NumaGiC.

Figure 4 reports three metrics defined in Section 5.3, the
memory access locality (a), the memory access imbalance (b)
and the GC throughput (c). It also reports the parallelism of
the GC (d), defined as the fraction of time where GC threads
are not idle. We consider idle time to be the time in the



 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC

PSB

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC
NAPS

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC NumaGiC
Spark Neo4j SPECjbb2013 SPECjbb2005

Amd48 Intel80 Amd48 Intel80 Amd48 Intel80 Amd48 Intel80

 0

 1

 2

 3

 4

 5

 6

110 135 160
 0

 2

 4

 6

 8

250 300 350
 0

 1

 2

 3

 4

110 135 160
 0

 1

 2

 3

 4

250 300 350
 0

 1

 2

 3

24 32 40
 0

 1

 2

24 32 40
 0

 2

 4

 6

 8

 10

4 6 8
 0

 2

 4

 6

 8

 10

 12

8 10 12

y-axis: GC Throughput (GB/s). Higher is better

 0

 1

 2

110 135 160
 0

 1

 2

250 300 350
 0

 1

 2

 3

110 135 160
 0

 2

 4

 6

250 300 350
 0

 1

 2

 3

 4

 5

24 32 40
 0

 1

 2

 3

 4

 5

24 32 40
 0

 20

 40

 60

 80

4 6 8
 0

 20

 40

 60

 80

8 10 12

y-axis: Completion time (h). Lower is better y-axis: App. Thr. (104 Op/s). Higher is better

x-axis: heap size in GB

Figure 5. Evaluation of the applications with large heap.

(-) 0

 0.5

 1

 1.5

Com
piler.com

piler

Com
piler.sunflow

Com
press

Crypto.aes

Crypto.rsa

Crypto.signverify

Derby

M
pegaudio

Scim
ark.fft.large

Scim
ark.fft.sm

all

Scim
ark.lu.large

Scim
ark.lu.sm

all

Scim
ark.m

onte_carlo

Scim
ark.sor.large

Scim
ark.sor.sm

all

Scim
ark.sparse.large

Scim
ark.sparse.sm

all

Serial

Sunflow

Xm
l.transform

Xm
l.validation

avrora

eclipse

fop
h2 jython

luindex

lusearch

pm
d

sunflow

tom
cat

tradebeans

xalan

O
v
e
ra

ll 
sp

e
e
d

u
p

NAPS relative to PSB NumaGiC relative to PSB

Figure 6. Evaluation of applications with small heap (DaCapo and SPECjvm2008). Higher is better.

termination protocol, i.e., where it synchronises to terminate
the parallel phase (see Section 2.3).

We can observe that memory access balance remains good
with Pure Distributed (Figure 4.b). However, this observation
is not significant. For example, memory allocation, and thus
access, is imbalanced with H2, as shown in Table 1. Indeed,
by construction, Pure Distributed algorithm does not migrate
objects, and therefore, memory access balance by the GC is
directly correlated to the allocation pattern of the mutator.

Moreover, for Spark, although Pure Distributed improves
memory access locality substantially over PSB+Numa (Fig-
ure 4.a), throughput decreases, from 3.0 GB/s down to 2.5 GB/s
(Figure 4.c). This is caused by degraded parallelism, because
GC threads are idle 26% of the time in the Pure Distributed
algorithm, against only 11% in PSB+Numa (Figure 4.d).

Analysing this problem, we observe a sort of a convoy
effect, in which nodes take turns, working one after the
other. Because the NUMA-friendly policies reinforce spa-

tial NUMA locality, the object graph tends to structure itself
into connected components, each one allocated on a single
node, and linked to one another across nodes. We observe
furthermore that the out-degree of object is small, 2.4 on av-
erage, and that the proportion of roots in the full object graph
is around 0.008% (roughly 15,000 objects), also quite small.
As a result, the number of connected components reached by
the full collector at a given point in time tends to be relatively
small, and sometimes even restricted to a subset of the nodes.
In this case, some GC threads do not have any local work.
Since, by design, the pure distributed algorithm prevents re-
mote accesses, the GC threads remain idle, which degrades
parallelism.

Observe that NumaGiC corrects this problem by provid-
ing the best of the PSB+Numa and the Pure Distributed algo-
rithms. The parallelism of NumaGiC remains at the level of
PSB+Numa (11% of idle time for PSB+Numa against 13%
for NumaGiC, see Figure 4.d). At the same time, NumaGiC



degrades memory access locality slightly, compared to Pure
Distributed (from 88% to 72% of local accesses, see Fig-
ure 4.a), but it remains largely improved over PSB+Numa
(47% of local accesses). Thanks to improved memory access
locality GC throughput increases from 3 GB/s in PSB+Numa,
to 3.5 GB/s in NumaGiC (Figure 4.c).

5.6 Performance analysis
This sections studies the impact of NumaGiC, both on GC
performance (throughput and duration of the GC phase), and
on overall performance (how end-to-end application perfor-
mance is impacted by NumaGiC).

Figure 5 reports GC throughput and overall speedup of
Spark (under large workload on Amd48), Neo4j, SPECjbb-
2005 and SPECjbb2013 on Amd48 and Intel80. We report
the average and standard deviation over 3 runs.

As explained earlier, we vary the heap size. We were
unable to identify the minimal heap size for Spark and Neo4j
because the runs last too long. For example, on Amd48, the
computation of Neo4j lasts for 2h37 with PSB and a heap
size of 110 GB, but does not complete even in 12 hours with
a heap size of 100 GB. For this reason, for Spark and Neo4j,
we use the smallest heap size that ensures that the application
terminates in less than 8 hours.

Observe that NumaGiC always improves the GC through-
put over NAPS, up to 2.9× on Amd48 and up to 3.6× on
Intel80, which translates into an overall improvement (appli-
cation + GC) up to 42% on Amd48 and up to 45% on Intel80.
With heap sizes that provide the best overall performance
for all the GC (160 GB on Amd48 and 350 GB on Intel80
for Spark and Neo4j, 8 GB and 12 GB for SPECjbb2005,
40 GB and 40 GB for SPECjbb2013), the overall improve-
ment ranges between 12% and 42% on Amd48 and between
12% and 45% on Intel80.

Figure 6 reports the GC throughput and the speedup, in
terms of completion time, of the DaCapo and SPECjvm2008
benchmarks on Amd48. Since these applications have small
workloads, we expect the performance impact of GC to
be modest. Nonetheless, observe that, compared to NAPS,
NumaGiC improves the overall performance of seven of
the applications by more than 5% (up to 32% for Sci-
mark.fft.large), does not change it by more than 5% for 25
of them, and degrades performance by more than 5% in a
single application (Crypto.AES, degraded by 8%). For this
application, GC throughput actually improves, but, as we
let Hotspot uses its default resizing policy, this modifies the
heap resizing behaviour, causing the number of collections
to double. In summary, even for small heaps, 20% of the
applications see significant overall improvement thanks to
the the better memory access locality of NumaGiC, and with
the sole exception of Crypto.AES, NumaGiC never degrades
performance relative to NAPS.

To summarise, big-data applications with a large heap
benefit substantially from NumaGiC. It significantly im-
proves garbage collector throughput, which translates into

PSO

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC

PSB

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC
NAPS

 0

 200

 400

 600

 800

 1000

110 135 160

PSB
NAPS

NumaGiC NumaGiC Linear

(a) Spark (b) Neo4j (c) SPECjbb2005

(-)0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

1 2 4 6 8
(-)0

 1

 2

 3

 4

 5

 6

 7

1 2 4 6 8
(-)0

 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

1 2 4 6 8

x-axis: Number of NUMA nodes
y-axis: GC throughput (GB/s). Higher is better.

Figure 7. Scalability for three applications with large heap

a significant overall application improvement. With small
heap sizes, NumaGiC is either neutral (most cases), rarely
degrades performance somewhat (one application), and im-
proves overall performance in 20% of the evaluated appli-
cations. Furthermore, the fact that the improvements remain
similar on two different hardware architectures tends to show
that our mostly-distributed design is independent from a spe-
cific hardware design.

5.7 Scalability
This section studies the scalability of the garbage collectors
discussed in this paper, as the number of NUMA nodes in-
creases. The experiments were conducted on Spark (40GB),
Neo4j (32GB), and SPECjbb2005 (6GB). SPECjbb2013 is
not included, as its performance exhibits a large standard de-
viation at low core count, and hence does not provide stable
results.

Figure 7 shows the scalability of GC throughput of the
original Parallel Scavenge distributed with Hotspot (PSO),
our improved version of Parallel Scavenge (PSB), NAPS, and
NumaGiC. For comparison, we also plot linear throughput
relative to the 1-node performance of NumaGiC.

As shown in the figure, NumaGiC scales substantially bet-
ter than all the other three GCs. NumaGiC scales almost
linearly with SPECjbb2005, slightly less with Spark, and
again less with Neo4j. This variation of scalability is di-
rectly related to the proportion of clustered objects of each
application, as shown in Table 1. An application such as
SPECjbb2005 has a high proportion of clustered objects,
or in other words low inter-node sharing, which leads to
higher scalability. In contrast, Neo4j has a lower proportion
of clustered objects, hence lower scalability. In this case,
more inter-node shared objects cause more inter-node mes-
sages in NumaGiC, which in turn degrades performance.

6. State of the Art
Our work is inspired by multi-kernels [3, 18] and clustered
operating systems [22] for multi-core machines. These sys-
tems partition memory between cores or NUMA nodes, and



communicate via messages. The partitioning avoids remote
memory accesses and ensures memory access locality. Our
starting point is similar: NumaGiC partitions a Java Virtual
Machine’s address space between nodes, and isolates nodes
during collection, in order to avoid remote memory accesses.
However, we showed in Section 5.5 that strict partitioning
degrades parallelism, and hence performance. Therefore, we
take a pragmatic approach; we relax the local access con-
straints to avoid leaving GC threads idle, and leverage remote
access when beneficial to performance.

The best throughput-oriented stop-the-world GC in the
standard HotSpot JVM is Parallel Scavenge, which scales
poorly on large-scale multiprocessors [9]. An improved ver-
sion of Parallel Scavenge called NAPS was proposed by
Gidra et al. [10]. NAPS improves memory access balance on
a ccNUMA machine. However, as our evaluation shows, the
memory access locality of NAPS is poor. Thanks to its adap-
tive distributed design, NumaGiC has better memory access
locality, which translates to a better performance.

Zhou and Demsky [31] designed a parallel NUMA-aware
mark-and-compact collector on their proprietary Java Vir-
tual Machine, targeting the TILE-Gx microprocessor fam-
ily. Zhou and Demsky target relatively small heap sizes, be-
tween 1.5 GB and 4 GB, whereas we consider big-data ap-
plications with heap sizes of more than 150 GB. Similarly to
NumaGiC, in their collector, each core collects its own local
memory, and sends messages when it finds remote references.
The study of Zhou and Demsky considers only a mark-and-
compact algorithm, similar to the one used in the old gener-
ation of NumaGiC. In contrast, NumaGiC is a generational
GC with two generations with multiple spaces, which com-
plicates the design, especially at the boundary between the
spaces. Moreover, Zhou and Demsky focus on the locality
of the application and the GC. They do not consider bal-
ancing memory access among the nodes, but recent studies
showed that unbalanced memory access has a dramatic im-
pact [6, 10]. They do not consider improving spatial NUMA
locality, whereas we observe that a distributed design is ben-
eficial only if the number of remote references is low. Finally,
although Zhou and Demsky state that restricting GC threads
to accessing only local memory can degrade parallelism, they
do not observe it in their evaluation, and thus do not propose
a solution. Our own evaluation shows that this issue is central
to performance.

Ogasawara [19] and Tikir and Hollingsworth [28] study
how NUMA effects impact performance of the language run-
time. They copy an object to the memory node where it is
accessed the most. This aims to improve application local-
ity, but does not address GC locality, as we have done with
NumaGiC.

A widely-used technique to improve concurrency is the
thread-local heap [1, 7, 16, 20, 27]. With this technique,
when first allocated, an object is placed in a heap local to
the creating mutator thread. Later, it migrates to a shared

global heap only if it becomes referenced from the shared
heap. This heap layout supports collecting a thread-local heap
concurrently with the mutator threads on the other cores.
The partitioned eden space in NumaGiC is similar because it
allows a mutator thread to allocate its memory locally, but it
has a radically different goal. However, our partitioned eden
space could probably be used as a building block towards
NUMA thread-local heaps collected currently.

In order to improve memory access balance and locality
for native applications, some recent work proposes to mi-
grate, or even to replicate, whole memory pages by observing
the memory access pattern of the application at the operating
system kernel level [6, 15]. NumaGiC does not use this tech-
nique, because, in order to avoid fragmentation, a copying
GC continuously moves objects around in memory, obfus-
cating the memory access patterns observed by the operating
system kernel.

7. Conclusion
We presented the rationale and the detailed design of Numa-
GiC, a mostly-distributed, adaptive GC for ccNUMA archi-
tectures. NumaGiC is designed for high throughput, to be
used for long-running applications with a large memory foot-
print, typical of big-data computations.

NumaGiC’s distributed design avoids the costly remote
accesses of non-NUMA-aware GCs. However, NumaGiC
pragmatically uses remote access when it is beneficial to
performance, and switches between the local mode (avoid-
ing remote access) and the work-stealing mode (maximising
parallelism), according to the current workload. Thanks to
this design, NumaGiC demonstrates high memory access lo-
cality without loss of parallelism, which translates to a dras-
tic reduction of interconnect traffic, and to a substantial im-
provement of GC throughput, which translates to an overall
speedup between 12% and 45% over NAPS on the two cc-
NUMA machines for applications with large heaps.

As future work, we plan to study a concurrent GC for cc-
NUMA architecture, where each node could collect its mem-
ory in isolation. Indeed, in applications where responsiveness
is important, suspending the application for long GC pauses
is not tolerable. These kinds of applications require a concur-
rent collector, which runs concurrently with the application.
Because they need to synchronise at a fine grain with the
mutator (to detect changes to the object graph), concurrent
collectors are considerably more complex. HotSpot comes
with a choice of collectors, including concurrent ones. We
observe that they all suffer from poor locality, as they ac-
cess remote memory nodes roughly 80% of the time, on the
48-core machine. The techniques used in this study to avoid
remote access are most likely applicable to a concurrent col-
lector as well. Indeed, they appear unrelated to the concurrent
collector’s synchronisation with application, since they con-
cern mainly the mapping of the heap on the different nodes
and the communication between the GC threads.



References
[1] T. A. Anderson. Optimizations in a private nursery-based

garbage collector. In ISMM ’10, pages 21–30. ACM, 2010.

[2] A. W. Appel. Simple generational garbage collection and fast
allocation. SP&E, 19(2):171–183, 1989.

[3] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,
S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The mul-
tikernel: a new OS architecture for scalable multicore systems.
In SOSP ’09, pages 29–44. ACM, 2009.

[4] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S.
McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Framp-
ton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo bench-
marks: Java benchmarking development and analysis. In OOP-
SLA ’06, pages 169–190. ACM, 2006.

[5] K. M. Chandy and L. Lamport. Distributed snapshots: Deter-
mining global states of distributed systems. TOCS, 3(1):63–75,
1985.

[6] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize,
B. Lepers, V. Quema, and M. Roth. Traffic management: A
holistic approach to memory placement on NUMA systems.
In ASPLOS ’13, pages 381–394. ACM, 2013.

[7] D. Doligez and X. Leroy. A concurrent, generational garbage
collector for a multithreaded implementation of ml. In
POPL ’93, pages 113–123. ACM, 1993.

[8] Friendster. SNAP: network datasets: Friendster social network.
http://snap.stanford.edu/data/com-Friendster.

html, 2014.

[9] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. Assess-
ing the scalability of garbage collectors on many cores. In
SOSP Workshop on Programming Languages and Operating
Systems, PLOS ’11, pages 1–5. ACM, 2011.

[10] L. Gidra, G. Thomas, J. Sopena, and M. Shapiro. A study of the
scalability of stop-the-world garbage collectors on multicores.
In ASPLOS ’13, pages 229–240. ACM, 2013.

[11] H2. H2 database engine. http://www.h2database.com/,
2014.

[12] M. Herlihy and N. Shavit. The Art of Multiprocessor Program-
ming. Morgan Kaufmann, 2008.

[13] R. Jones, A. Hosking, and E. Moss. The garbage collection
handbook: the art of automatic memory management. Chap-
man & Hall/CRC, 1st edition, 2011.

[14] H. Lieberman and C. Hewitt. A real-time garbage collector
based on the lifetimes of objects. CACM, 26(6):419–429, 1983.

This research was supported in part by ANR (France) projects ConcoRDanT (ANR-10-BLAN 0208), Infra-JVM (ANR-
11-INFR-008-01) and STREAMS (ANR-2010-SEGI-010-02), and by COST Action IC1001 Euro-TM.

[15] LinuxMemPolicy. What is Linux memory policy?
http://www.kernel.org/doc/Documentation/vm/

numa_memory_policy.txt, 2014.

[16] S. Marlow and S. Peyton Jones. Multicore garbage collection
with local heaps. In ISMM ’11, pages 21–32. ACM, 2011.

[17] Neo4j. Neo4j – the world’s leading graph database. http:

//www.neo4j.org, 2014.

[18] E. B. Nightingale, O. Hodson, R. McIlroy, C. Hawblitzel, and
G. Hunt. Helios: heterogeneous multiprocessing with satellite
kernels. In SOSP ’09, pages 221–234. ACM, 2009.

[19] T. Ogasawara. NUMA-aware memory manager with
dominant-thread-based copying GC. In OOPSLA ’09, pages
377–390. ACM, 2009.

[20] K. Sivaramakrishnan, L. Ziarek, and S. Jagannathan. Elimi-
nating read barriers through procrastination and cleanliness. In
ISMM ’12, pages 49–60. ACM, 2012.

[21] P. Sobalvarro. A lifetime-based garbage collector for LISP sys-
tems on general-purpose computers. Technical report, Cam-
bridge, MA, USA, 1988.

[22] X. Song, H. Chen, R. Chen, Y. Wang, and B. Zang. A case
for scaling applications to many-core with OS clustering. In
EuroSys ’11, pages 61–76. ACM, 2011.

[23] Spark. Apache Spark– lightning-fast cluster computing. http:
//spark.apache.org, 2014.

[24] SPECjbb2005. SPECjbb2005 home page. http://www.

spec.org/jbb2005/, 2014.

[25] SPECjbb2013. SPECjbb2013 home page. http://www.

spec.org/jbb2013/, 2014.

[26] I. Stanton and G. Kliot. Streaming graph partitioning for large
distributed graphs. In KDD ’12, pages 1222–1230. ACM,
2012.

[27] B. Steensgaard. Thread-specific heaps for multi-threaded pro-
grams. In ISMM ’00, pages 18–24. ACM, 2000.

[28] M. M. Tikir and J. K. Hollingsworth. NUMA-aware Java heaps
for server applications. In IPDPS ’05, pages 108–117. IEEE
Computer Society, 2005.

[29] D. Ungar. Generation scavenging: A non-disruptive high per-
formance storage reclamation algorithm. In SDE ’84, pages
157–167. ACM, 1984.

[30] P. R. Wilson and T. G. Moher. A ”card-marking” scheme for
controlling intergenerational references in generation-based
garbage collection on stock hardware. SIGPLAN Notice, 24
(5):87–92, 1989.

[31] J. Zhou and B. Demsky. Memory management for many-
core processors with software configurable locality policies. In
ISMM ’12, pages 3–14. ACM, 2012.

http://snap.stanford.edu/data/com-Friendster.html
http://snap.stanford.edu/data/com-Friendster.html
http://www.h2database.com/
http://concordant.lip6.fr/
http://infrajvm.irisa.fr/
http://streams.loria.fr/
http://www.eurotm.org/
http://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
http://www.kernel.org/doc/Documentation/vm/numa_memory_policy.txt
http://www.neo4j.org
http://www.neo4j.org
http://spark.apache.org
http://spark.apache.org
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2005/
http://www.spec.org/jbb2013/
http://www.spec.org/jbb2013/

	Introduction
	Background
	Parallel Scavenge young collection
	Full collection
	Parallelism in Parallel Scavenge
	Parallel Scavenge Baseline

	NUMA-friendly placement
	Object graph analysis
	NUMA-friendly placement
	Implementation details

	NumaGiC
	Local mode
	Work-stealing mode
	Switching between local and work-stealing modes

	Evaluation of NumaGiC
	Hardware and software
	Applications and Benchmarks
	Evaluation of the policies
	Impact of transmit buffer size
	Memory access locality versus parallelism
	Performance analysis
	Scalability

	State of the Art
	Conclusion

