
HAL Id: hal-01178782
https://hal.science/hal-01178782

Submitted on 2 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Mining Approach to Temporal Debugging of
Embedded Streaming Applications

Oleg Iegorov, Alexandre Termier, Vincent Leroy, Jean-François Méhaut,
Miguel Santana

To cite this version:
Oleg Iegorov, Alexandre Termier, Vincent Leroy, Jean-François Méhaut, Miguel Santana. Data Mining
Approach to Temporal Debugging of Embedded Streaming Applications. 15th International Confer-
ence on Embedded Software (EMSOFT’2015), Oct 2015, Amsterdam, Netherlands. �hal-01178782�

https://hal.science/hal-01178782
https://hal.archives-ouvertes.fr

Data Mining Approach to Temporal Debugging of
Embedded Streaming Applications

Oleg Iegorov
STMicroelectronics and

Université de Grenoble Alpes,
LIG, Grenoble, France

oleg.iegorov@imag.fr

Vincent Leroy
Université de Grenoble Alpes,

LIG and CNRS,
Grenoble, France

vincent.leroy@imag.fr

Alexandre Termier
Université de Rennes 1, IRISA
and INRIA Rennes Bretagne
Atlantique, Rennes, France

alexandre.termier@irisa.fr
Jean-François Méhaut

Université de Grenoble Alpes,
LIG and CEA LETI,
Grenoble, France

jean-francois.mehaut@imag.fr

Miguel Santana
STMicroelectronics, France

miguel.santana@st.com

ABSTRACT
One of the greatest challenges in the embedded systems area
is to empower software developers with tools that speed up
the debugging of QoS properties in applications. Typical
streaming applications, such as multimedia (audio/video)
decoding, fulfill the QoS properties by respecting the real-
time deadlines. A perfectly functional application, when
missing these deadlines, may lead to cracks in the sound or
perceptible artifacts in the image.

We start from the premise that most of the streaming ap-
plications that run on embedded systems can be expressed
under a dataflow model of computation, where the appli-
cation is represented as a directed graph of the data flow-
ing through computational units called actors. It has been
shown that in order to meet real-time constraints the actors
should be scheduled in a periodic manner. We exploit this
property to propose SATM – a novel approach based on
data mining techniques that automatically analyzes execu-
tion traces of streaming applications, and discovers signifi-
cant breaks in the periodicity of actors, as well as potential
causes of these breaks. We show on a real use case that
our debugging approach can uncover important defects and
pinpoint their location to the application developer.

1. INTRODUCTION
Designing applications for embedded systems, such as set-

top boxes or smartphones, is one of the most challenging
areas of software development. With each hardware gener-
ation, more powerful and complex Systems-on-Chip (SoC)
are released, and developers must constantly strive to adapt
their applications to these new platforms. Streaming appli-
cations require particular attention to ensure that strict QoS

properties are preserved. For example, a multimedia player
should neither show artifacts in the video nor cracks in the
sound.

Debugging QoS properties proves to be tricky, as these
properties are not related to the functional correctness of
the code for which traditional debuggers are designed. Their
violation can result from complex interactions between the
application and the system, or other applications: the com-
plete execution context must be taken into account for de-
bugging. The usual solution is to capture a trace of the
execution, and to analyze it afterwards to understand what
went wrong. However, such traces can have a large volume,
and understanding them requires data analysis skills that
are currently out of the scope of developer’s education.

In this paper, we propose SATM (Streaming Application
Trace Miner) – a novel approach to help understand the vi-
olations of QoS properties in streaming applications. SATM
is based on the premise that such applications are designed
under the dataflow model of computation. In this model,
an application is represented as a directed graph where the
nodes are called actors and the data flows between actors
along the arcs. In such a setting, as we explain in Section
2, the actors must be scheduled in a periodic way in order
to meet QoS properties expressed as real-time constraints,
such as displaying 30 video frames per second. In Section 3,
we show that an actor which does not eventually respect its
period at runtime causes the violation of application’s real-
time constraints. These two sections form the theoretical
foundation of SATM.

In practice, SATM is a data analysis workflow combin-
ing statistical approaches and data mining algorithms. It
provides an automatic solution to the problem of temporal
debugging of streaming applications (Fig 1). Given an exe-
cution trace of a streaming application exhibiting low QoS
as well as a list of its actors, SATM firstly determines exact
actors’ invocations found in the trace (Section 4.1). It then
discovers the actors’ periods, as well as parts of the trace
in which the periods are not respected (Section 4.2). Those
parts are further analyzed to extract patterns of system ac-
tivity that differentiate them from other parts of the trace
(Section 5). Such patterns can give strong hints on the ori-
gin of the problem and are returned to the developer. We
demonstrate SATM’s ability to detect both an artificial per-

turbation injected in an open source multimedia framework,
and a complex temporal bug of an industrial application
(Section 6).

Extraction of actor’s invocations Section 4.1

List of
dataflow actors

Execution
trace

Detection of the actor’s period
and suspicious parts of the trace Section 4.2

Mining unusual system activity Section 5

Patterns of system activity

Figure 1: SATM data analysis workflow

2. BACKGROUND ON EMBEDDED
STREAMING APPLICATIONS

In this section, we introduce domain knowledge of stream-
ing applications and the difficulties of debugging their QoS
properties. We conclude with our problem statement.

2.1 Design of Streaming Applications
Embedded applications are expected to run efficiently on

various chips with minor manual code rewriting. To an-
swer this demand, Model-of-Computation based design has
emerged as a widely used standard to express the seman-
tics of the interaction between the components of an em-
bedded application. Different types of Models of Computa-
tion (MoC) include Finite State Machine, Dataflow, Discrete
Event and others [7]. An embedded application described
using a specific MoC is used as a part of specification in
electronic system-level (ESL) design tools [12], whose goal
is to automatically generate code from MoC-based descrip-
tion to be executed on a particular SoC.

The widely adopted MoC to design streaming applica-
tions is Dataflow [18]. With Dataflow MoC, the program is
modeled as a directed graph where vertices (or actors) pro-
cess data units (or tokens), and edges (or communication
channels) transfer data, with the requirement that vertices
cannot share data. This last requirement makes dataflow
particularly suitable to express the parallelism of streaming
applications. Popular Dataflow MoCs include Synchronous
Dataflow (SDF) and Cyclo-Static Dataflow (CSDF) [18].

a1

[5, 3, 2]

a2

[1, 3, 1] [1, 1, 3]

a3

[4, 1]

e1 e2

Figure 2: Example CSDF graph

Figure 2 presents a simple CSDF graph G containing three
actors a1, a2, a3 and two communication channels e1, e2. Each
time an actor is invoked, it produces a specific number of to-
kens to its outbound communication channel and consumes
a specific number of tokens from the inbound communica-
tion channel, as specified in the square brackets. Consider

actor a2. The first time a2 is invoked, it consumes 1 to-
ken and produces 1 token. The next time it is invoked, it
consumes 3 tokens and produces 1 token, the next time -
consumes 1 token and produces 3 tokens, then - 1 token is
consumed and 1 token is produced again, and so on.

2.2 Hard Real-Time Constraints
Multimedia streaming applications conceived to run in

modern consumer electronic (CE) devices process high vol-
umes of arriving data streams with sophisticated algorithms
in order to provide high quality output. Indeed, the cus-
tomer wants her set-top box to decode a high-definition
video streaming from Internet TV provider and to repro-
duce it smoothly and perfectly synchronized with audio and
subtitles (required QoS properties). One approach to meet
these strict requirements would be the use of hardware so-
lutions designed to execute a specific application. However,
the diversity of applications the modern CE device must
support (flexibility requirement), and the desire of applica-
tion developers to use their software on a wide set of mul-
timedia platforms (openness requirement), require the use
of software-based solutions. This implies that all the com-
plexity of multimedia streaming algorithms and application
scheduling must be addressed at the software level. Dataflow
MoC provides an efficient way of designing parallel multi-
media streaming applications. Such applications must run
under hard real-time constraints, so that application’s out-
put is never delivered later than a specific deadline, in order
to meet QoS of modern CE devices (constant bit-rate, no
jitter, and others) [5]. Indeed, there is an emerging evidence
of using software based solutions that require hard real-time
performance [9].

The majority of hard real-time scheduling algorithms deal
with applications modeled as a set of periodic or sporadic
independent tasks [9]. Such model, however, does not apply
to dataflow applications where actors are not independent,
but have data-dependency constraints. On the other hand,
it was analytically proven that embedded streaming appli-
cations modeled with Dataflow MoC can be scheduled as a
set of strictly periodic tasks [2] [3], meaning that each actor
is scheduled as a task which is invoked at strict moments
of time defined by its period 1. This means that a variety
of hard real-time scheduling algorithms can be applied on
an application, given its dataflow model and worst-case ex-
ecution time (WCET) of each of its actors (computed with
static analysis tools or profiling on the target platform [19]).

2.3 Temporal Debugging
A typical usage scenario of a CE device includes several

concurrent real-time applications sharing the SoC resources.
For example, a set-top box decodes a video stream (to be
shown on the screen) and simultaneously encodes it (to be
stored in a different format on an external USB hard drive).
That is why embedded multimedia applications usually run
in general-purpose environment. On the other hand, due
to concurrent activity of applications and operating system,
it can happen that estimated WCETs of tasks are not re-
spected. Application’s hard real-time requirements, thus,
are violated resulting in a drop in application QoS, and de-
bugging must be performed in order to resolve problematic

1In the rest of the paper, the modeling term actor and its
scheduling counterpart term task will be used interchange-
ably, if not stated otherwise

system behavior.
Debugging QoS properties is not a trivial task. On one

hand, traditional debugging tools focus on functional cor-
rectness (i.e. accurate output values), but do not address
temporal correctness (i.e. output is available no later than
a given deadline). On the other hand, the process of debug-
ging should not be intrusive, otherwise it will alter appli-
cation’s temporal behavior. Temporal debugging using ex-
ecution traces answers both of these problems: it allows to
analyze the whole system activity, checking the time elapsed
between any system events; at the same time, trace collec-
tion imposes minimal overhead thanks to dedicated tracing
hardware, like Embedded Trace Macrocell in modern ARM
processors 2.

Traces are usually hard to analyze. First of all, an execu-
tion trace contains a sequence of timestamped system events
with no application model semantics attached to them. There
is no generic way to know if processA followed by processB

in the trace have some semantic meaning, or they are com-
pletely independent and happen in succession because of OS
scheduling. Moreover, there is no starting point of debug-
ging in the trace, as the QoS observed at a given moment of
time may be caused by some earlier system activity. Finally,
a trace can easily contain more than a million of events for
just a few minutes of system tracing. As the result, pro-
grammers are often overwhelmed with the amount of raw
data in execution traces. A promising solution is to exploit
data mining techniques to automatically extract relevant in-
formation from such large volumes of data.

2.4 Problem Statement
The goal of this paper is to facilitate the temporal debug-

ging of embedded streaming applications by applying data
mining techniques on application execution traces. We now
formally state the problem addressed in this paper:

Having an execution trace and a dataflow model of an em-
bedded multimedia application that does not meet its QoS re-
quirements, find out automatically which system activity is
responsible for application’s faulty temporal behavior.

3. PROPAGATION OF EXECUTION DELAY
IN DATAFLOW GRAPHS

In this section, we argue that a streaming application with
low QoS, modeled with the dataflow MoC and scheduled
under hard real-time constraints, must contain at least one
actor that does not respect its period at runtime. We intro-
duce the notion of execution delay propagation that justifies
this argument.

Hard real-time scheduling of a dataflow graph G consists
in finding out how to execute graph actors ai, i = 1..N as
a set of strictly periodic tasks τi. Each τi is defined by a
tuple τi = (Si, Di, Pi), where Si ≥ 0 is the start time of τi,
Di ≥ WCETi is its deadline and Pi ≥ Di is its period, so
that τi is invoked at t = Si +mPi,m = 0, ..,∞ and executes
for no longer than Di.

A periodic schedule for G is called valid if it can be re-
peated infinitely, i.e. the invocation rate qi of an actor-
producer ai is aligned with the invocation rate qi+1 of the
corresponding actor-consumer ai+1, so that the communi-
cation channel between them has bounded buffer capacity.

2http://arm.com/products/system-ip/debug-trace/
trace-macrocells-etm/index.php

This means that the schedule must derive such task periods
Pi that

q1P1 = q2P2 = · · · = qN−1PN−1 = qNPN = α [2], (1)
while all the qi can be directly found from production and/or
consumption properties of actors in dataflow graph G [14]
[4]. The product qiPi designates the duration of actor ai’s
iteration, and, as can be seen from Equation 1, has the same
value α for all the actors in G. Let’s denote by ai+1 the actor
that consumes the tokens produced by ai. A valid periodic
schedule guarantees that if

Si+1 = Si + qiPi (2)
then ai+1 will always find the required number of input to-
kens each time it is invoked [2].

Having the CSDF graph presented in Figure 2 and given
the actors’ worst-case execution times wcet1 = 5, wcet2 =
3, wcet3 = 2, a valid periodic schedule would derive start
times S1 = 0, S2 = 24, S3 = 48, invocation rates q1 = 3, q2 =
6, q3 = 4, periods P1 = 8, P2 = 4, P3 = 6, and, hence,
iteration duration α = 24 (see Figure 3). Deadlines Di,
wceti ≤ Di ≤ Pi, are calculated based on the amount of
available resources [3].

Proposition. A dataflow actor which has not respected its
period after at least one invocation at runtime, i.e. the exe-
cution time was superior to its period, causes the execution
delay to propagate through the dataflow graph resulting in
the delayed output of the very last actor, that is, the delayed
output of the whole application.

Proof. Let’s denote tki the time of the kth invocation of
an actor ai. Periodic scheduling of the dataflow graph G
implies that

tk+1
i = tki + Pi. (3)

If at eth invocation ai’s execution time exec timeei turned
out to be exec timeei > Pi, then te+1

i = tei + exec timeei >
tei + Pi. It follows that ∀c ≥ e: tc+1

i > tci + Pi , i.e. the
subsequent invocation times of ai are shifted by delayei =
exec timeei −Pi > 0. As the result, the subsequent iteration
of ai is delayed as well.

It can be seen from Equations 1 and 2 that the start time
of ai+1’s pth iteration is equal to the start time of ai’s (p+
1)th iteration. Thus, if ai’s (p + 1)th iteration is delayed,
then ai+1’s pth is delayed as well. The same applies to all
the aj , i ≤ j ≤ N , which means, that the pth iteration of aN
is shifted by delayei , hence, application’s output is delayed
by delayel

Figure 4 helps to understand the notion of execution de-
lay propagation using the schedule from Figure 3. As a1’s
eth invocation took longer than P1 to execute, delaye1 =
exec timee1−P1 was introduced to the pipeline, which prop-
agated through a2 and a3 actors resulting in the delayed
output of the application.

The proposition shows that in order to explain applica-
tion’s delayed output, it is essential to find the first actor
in application dataflow graph that occasionally does not re-
spect its period.

4. DISCOVERING ACTOR PERIOD FROM
APPLICATION EXECUTION TRACE

In order to identify delayed actor’s invocations, one needs
first to determine the actor’s period. Although it is possi-
ble that the person who performs the debugging is aware
of the periods of all the dataflow actors (e.g. the schedul-
ing is hard-coded into the program, or the information from

http://arm.com/products/system-ip/debug-trace/trace-macrocells-etm/index.php
http://arm.com/products/system-ip/debug-trace/trace-macrocells-etm/index.php

S1=0 5 8 S2=24 S3=48 72
Time

a3

a2

a1

iteration α=24

Figure 3: Valid periodic schedule for CSDF graph from Figure 2

the scheduler is easily accessible), we argue that automatic
extraction of the period from the execution trace provides
multiple benefits. Firstly, it relieves the need to manually
look for the parts of the trace where the period of a given
actor is not respected. Secondly, it makes SATM suitable
to the users who are oblivious of the scheduling decisions,
which is often the case in industry where the performance
debugging teams are separated from the developers. There-
fore, SATM mines actors’ periods from the execution trace.
The first actor exhibiting significant delay in its period is
signaled for further analysis.

We firstly provide the necessary formalism. Let E =
{e1, e2, .., em} be the set of all system and application events
that the user has decided to trace (for example, Interrupt168
or sys read[process23]). Each line of a trace file contains a
timestamped event of a particular type e that started to
execute on the CPU at a specific timestamp ts: evt =
(ts, e); ts ∈ N, e ∈ E . A trace, thus, can be represented
as a sequence of timestamped events 〈evt1, evt2, . . . , evtl〉 =
〈(ts1, e1), (ts2, e2), ..., (tsl, el)〉 where ∀i ∈ [1, l] tsi ∈ N, ei ∈
E , and the trace events are ordered by increasing order of
timestamp. For example, 〈(1, Interrupt168),(4, sys read
[process23]), (6,Interrupt168)〉 is a simple trace of length 3.

The mapping between a dataflow actor and the corre-
sponding event in the execution trace is done in the fol-
lowing way. If the given actor consists of a single function,
then each appearance of this function in the trace is consid-
ered as actor invocation. In case when the actor represents
a set of functions or a specific software module, then the
appearance of the first function (the one which reads the ac-
tor’s input from the communication channel) is considered
as actor invocation.

The first difficulty of discovering an actor period from a
trace comes from the observation that we can not directly
compare the time elapsed between the consecutive actor oc-
currences; the reason being preemptive multitasking oper-
ating system. As actor execution can be preempted in favor
of other processes and system tasks, the trace may contain
several actor occurrences, even if semantically they belong

to one actor invocation. Consider Figure 5 which presents
the visualization of an excerpt from system execution trace.
We observe 3 invocations of actor ai at timestamps 152, 177
and 202 with the period equal to 25ms (hollow rectangles),
while execution trace contains 11 occurrences of ai (filled
rectangles), as the operating system preempted it 3 times
during first execution, then 2 and 3 times during second and
third execution respectively. If we directly compare all the
time intervals between consecutive actor occurrences that
is {3,5,3,14,6,4,15,5,3,3}, the lack of constant value among
them would signal non-periodic invocation rate of actor ai,
which is wrong. A preprocessing is thus needed in order to
group actor occurrences in the trace into semantic invoca-
tions.

4.1 Temporal clustering of actor occurrences
Grouping similar objects is the goal of cluster analysis,

a branch of the data mining field. In our particular case,
the objects are the occurrences in the trace of a specific
actor, and the similarity measure of two occurrences con-
sists of only one dimension: the elapsed time between them.
This way, the less time has elapsed between two occurrences,
the more similar they are. The requirement that we im-
pose on clustering is its fully automatic behavior, i.e. no
user involvement is required. Interestingly, the vast body
of clustering algorithms deals with high-dimensional data
and various manually set thresholds, leaving automatic one-
dimensional clustering without proper attention. In [8] Cooper
et al. propose an algorithm for unsupervised temporal clus-
tering of digital photo collections which they prove to be
accurate and efficient. With only a slight enhancement, we
were able to apply their unsupervised time-based similarity
analysis to accurately and automatically cluster actor invo-
cations, as explained below.

The first step of clustering actor occurrences consists in
the construction of a similarity matrix M , which entries
M [m][n] contain the similarity measure between the mth

and the nth actor occurrences. Pairs of occurrences that are
closer to each other in time will have bigger similarity val-

iteration iteration

Time
te1

expected
output

delayed
output

a3
P3 delaye1

a2
P2 delaye1

a1
P1 P1 delaye1

exec time
e−1
1 exec timee1 exec time

e+1
1

Figure 4: Propagation of execution delay

Time

ai

152 155 160 163 177 183 187 202 207 210 213

Pi=25 Pi=25

Figure 5: Results of the operating system preemption of an actor ai

ues. Consider the similarity matrix for the case of Figure 5
depicted on Figure 6a. The darker color denotes the higher
similarity value, hence the smaller time distance between
the pairs of actor occurrences. The three clusters which cor-
respond to three actor invocations are clearly visible along
the main diagonal.

The second step deals with the detection of potential clus-
ter borders using novelty scores computed for each actor
occurrence. The novelty score quantifies the dissimilarity
of the groups of occurrences both before and starting at
the target actor occurrence. A big value of novelty score
thus means that the new cluster starts at the given actor
occurrence. With regard to Figure 5, the novelty score of
occurrences 1, 5 and 8 will be greater than those of other
occurrences, as shows Figure 6b.

(a)

(b)

Figure 6: Similarity matrix M (a) and novelty scores (b) for
actor occurrences from Figure 5

The last step concerns the detection of actor occurrences
that correspond to actor invocations. Indeed, as Figure 6b
shows, the threshold, that classifies novelty scores as “big
enough” or “not big enough”, should be chosen. We have en-

riched the time-based similarity analysis of [8] to do this step
automatically, using the Otsu’s threshold selection method
[17]. Otsu’s state-of-the-art method allows to accurately
transform any grayscale image into its black and white coun-
terpart. It allows to decide whether a given grayscale pixel
is closer to “white” or “black” by automatically finding a
threshold that minimizes the intra-class variance for both
“white” and “black” pixel classes. Otsu’s method is thus di-
rectly applicable to find out if a particular occurrence’s nov-
elty score is closer to “cluster-defining” or to “non-cluster-
defining” class.

In practice, SATM clusters actor’s invocations with high
accuracy. The reason of this is twofold. On one hand, the
actor’s period is normally quite bigger than its worst-case
execution time. On the other hand, valid use cases usually
do not overutilize the SoC’s resources. Hence, no heavy pre-
emption takes place, and the actor’s occurrences related to
a single invocation are compactly grouped on the temporal
axis.

4.2 Discovering actor period
Once actor’s occurrences found in execution trace are clus-

tered into semantic invocations, SATM proceeds to discover
the actor’s period. It collects the values of time intervals
between the pairs of consecutive actor invocations and mea-
sures how different from each other they are. In statistical
terms, having a distribution of time intervals, we determine
its central tendency and measure its dispersion. On one
hand, it allows us to find actor period (equal to central ten-
dency if dispersion is small) or conclude that it is not peri-
odic at all (if dispersion is large). On the other hand, the
parts of the trace where the actor does not respect its period
(outliers of the distribution) can be easily detected.

As the measure of distribution’s central tendency we use
median which is equal to the middle element of the distribu-
tion. An appealing property of median is its high resistance
to outliers: for a distribution where half of elements have
the same value V , and another half - arbitrarily big values,
median gives V as the value of central tendency. As the
measure of dispersion we use quartile coefficient of disper-
sion. It is a dimensionless measure, i.e. it has no units, and
thus we can use same dispersion threshold for distributions
with different central tendency values. Quartile coefficient
of dispersion is defined as

QCoD =
Q3 −Q1

Q3 +Q1
, (4)

where Q1 and Q3 are the first and the third quartiles ac-
cordingly.

In case if the value of QCoD for the distribution of time
intervals between actor invocations is small enough to con-
sider the actor as periodic, we proceed to detect the gaps in
actor’s periodicity, i.e. time intervals that are much bigger
than actor’s period. The precise “much bigger” value can be

obtained from the inter-quartile rule for outliers: distribu-
tion elements that fall above Q3 + 1.5 ∗ IQR are outliers,
where IQR = Q3−Q1 is the inter-quartile range.

Consider the following (clustered) timestamps of actor’s ai
invocations extracted from an execution trace: t1i = 45, t2i =
75, t3i = 104, t4i = 134, t5i = 164, t6i = 352, t7i = 382,
t8i = 413, t9i = 443, t10i = 538, t11i = 568. The corresponding
distribution of time intervals between its invocations is

σ = {30, 29, 30, 30, 188, 30, 31, 30, 95, 30},

and the median equals to 30. Next, we decide if this value
can be considered as the actor’s period, i.e. if most of the
time intervals tend to be equal to the median, using QCoD
dispersion measure (Equation 4). Q1 = 30, Q3 = 31, and
QCoD = 1/61 ≈ 0.016. The small value of QCoD implies
that distribution σ is well centered on its median, even with
the presence of two big outliers. Hence, we infer that the
actor ai is periodic with the period equal to 30. We then
apply the inter-quartile rule, which detects 95 and 188 to be
outliers in σ, as these values fall above Q3+1.5∗IQR = 32.5.

Assuming that ai is the first actor from the dataflow model
which has outliers in its distribution of occurrences in the
execution trace, it is essential to discover the cause of the
presence of these outliers which, as proved in Section 3, re-
sult in reduced QoS.

Having ai’s timestamps and the list of its outliers, the
execution trace D can be split into two sets: Dneg, where the
target actor is invoked periodically (outlier-negative), and
Dpos, where its period is broken (outlier-positive). Using the
example above, Dneg = { [0, t1]; [t1,t2]; [t2,t3]; [t3,t4]; [t4,t5];
[t6,t7]; [t7,t8]; [t8,t9]; [t10,t11]; [t11,tlast] }, Dpos = {[t5,t6];
[t9,t10]} where [ti, tj] denotes the part of the trace between
the timestamps ti and tj and is called a subtrace, while tlast

is the timestamp of the last event in the trace D.

5. MINING UNUSUAL SYSTEM ACTIVITY
As described in the previous section, SATM discovers the

most upstream actor ai with delayed invocations, and splits
the execution trace D into two sets of subtraces: Dneg con-
taining the parts of D between ai’s invocations that respect
the period, and Dpos, containing the parts of D between
ai’s invocations that do not respect the period. At the next
stage, SATM determines what makes Dpos different from
Dneg.

In data mining, discovering fine-grained differences be-
tween two or more datasets of categorical elements can be
addressed by emerging pattern mining [10]. An emerging
pattern is a group of data elements that appear much more
frequently in one dataset than in another. If one consid-
ers trace events as data elements, and Dpos with Dneg as
sets of trace events grouped into subtraces, emerging pat-
terns can give a valuable insight into what makes these two
datasets different. In fact, emerging patterns can be viewed
as a concise representation of system activity observed more
frequently while the period of the target actor was being
violated, hence, such activity is unusual to the temporally
correct execution of the target actor and, therefore, is corre-
lated to the temporal bug. The user expertise is then needed
in order to derive semantical meaning from the emerging
patterns and decide if they truly explain the cause of the
temporal bug. We now formally define the problem of min-
ing emerging patterns in execution traces.

5.1 Emerging patterns in execution traces
Using the notation introduced in Section 4, a pattern is a

group of events: P = 〈e1, e2, . . . , em〉, where ∀j ∈ [1,m] ej ∈
E . For example, 〈sys read[process23], Interrupt168〉 is a
pattern of length 2. Note that a pattern has no timestamps
attached to the events. The goal of emerging pattern mining
is thus to discover all the patterns that are observed more
frequently in the dataset Dpos than in the dataset Dneg. As
Dpos and Dneg are used only to extract patterns, we can
drop all the timestamps from them while preserving the or-
der of the events which essentially makes subtraces in Dpos

and Dneg sequences of events.
The given definition of a pattern is rather general, as it

does not allow to define an occurrence of a pattern in a
subtrace. We rely on the following observations on exe-
cution traces that provide sufficient information to decide
if a given pattern is present in a given subtrace. Firstly,
the order of events in a pattern is important, as a pat-
tern 〈readBuffer,writeBuffer〉 has a different meaning from
〈writeBuffer,readBuffer〉 in the execution trace context. An
ordered list of elements is called a sequential pattern. This
way, a pattern P occurs in a subtrace T ∈ Dpos (or T ∈
Dneg) if P is a subsequence of T (P ⊂ T); more formally,
if T = 〈e1, e2, . . . , en〉, then P ⊂ T if P = 〈ei1 , ei2 , . . . , eim〉
such that 1 ≤ i1 < i2 < · · · < im ≤ n. Next, we expect
the events that are far from each other in the trace to not
have a direct connection. On the other hand, due to general-
purpose nature of the execution environment, two logically
connected events A and B (e.g. A calls B in the application’s
code) can be separated by some unrelated events in the exe-
cution trace. Therefore, the difference ik+1−ik, k ∈ [1,m−1]
must be upper-bounded with some g, g � n. In other words,
if P ⊂ T , we would like P ’s elements to be close to each other
in T , but not necessarily subsequent. We call g a maximum
gap constraint. Summing up, P ⊂ T = 〈e1, e2, . . . , en〉 if
P = 〈ei1 , ei2 , . . . , eim〉 such that 1 ≤ i1 < i2 < · · · < im ≤ in
where ik+1 − ik ≤ g, and P is called a g-gap constrained se-
quential pattern.

Given a set of sequences D, a sequential pattern P and a
maximum gap constraint g, the count of P in D with g-gap
constraint, denoted as countD(P) is the number of sequences
T ∈ D in which P appears as a subsequence fulfilling the g-
gap constraint. The support of P in D with g-gap constraint
is defined as supD(P, g) = countD(P, g)/|D|, where |D| is
the number of sequences in D. Given a positive threshold δ,
if supD(P, g) ≥ δ we say P is frequent in D. Otherwise, P
is infrequent in D.

Finally, given two sets of sequences Dpos and Dneg, two
support thresholds δ and α, and a maximum gap g, a pattern
P is called an emerging pattern from Dneg to Dpos (abbre-
viated simply as emerging pattern) if supDpos(P, g) ≥ δ and
supDneg (P, g) ≤ α.

Having two emerging patterns P and Q, such that P ⊂ Q,
P characterizes the differences between Dpos and Dneg bet-
ter than Q, as it is more concise, hence, easier to analyze. An
emerging pattern that does not have any emerging subpat-
terns is called a minimal emerging pattern. We are, there-
fore, interested in mining minimal emerging patterns.

As an example, having E = {A,B,C,D,E,X} consider
the following Dpos and Dneg:

Dpos ABXCD, ABXCED
Dneg AXBCD, AXBECD, ABCED, AXBD

Figure 7: GStreamer dataflow graph with actors’ periods
detected by SATM

With δ = 100%, α = 0% and g = 1, there are six emerging
patterns: 〈A,B,X〉, 〈A,B,X,C〉, 〈A,B,X,C,D〉, 〈B,X〉,
〈B,X,C〉 and 〈B,X,C,D〉, but only 〈B,X〉 is minimal.

In [13] Ji et al. proposed an algorithm ConSGapMiner
which mines minimal emerging gap-constrained sequential
patterns from two classes of sequences. Being the only al-
gorithm to mine this type of patterns, we have integrated
ConSGapMiner as the last stage of SATM.

6. EXPERIMENTAL RESULTS
We evaluate SATM using manually perturbed GStreamer

traces and a case of an industrial embedded application with
low QoS. SATM is composed of an implementation of algo-
rithms presented in Section 4 written in Perl, and of a mul-
tithreaded implementation of the ConSGapMiner algorithm
written in Java.

6.1 GStreamer use case
GStreamer is an open source multimedia framework im-

plementing the dataflow model. We build a pipeline com-
posed of a standard set of GStreamer actors, with the ad-
dition of intruder actor (Fig 7). The role of intruder is to
randomly introduce delay into the pipeline, and therefore
perturb the video output of the application. This is done
in the following way. Intruder implements 3 random bit
generators: A, B and C. Each of them calls a specific func-
tion depending on the value of the generated bit (e.g. A1,
B0). If a sequence “010” is generated (i.e. A0, B1 and C0
are called), intruder sleeps for a significant amount of time,
so that the delay propagates through the subsequent actors
resulting in late frame display, thus reducing GStreamer’s
QoS. Using this setup, we play 1 minute of video and record
the execution trace.

6.1.1 Period computation
SATM successfully mined actors’ periods, as shown in

Fig. 7. The distribution of inter-occurrence intervals’ lengths
of demux and avdec h264 actors is presented in Figures 8

 0

 5

 10

 15

 20

 25

 30

 35

 40

0 10 20 30 40 50 60 70 80 90 100
110

120
130

#
 I
n
te

rv
a
ls

 (
x
1
0
0
)

Interval Length (ms)

w/o clustering
w/ clustering

Figure 8: Inter-occurrence interval distribution for demux

and 9 respectively. Note that given their position in the
GStreamer graph, demux is not affected by the perturba-
tions of intruder, while avdec h264 is. Although demux first
appears to be aperiodic, the clustering eliminates small in-
tervals, and SATM detects that demux occurs with a pe-
riod of 70ms. The low dispersion value (QCoD = 0 .6%)
confirms that the execution of demux is not perturbed. In
practice, the values of QCoD smaller than 10% indicate that
the distribution is well centered around its median. Having
QCoD = 7.2%, avdec h264 is also a periodic actor, with a
period of 40ms. However, its higher QCoD value indicates
that there is more dispersion around the median. As Fig-
ure 9 shows, the system preemption is not the cause of this
dispersion, because the clustering does not remove the out-
liers. Hence, avdec h264 requires further investigation to
identify the origin of the perturbation.

6.1.2 Mining Unusual System Activity
We now evaluate the ability of ConSGapMiner algorithm

used at the last stage of SATM to identify the injected se-
quence of events 〈A0, B1, C0〉 which perturbs periodicity of
avdec h264 actor, and thus of all the downstream actors re-
sulting in delayed output delivery; we will call this sequence
as target further on. The ideal output of this stage would
be a single minimal emerging sequence target .

Fig 10 presents a heat map showing the number of min-
imal emerging sequences mined by ConSGapMiner for the
fixed gap value g = 1 and varying δ and α.

We can pinpoint four areas of interest on this heat map,
corresponding to different output quality. When δ ≥ 94%
or α ≤ 2%, target is not found. As most data mining
approaches, SATM makes a few classification errors when
building Dpos and Dneg. Hence, in this case, 2% of the sub-
traces in Dneg contain target . Similarly, a few subtraces in
Dpos do not contain target , or contain it with a gap larger
than 1. This area can easily be ignored by decreasing δ and
increasing α accordingly. Then, for a large fraction of the
parameter space: δ ∈ [82%; 92%] and α ∈ [2%; 12%] (“only
target” region on the figure), SATM finds a single result,
target , which corresponds to the ideal situation.

For α ≥ 14%, the output of SATM exhibits anomalies
coming from the perturbation process, as we explain be-
low. The period of intruder actor being equal to the period
of avdec h264 actor, each subtrace in Dpos and Dneg con-
tains one execution of the intruder actor. Out of the 8 pos-
sible executions of intruder (〈A0,B0,C0〉, 〈A0,B0,C1〉,. . . ,
〈A1,B1,C1〉), Dneg is defined by 7 of them (all except 〈A0,
B1,C0〉) that do not introduce a delay into the pipeline.
Consequently, a sequence that differs from target by one el-

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

0 10 20 30 40 50 60 70 80 90 100
110

120
130

#
 I
n
te

rv
a
ls

 (
x
1
0
0
)

Interval Length (ms)

w/o clustering
w/ clustering

Figure 9: Inter-occurrence interval distribution of avdec h264

ement, e.g. 〈A1, B1, C0〉, appears in 14% (1/7) of sequences
of Dneg. As α reaches 14%, ConSGapMiner starts consider-
ing sequences like 〈B1, C0〉 as emerging ones: being a sub-
sequence of 〈A0, B1, C0〉, 〈B1, C0〉 has a high frequency in
Dpos, and being a subsequence of 〈A1, B1, C0〉, 〈B1, C0〉
has a frequency of 14% in Dneg. At first, with α = 14%
(“target+noise” region), SATM returns target with up to 5
other sequences of the form 〈X,B1, C0〉 with X being some
sequence of trace events that usually precede the execution
of intruder. Then, for α > 14% (“no target” region), subse-
quences of the form 〈B1, C0〉 become emerging, and target
is no longer returned as it is not minimal.

Note that mining maximal emerging patterns would not
solve this problem for real use cases. Due to the highly
similar nature of the sequences constituting Dpos and Dneg,
maximal emerging sequences can be very long, with hun-
dreds or thousands of elements, with target buried indistin-
guishably somewhere in them.

82

84

86

88

90

92

94

96

98

100

0 2 4 6 8 10 12 14 16 18 20

δ
,
%

α, %

only target no target

no emerging sequences

ta
rg

et
 +

 n
o
is

e

Figure 10: Heat map showing the output of ConSGapMiner
algorithm for maximum gap g = 1

We evaluate the impact of the gap parameter g in Ta-
ble 1. These results show the minimum values of δ and α
for which target is found, which corresponds to the coor-
dinates of the top-left corner of the “only target” region in
Figure 10. As g increases, δ can be chosen closer to 100%.
Indeed, by increasing g, ConSGapMiner tolerates a larger
gap when searching for target in Dpos, which makes SATM
more resilient to system preemptions polluting the trace,
at the expense of the running time of ConSGapMiner algo-
rithm. Note that a high value of δ increases the analyst’s
confidence that discovered emerging sequences are correlated
with the bug, since they are shown to characterize a larger
fraction of Dpos.

g supDpos(〈A0, B1, C0〉, g) supDneg (〈A0, B1, C0〉, g)
0 85.3 % 1.5 %
1 92.2 % 1.7 %
2 93.6 % 1.7 %
3 93.6 % 1.7 %

Table 1: Impact of the value of the maximum gap g on the
support of the sequential pattern target = 〈A0, B1, C0〉.

This experiment illustrates the process of parameterizing

ConSGapMiner in SATM. The user is encouraged to start
with extreme values of δ and α (100% and 0% respectively),
and then gradually adjust them to obtain relevant sequences.
The results demonstrate that SATM can identify gap con-
strained sequences which characterize the cause of the tem-
poral bug without requiring complex parameter tuning.

6.2 Industrial use case
This use case is a real QoS problem that occurred at

STMicroelectronics. The target application is called ts record,
and is designed for set-top boxes equipped with STiH416
MPSoC to record a video stream received from the network
onto secondary storage such as an external USB hard drive.
The reported defect is that there exist parts of the recorded
high-definition video that have poor quality due to dropped
frames. ts record is modeled with a single actor that reads
data from network buffers, and transfers it to the secondary
storage.

SATM discovered the period of 10ms of the ts record ac-
tor. There were, however, numerous time intervals of sev-
eral hundreds of milliseconds between ts record invocations.
While mining emerging sequences in these parts of the trace,
SATM was able to return the following emerging sequence
for the parameters as extreme as δ = 94% α = 3% gap = 2:
〈 Interrupt182(GICehci hcd:usb3), switch to-45(usb-storage)-0,

switch to-0-45(usb-storage), Interrupt182(GICehci hcd:usb3),

switch to-45(usb-storage)-0〉.
A graphical representation of one part of the trace where

the emerging sequence occurs is presented in Fig. 11 (a
screenshot of STMicroelectronics KPTrace Viewer). This
sequence consists of events implicated in the transfer of data
to the external USB hard drive.

The found emerging sequence allowed the developers at
STMicroelectronics to recognize a somewhat notorious be-
havior of the Linux page cache: the data is not written to
the secondary storage immediately after calling write sys-
tem call, but is put into the part of main memory called
page cache; it is then the responsibility of the pdflush kernel
thread (1055(flush-8:0) in Fig. 11), invoked by default by
the operating system every 5 seconds, to initiate the writing
of the data stored in page cache to the secondary storage.
The peculiarity of pdflush operation is the complete blocking
of page cache, so that ts record can’t transfer the newly re-
ceived data from network buffers to page cache while pdflush
is active. The amount of space required to store 5 seconds
of high-definition video can easily exceed the size of net-
work buffers, therefore we lose some network packets due
to the network buffers overflow, hence, some video frames
are dropped in the recorded stream. A possible fix of this
problem is to reduce the pdflush invocation interval 3.

When looking at our emerging sequence that allowed to
understand the problem, pdflush itself is a rare event and was
not captured in the emerging sequence. However, pdflush
triggers numerous calls to interrupt182(GICehci hcd:usb3)
which further lead to the context switches reported in the
emerging sequence. The developers were thus able to use
our results to isolate pdflush as the source of the problem.

7. RELATED WORK
Entrialgo et al. [11] approached the problem of temporal

debugging of real-time systems by analyzing the execution

3www.westnet.com/~gsmith/content/linux-pdflush.htm

www.westnet.com/~gsmith/content/linux-pdflush.htm

12

3

1

Figure 11: Visualization of ts record execution trace: 1© part of the trace where the period is respected; 2© part of the trace
where the period is broken; 3© emerging sequence.

time of application’s tasks modeled with stochastic tech-
niques. They assumed that non-respect of a task’s dead-
line at runtime is caused solely by the incorrect model of
this task’s execution time. We, however, consider deadline
misses as symptoms, and provide methods to discover the
cause of application’s temporal bug represented by some ex-
ternal to application system activity. Therefore, we rely on
the application model and its scheduling on the target plat-
form to always respect the tasks deadlines at runtime if no
other system processes are running in parallel.

Albertsson [1] addresses the difficulty of debugging tempo-
ral bugs in multimedia applications running in general pur-
pose environment by complete system simulation. The pro-
posed gdb-like debugger running on simulated target plat-
form is capable to pinpoint a missed deadline if the user
knows the expected timing characteristics of all the appli-
cation routines. In contrast to simulator-based debugging,
we benefit from the low-intrusive trace recording solutions
available in modern embedded systems. Hence, no simu-
lation is needed, and the recorded trace can be analyzed
post-mortem, i.e. after the application has finished its exe-
cution.

The recent work of Yu et al. [20] presents an approach
to debug application performance problems which is con-
ceptually similar to ours. They introduce the notion of cost
propagation in systems consisting of interacting components,
akin to our delay propagation, in order to discover the com-
ponent which is responsible for the observed performance
bug. Their approach mines a number of execution traces
capturing both “good” and “bad” application performances,
to find event patterns that are inherent to the “bad” traces
and that originate from the set of predefined “suspicious”
components. In contrast to [20], our approach makes no as-
sumptions on the location of the performance bug, and does
not require collection of a call stack attached to each event
in the trace. Moreover, we target the embedded software
by including its specificities (periodic execution, real-time
deadlines) to the core of our approach.

The work of López Cueva et al. [15] is the closest to the
spirit of our approach as it also applies data mining algo-
rithms on execution traces for temporal debugging of em-
bedded multimedia applications. Their PerMiner algorithm
allows to mine all the sets of events that occur together in
the execution trace in a periodic manner, called periodic pat-
terns. At the same time, PerMiner finds time intervals where
the period of the chosen pattern is not respected. It then
feeds this information to the analysis tool called Competi-
torsFinder, that is capable of mining a competitive periodic
pattern which is present in the trace only during the specified
time intervals. The problem of PerMiner is its generality, as
it mines all the periodic patterns in the trace expecting the
user to manually analyze them, and lack of precision in pat-
tern’s period computation. With PerMiner, one pattern can
have many co-prime periods, which makes no sense with re-
spect to the multimedia application real-time scheduling. At
the same time, CompetitorsFinder is capable of mining only
periodic competitor patterns.

Our temporal debugging approach for streaming embed-
ded applications closely corresponds to the generic debug-
ging methodology for parallel dataflow applications proposed
in [6] (non-italics text describes the corresponding steps of
our approach):

1. Identify the portions of the program whose behavior will
be monitored. As explained in Section 4, we monitor
actor functions that read input.

2. Specify the expected execution behavior of the set of
nodes that will be monitored. We expect chosen func-
tions to be invoked in a strict periodic manner.

3. Determine where the actual and expected events first
diverge. We determine the first actor that occasionally
misses its deadline and look for the parts of the trace
where its periodic behavior was not respected.

4. Define corrective action. We look for the system activ-
ity that is related to the temporal bug, and leave the
choice of corrective action to the application developer.

8. CONCLUSIONS AND FUTURE WORK
The complexity of modern multiprocessor SoC coupled

with the application performance requirements make tem-
poral debugging a major issue for embedded software de-
velopers. Temporal bugs impacting application’s QoS are
hard to debug, firstly, because of the lack of adequate tools,
and secondly, because such bugs have a tendency to show
up in the last stages of application development cycle where
time is running short. In this paper, we propose a novel ap-
proach to help application developers detect possible causes
of temporal bugs in embedded streaming applications in an
automatic manner. This approach is based on data min-
ing techniques applied to execution traces. The experiments
have shown that our approach is robust and allowed to solve
a real QoS problem at STMicroelectronics.

This work opens many interesting research directions. One
of them is the usage of patterns based on partial orders in-
stead of the strict order enforced in this paper [16]. This
would allow to capture more complex patterns of system ac-
tivity. Another direction would be to take into account the
execution time of actors, so that the user is able to detect
abnormal timing behavior of actors which does not neces-
sarily result in breaks in periodicity. It will be interesting
then to apply our enhanced temporal debugging approach
on other real streaming applications.

9. REFERENCES
[1] L. Albertsson. Temporal debugging and profiling of

multimedia applications. In Electronic Imaging 2002,
pages 196–207. International Society for Optics and
Photonics, 2001.

[2] M. Bamakhrama and T. Stefanov. Hard-real-time
scheduling of data-dependent tasks in embedded
streaming applications. In Proceedings of the ninth
ACM international conference on Embedded software,
pages 195–204. ACM, 2011.

[3] M. Bamakhrama and T. Stefanov. Managing latency
in embedded streaming applications under
hard-real-time scheduling. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis,
pages 83–92. ACM, 2012.

[4] G. Bilsen, M. Engels, R. Lauwereins, and
J. Peperstraete. Cycle-static dataflow. Signal
Processing, IEEE Transactions on, 44(2):397–408,
1996.

[5] R. J. Bril, C. Hentschel, E. F. Steffens, M. Gabrani,
G. van Loo, and J. H. Gelissen. Multimedia qos in
consumer terminals. In Signal Processing Systems,
2001 IEEE Workshop on, pages 332–343. IEEE, 2001.

[6] J. C. Browne, S. I. Hyder, J. Dongarra, K. Moore, and
P. Newton. Visual programming and debugging for
parallel computing. IEEE Parallel and Distributed
Technology, 3(1):75–83, 1995.

[7] W.-T. Chang, S. Ha, and E. A. Lee. Heterogeneous
simulation – mixing discrete-event models with

dataflow. Journal of VLSI signal processing systems
for signal, image and video technology,
15(1-2):127–144, 1997.

[8] M. Cooper, J. Foote, A. Girgensohn, and L. Wilcox.
Temporal event clustering for digital photo collections.
ACM Transactions on Multimedia Computing,

Communications, and Applications (TOMCCAP),
1(3):269–288, 2005.

[9] R. I. Davis and A. Burns. A survey of hard real-time
scheduling for multiprocessor systems. ACM
Computing Surveys (CSUR), 43(4):35, 2011.

[10] G. Dong and J. Li. Efficient mining of emerging
patterns: Discovering trends and differences. pages
43–52, 1999.

[11] J. Entrialgo, J. Garćıa, J. L. Dı́az, and D. F. Garćıa.
Tools and stochastic metrics for debugging temporal
behaviour of real-time systems. J. UCS,
15(8):1563–1588, 2009.

[12] A. Gerstlauer, C. Haubelt, A. D. Pimentel, T. P.
Stefanov, D. D. Gajski, and J. Teich. Electronic
system-level synthesis methodologies. Computer-Aided
Design of Integrated Circuits and Systems, IEEE
Transactions on, 28(10):1517–1530, 2009.

[13] X. Ji, J. Bailey, and G. Dong. Mining minimal
distinguishing subsequence patterns with gap
constraints. Knowledge and Information Systems,
11(3):259–286, 2007.

[14] E. A. Lee and D. G. Messerschmitt. Synchronous data
flow. Proceedings of the IEEE, 75(9):1235–1245, 1987.

[15] P. López Cueva, A. Bertaux, A. Termier, J. F.
Méhaut, and M. Santana. Debugging embedded
multimedia application traces through periodic
pattern mining. In Proceedings of the tenth ACM
international conference on Embedded software, pages
13–22. ACM, 2012.

[16] H. Mannila, H. Toivonen, and A. I. Verkamo.
Discovery of frequent episodes in event sequences.
Data Min. Knowl. Discov., 1(3):259–289, 1997.

[17] N. Otsu. A threshold selection method from gray-level
histograms. Automatica, 11(285-296):23–27, 1975.

[18] M. Pelcat, S. Aridhi, J. Piat, and J.-F. Nezan.
Dataflow model of computation. In Physical Layer
Multi-Core Prototyping, pages 53–75. Springer, 2013.

[19] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, et al. The worst-case
execution-time problem – overview of methods and
survey of tools. ACM Transactions on Embedded
Computing Systems (TECS), 7(3):36, 2008.

[20] X. Yu, S. Han, D. Zhang, and T. Xie. Comprehending
performance from real-world execution traces: A
device-driver case. In Proceedings of the 19th
International Conference on Architectural Support for
Programming Languages and Operating Systems,
ASPLOS ’14, 2014.

