
HAL Id: hal-01178757
https://hal.science/hal-01178757v1

Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A fair starvation-free prioritized mutual exclusion
algorithm for distributed systems

Jonathan Lejeune, Luciana Arantes, Julien Sopena, Pierre Sens

To cite this version:
Jonathan Lejeune, Luciana Arantes, Julien Sopena, Pierre Sens. A fair starvation-free prioritized
mutual exclusion algorithm for distributed systems. Journal of Parallel and Distributed Computing,
2015, 83, pp.13-29. �10.1016/j.jpdc.2015.04.002�. �hal-01178757�

https://hal.science/hal-01178757v1
https://hal.archives-ouvertes.fr

A Fair Starvation-free Prioritized Mutual Exclusion Algorithm for Distributed
Systems

Jonathan Lejeunea, Luciana Arantesa, Julien Sopenaa, Pierre Sensa

aSorbonne Universités, UPMC Univ Paris 06, CNRS, Inria, LIP6, 4, place Jussieu 75252 Paris Cedex 05, France

Abstract

Several distributed mutual exclusion algorithms define the order in which requests are satisfied based on

the priorities assigned to requests. These algorithms are very useful for real-time applications ones or those

where priority is associated to a quality of service requirement. However, priority based strategies may

result in starvation problems where high priority requests forever prevent low priority ones to be satisfied. To

overcome this problem, many priority-based algorithms propose to gradually increase the priority of pending

requests. The drawback of such an approach is that it can violate priority-based order of requests leading

to priority inversion. Therefore, aiming at minimizing the number of priority violations without introducing

starvation, we have added some heuristics in Kanrar-Chaki priority-based token-oriented algorithm in order

to slow down the frequency with which priority of pending requests is increased. Performance evaluation

results confirm the effectiveness of our approach when compared to both the original Kanrar-Chaki and

Chang’s priority-based algorithms.

Keywords: Distributed system, mutual exclusion, priority, algorithm

1. Introduction

Many distributed and parallel applications require that their processes obtain exclusive access one or

more shared resources. Mutual exclusion is then one of the fundamental building bricks of distributed

systems. It ensures that at most one process can access the shared resources at any time (safety property)

and that all critical section requests are eventually satisfied (liveness property). The set of instructions of

processes’ code that access a shared resource is denoted a critical section (CS).

Several distributed mutual exclusion algorithms exist in the literature (e.g. [6],[14],[9],[16],[13],[12]). They

can be divided into two families [17]: permission-based (e.g. Lamport [6], Ricart-Agrawala [14], Maekawa

[9]) and token-based (Suzuki-Kazami [16], Raymond [13], Naimi-Tréhel [12]). The algorithms of the first

family are based on the principle that a process only enters a critical section after having received permission

Email addresses: jonathan.lejeune@lip6.fr (Jonathan Lejeune), luciana.arantes@lip6.fr (Luciana Arantes),
julien.sopena@lip6.fr (Julien Sopena), pierre.sens@lip6.fr (Pierre Sens)

Preprint submitted to Elsevier July 20, 2015

from all the other processes (or a sub-set of them [14], [9]). In the second group of algorithms, a system-wide

unique token is shared among all processes, and its possession gives a process the exclusive right to execute

a critical section.

In the majority of distributed mutual exclusion algorithms, CS requests are satisfied in First-Come-First-

Served (FCFS) time-based event order such as the logical time of the requests or the physical time when

the token holder receives a request. However, this approach is not suitable for all kind of applications such

as, for instance, applications where some tasks have priority over the others, real-time environments [2]

[1], or applications where priority is associated to a quality of service requirement [7]. To overcome these

constraints, some authors (e.g., [5], [2], [11], [10], [1], [7]) have proposed some mutual exclusion algorithms

where every request is associated to a priority. The satisfaction of pending requests respects, whenever

possible, the priority order. However, priority order induces starvation problems, i.e., the infinite delay

for granting access to the CS to a process, which then violate liveness property. Starvation happens when

higher priority requests forever prevent lower priority ones from executing the CS. Hence, in order to avoid

such a problem, low priorities of pending requests are dynamically increased in these algorithms, eventually

reaching the highest priority. The drawback of this strategy is that it can violate priority-based order of

requests, i.e., it can lead to priority inversion where a request with an original low priority will be satisfied

before another one with higher priority.

We propose in this paper some priority-based distributed mutual exclusion algorithms that reduce request

priority violations without introducing starvation. We particularly focus our work on token-based mutual

exclusion algorithms since the latter usually have an average lower message cost and thus present better

scalability.

Token-based algorithms exploit different solutions for the forwarding of critical section requests of pro-

cesses and token transmission. Each solution is usually expressed by a logical topology that defines the

paths followed by critical section request messages which might be completely different from the physical

network topology. Our algorithm is an extension of Kanrar-Chaki [5] algorithm where distributed processes

are organized in a static logical tree. By applying some heuristics, our algorithm postpones the increasing

of priority of pending requests and, therefore, the number of priority violations is reduced when compared

to both the original Kanrar-Chaki algorithm and Chang’s priority-based algorithm [1], as confirmed by the

results of our thorough performance evaluation experiments. Furthermore, we also show that the heuristics

have a low message overhead compare to the original algorithm while keeping the same waiting time. More-

over, they tolerate quite well peaks of request load. A first version of our algorithm has been presented in

[7] but oriented to Service Level Agreement constraints in the context of cloud computing.

The rest of the paper is organized as follows. Section 2 discusses some existing priority-based mutual

exclusion distributed algorithms and gives a description of the Kanrar-Chaki algorithm. Our priority re-

quest distributed mutual exclusion solutions are described in section 3. Performance evaluation results are

2

presented in Section 4. A discussion about a trade-off between the response time and the priority violation

is presented in section 5. Finally, Section 6 concludes the paper.

2. Related Work

In this section we outline the main priority-based mutual exclusion algorithms. Furthermore, since our

priority-based mutual exclusion (mutex) algorithms are based on the Kanrar-Chaki [5] algorithm, the latter

is described in more details.

Prioritized distributed mutex algorithms are usually an extension of some non-prioritized algorithms.

Goscinksi algorithm [2] is based on the token-based Suzuki-Kasami algorithm and has a message complexity

of O(N). Pending requests are stored in a global queue and are piggybacked on token messages. Starvation

is possible since the algorithm can lose requests while the token is in transition since in this case, it is not

held by any process.

Mueller algorithm [11] is inspired in Naimi-Tréhel token-passing algorithm which exploits a dynamic tree

as a logical structure for forwarding requests. Each process keeps a local queue and records the time of

requests locally. These queues form a virtual global queue ordered by priority within each priority level. Its

implementation is quite complex and the dynamic tree tends to become a simple queue because, unlike the

Naimi-Tréhel algorithm, the root process is not the last requester but the token holder. Therefore, in this

case the algorithm presents a message complexity of O(N2).

Housni-Tréhel algorithm [3] adopts a hierarchical approach where processes are grouped by priority. Each

group is identified by one router process. Within each group, processes are organized in a static logical tree

like Raymond’s algorithm [13] and routers apply the Ricart-Agrawala algorithm [14]. Starvation is possible

for processes that issued low priority processes if many high priority requests are pending. Moreover, a

process can only send requests with the same priority (that of its group).

Several algorithms, such as Kanrar-Chaki [5] and Chang [1] algorithms, propose to extend Raymond’s

[13] token-based algorithm in order to assign priorities to requests. Since our heuristics are applied to

Kanrar-Chaki algorithm, we describe both Kanrar-Chaki and Raymond algorithms.

Raymond’s algorithm [13] is a token-based mutex algorithm where processes are organized in a static

logical tree: only the direction of links between two processes can change during the algorithm’s execution.

Processes thus form a directed path tree to the root. Excepting the root, every process has a father process.

The root process is the owner of the token and it is the unique process which has the right to enter the

critical section. When a process needs the token, it sends a request message to its father. This request will

be forwarded till it reaches the root or a process which also has a pending request. Every process saves its

own request and those received from its children in a local FIFO queue. When the root process releases the

token, it grants the token message to the first process of its own local queue and this process becomes its

3

father. Then, if its queue is not empty, it sends a request to its new father, to eventually get the token back.

When a process receives the token, it removes the first request from its local queue. If this request was

issued by the process itself, it executes the critical section; otherwise it forwards the token to the process

that issued it, and the latter becomes its father. Moreover, if the local queue of the process is not empty, it

sends to its new father a request on behalf of the first request of its queue.

An example of Raymond algorithm execution with 3 processes is shown in Figure 1 where arrows represent

father links. Initially, process B, the root process, is in critical section, and both processes A and C have

issued a request (Figure 1.(a)). When B releases the CS, it sends the token to A, updates its father link

and sends a new request to A (Figure 1.(b)) on behalf of C request. In its turn, when A releases the token,

it sends it to B that forwards it to C. Finally, the token is received by C; Figure 1.(c) shows the final state

when both requests were satisfied.

B

A C

Queue: A Queue: C

Queue: A,C
 In CS

Token Holder

B

A C

Queue: B
 In CS

Queue: C

Queue: C B

A C

Queue: - Queue: -
 In CS

Queue: -

(a) (b) (c)

Requesting node Non requesting node

Figure 1: Raymond’s algorithm

Kanrar-Chaki algorithm [5] extended Raymond algorithm in order to introduce a priority level for

every process CS request. The greater the level (an integer value), the higher the priority of the request.

Hence, pending requests of a process’s local queue is ordered by decreasing priority levels. Similarly to

Raymond’s algorithm, a process that wishes the token sends a request message to its father. However, upon

reception, the father process includes the request in its local queue according to the request priority level

and only forwards it if the request priority level is greater than the one of the previous first element of the

processes’s local queue. In order to avoid starvation, the priority level of pending requests of a process’s

local queue is increased: when the process receives a request with priority p, every pending request of its

local queue whose priority level is smaller than p is increased by 1.

Similarly to the Kanrar-Chaki algorithm, Chang has modified Raymond’s algorithm in [1] aiming both

at (1) applying dynamic priorities to requests and (2) reducing communication traffic. For the priority,

he added a mechanism denoted aging strategy: if process p releases the CS or if it is a non requesting

4

process that holds the token and receives a request, p increases the priority of every request in its local

queue; furthermore, upon reception of the token, which includes the number of CS executions, p increases

the priority of all its old requests (i.e., those requests that were already pending when p releases the token

for the last time) by the number of CS that were executed since the last time p had the token. On the

one hand, such a priority approach reduces the gap in terms of average response time between priorities

(contrarily to the Kanrar-Chaki algorithm). On the other hand, it induces a greater number of priority

inversions when compared to the Kanrar-Chaki algorithm. Performance comparison evaluation results of

both algorithms are presented in section 4. Since a request always follows the token from an intermediate

process whose local queue contains more than one element, (2) communication traffic optimization consists

in piggybacking, whenever possible, a request on a token message

In [4], Johnson and Newman-Wolfe present three algorithms for prioritized distributed mutual exclusion.

Two of the algorithms use a path compression technique for fast access and low message overhead. One of the

algorithm extends Raymond algorithm. Similarly to the Kanrar-Chaki algorithm, each process maintains a

local priority queue of requests that it has received. Only new requests with a higher priority than the ones

in the queue are forwarded to the father.

In order to prevent priority inversion, Mueller proposes in [10] a token-based prioritized mutual exclusion

algorithm which is enhanced with priority ceiling protocol or priority inheritance protocol [15].

3. Priority-based mutual exclusion

We consider a distributed system consisting of a finite set Π = {s1, s2, ..., sN} of N nodes. There is one

process per node. Hence, the words node, process, and site are interchangeable. Nodes are assumed to be

connected by means of reliable and FIFO communication links and are organized in a static logical tree.

They communicate by sending and receiving messages. Nodes and links are not prone to failures.

Applications behave correctly: a process requests a CS by calling the Request_CS procedure if and

only if its previous request has been satisfied, or it is its first call, and it has released the CS by calling the

Release_CS procedure. A priority is associated to each request. Let P = {pmin, pmin+1, ..., pmax−1, pmax}

be the set of possible request priorities. Like in Kanrar-Chaki we note p > p′ iff priority p is higher than

priority p′.

3.1. Priority violation definition

We define that a priority violation happens whenever the priority order of request satisfaction is not

respected.

When a priority violation occurs, we distinguish two classes of requests:

• A favored request is a request that is satisfied before a pending request with higher priority.

5

• A penalized request is a pending request waiting for the token but a request with priority lower

than latter gets it.

Figure 2: Priority violation

Figure 2 shows 5 requests with their respective original priority where the horizontal lines represent the

pending interval of each request (critical section execution starts at the end of each pending interval but

is not shown in the figure). For instance, request A is a favored one since it is satisfied while request B

is pending. Therefore, request B is a penalized request. Notice that a request can be both a favored and

penalized one (for instance, requests B and C).

We discretize the global time by events of the algorithm execution such as CS request or token acquisition.

We denote T such a discrete-time. Let the triplet (p, tr, ta) ∈ R ⊂ P × tr × tr be a request where p is the

priority of the request, tr is the time when the request was issued, and ta is the time when the token was

acquired by the requesting process.

The priority violation can then be formalized by:

• the number of favored requests:

#{(p, tr, ta) ∈ R | ∃(p′, t′r, t′a) ∈ R, p < p′ ∧ ta ∈]t′r, t
′
a[}

• the number of penalized requests:

#{(p, tr, ta) ∈ R | ∃(p′, t′r, t′a) ∈ R, p′ < p ∧ t′a ∈]tr, ta[}

• the total number of priority violations:

#{((p, tr, ta), (p′, t′r, t
′
a)) ∈ R2 | p′ < p ∧ t′a ∈]tr, ta[}

In Figure 2, the above violation concepts are illustrated as follows:

• The number of vertical dotted lines corresponds to the number of favored requests (3 in the example);

• The number of horizontal lines (requests) which have at least one dot (cross with a vertical line)

corresponds to the number of penalized requests (4 in the example);

6

• The number of dots corresponds to the total number of priority violations; this number corresponds

to the total number of priority inversions. (8 in the example)

This example clearly shows that the number of priority violations is not equal to the sum of the number

of penalized requests plus favored requests. Such a difference motivates the need to formally define this

concept.

Note that in our previous work [7], the number of violations was equal to the number of penalized

requests.

3.2. Our priority-based request algorithm

Our solution is based on the Kanrar-Chaki algorithm. It is scalable with regard to the number of messages

(complexity O(logN)) and starvation never takes place thanks to the mechanism of priority increment. Our

proposal is therefore to modify the Kanrar-Chaki algorithm to minimize the number of priority violations

but without introducing much overhead nor degrading the performance of the algorithm. In other words,

without increasing either the number of messages sent over the network nor the request response time.

To this end, we firstly applied Chang [1]’s message traffic optimization to the Kanrar-Chaki algorithm

which includes requests in token messages (see section 2). Then, we applied two incremental heuristics: the

“Level” heuristic which postpones priority increment of pending requests and the “Level-distance” which,

in addition to “Level” heuristic, uses the number of intermediate nodes from the current token holder to

requesting nodes for deciding which node will be the next token holder.

The pseudo-code of the algorithm is shown in Figure 3. We start by describing the body of the algorithm.

Then, the traffic message optimization and the two heuristics are explained.

For each site si, the algorithm defines the following local variables (line 1):

• state: idle if si does not require the CS; requesting if si waits for the CS; inCS if si executes the CS;

• father: the identifier of si’s neighbor on the path leading to the process that holds the token (root);

• Q: local queue of pending requests received by si. Each element of this queue is a quadruplet

(s, p, l, d) ∈ Π × P × IN × IN where site=the neighbor of si which issued or forwarded the request;

p=the current priority of the request in the local queue; l=the current number of pending requests

that has already been counted up in order to increase req’s priority to p + 1; d=the distance from

the node that issued the request and the current node (distance mechanism). This queue is sorted by

decreasing order of priority, increasing order of distance in case of equal priorities, decreasing order of

delay level in case of equal distance and then FIFO order in case of equal delay levels.

The following functions handle the Q variable:

7

• add((s, p, l, d)): includes a request in the local queue, according to the ordering policy described

above.

• dequeue(Q): considering that the local queue is not empty, this function returns the first request of

the local queue and removes it.

• head(Q): returns the first request of the local queue. The request is kept in the local queue. If the

latter is empty, each field (s, p, l, d) of the returned element is equal to nil.

• reorder(Q): reorder the queue according to its ordering policy.

In Request_CS function (line 38), a node sj includes its request into its local queue (line 42) and, if this

request is in the head of the queue, sj sends it to its father si (line 44). Upon reception of the request (line

13), if si is the root node but not in CS, it grants the token (line 16) to sj . If it is not the root, it adds

the new request in its local queue and updates the priority of requests of its local queue in order to avoid

starvation, according to the heuristics described below (lines 19 to 33). Then, if si has added the request

in the head of its queue, it forwards the request to its own father (line 37). Note that the test on the line

18 is useful in the case where si has just sent the token to sj and that the request message and the token

message cross each other on the link from si to sj . In this case si does not store the request from sj in its

local queue in order to avoid cycles since sj is also the new si’s father.

Whenever a node receives the token, if the token piggybacks a request (see section 3.2.1), it updates the

priority of requests of its local queue and also includes the received request in its local queue (lines 60 to

68). Then, if its own request is at the head of the queue (i.e., it has the highest priority), the node enters

the CS (line 72). Otherwise, the token is forwarded to the node at the head of the local queue (line 75).

Finally, when a node releases the CS by calling the function Release_CS (line 49), if its local queue is

not empty, it sends the token to the node at the head of its local queue, removing the corresponding request

from the queue. Furthermore, if there still exist pending requests in its local queue, the node also includes

the first one in the token message, but keeps it in its queue.

3.2.1. Communication traffic optimization

In the Kanrar-Chaki algorithm, whenever a site whose local queue is not empty grants the token to

another process, it also sends to the latter a request to inform that the token must be returned later on.

Hence, in order to reduce communication traffic, this request can be piggybacked in the token message (lines

54 and 75). To this end, the pending request which has the maximum priority in the local queue (i.e., the

request at the head of the local queue) is added to the token message. When the token is received, the

request is added in the queue of the receiver (line 68).

Moreover, in the Kanrar-Chaki algorithm, a non token holder process which wants to enter in CS with

a priority p, systematically sends a request message to its father even if there is a request in its local queue

8

which has a priority higher than p. Thus, in order to reduce the number of messages per request, this

process will only send the request if the latter has been included in the head of the local queue since it has

the highest priority (line 43).

3.2.2. “Level” Heuristic

We have observed in the Kanrar-Chaki algorithm that requests, whose priority was originally low, are

satisfied quite fast since their priority reaches the maximum value due to the increment of their respective

priority in order to avoid starvation. Therefore, we have modified the algorithm aiming at postponing the

priority increment. A level function, denoted F(p), defines the increment policy, i.e., the number of necessary

requests of priority p−1 for upgrading pending requests of p−1 priority to p priority. (lines 28 to 31 and lines

64 to 67). This function is monotone, increasing, positive, and can be seen as a parameter of the algorithm.

Since our main objective is to reduce as much as possible the number of violations, we have considered an

exponential level function where F(p) = 2p+c for the experiments (see Section 4). The constant c prevents

that small priorities increase too fast and can be seen as a parameter of the level function.

3.2.3. “Level-Distance” Heuristic

We have introduced a new parameter, denoted request distance, in order to take into account pending

requests’ locality. We then use the distance to order requests of the same priority. The request distance from

site sr to site si is the number of intermediate nodes between sr and si. Hence, if two pending requests have

the same highest priority, the token will be sent to the one with the shortest request distance with respect

to the current token holder. It is worth pointing out that the tree topology has an impact in this heuristic.

However, such a mechanism can introduce starvation since it might happen that the token infinitely travel

over a part of the tree where some processes, which continuously request the CS with the same priority, are

located. Such a behavior can eventually induce a starvation problem whenever a process, with the same

priority, is located far from this part of the tree. To overcome this problem, when a node sn receives a

request with priority p′, it increments the parameter l of all requests with priority p such that p′ > p or p

is the highest local priority and p = p′ (lines 27 and 63). Notice that it thus is possible that a request has

a local priority equal to pmax + 1, which ensures that all requests will eventually be in the head of a local

queue.

Since this heuristic is orthogonal with the previous “Level” heuristic, we have combined them in the

”Level-Distance” heuristic.

3.2.4. Impact of the heuristics in the number of priority violations

Figure 4 shows the impact of the two different heuristics with respect to the original Kanrar-Chaki

algorithm. We consider a tree with 8 nodes. Pending requests, stored in local queues Qi of each node, are

sorted by decreasing order of priority and by FIFO order in case of equal priority. Each of them is separated

9

1 Local variables :

2 begin

3 state ∈ {idle, requesting, inCS};

4 father : site ∈ Π or nil;

5 Q : queue of (s, p, l, d) ∈ Π× P × IN× IN ;

6 Initialization

7 begin

8 state← idle;

9 Q ← ∅;

10 father ← according to the initial topology;

11 if self = s0 then

12 father ← nil;

13 On_receive Request(pj ∈ P, dj ∈ IN) from sj

14 begin

15 if father = nil and state = idle then

16 Send Token(∅,∅) to sj ;

17 father ← sj ;

18 else if sj 6= father then

19 (sold, pold, lold, dold) ← head(Q);

20 foreach (s, p, l, d) ∈ Q do

21 (shead, phead, lhead, dhead) ← head(Q);

22 if s = sj then

23 if pj ≥ p then

24 p ← pj ;

25 d ← dj ;

26 l ← 0 ;

27 else if pj > p or (pj = p and

p = phead) then

28 l← l + 1;

29 if l = F(p + 1) then

30 p ← p + 1;

31 l ← 0;

32 if @(s, p, l, d) ∈ Q, s = sj then

33 add (sj , pj , 0, dj) in Q;

34 reorder (Q) ;

35 if father 6= nil then

36 if (sold, pold, lold, dold) 6= head(Q)

then

37 Send Request(pj , dj + 1) to father;

38 Request_CS(p ∈ P)

39 begin

40 state← requesting;

41 if father 6= nil then

42 add (self, p, 0, 0) in Q ;

43 if (self, p, 0, 0) = head(Q) then

44 Send Request(p,1) to father;

45 wait(father = nil);

46 state← inCS;

47 /* CRITICAL SECTION */

48 Release_CS

49 begin

50 state← idle;

51 if Q 6= ∅ then

52 (snext, pnext, lnext, dnext) ← dequeue(Q);

53 (shead, phead, lhead, dhead) ← head(Q);

54 Send Token
(
min(phead, pmax),dhead + 1

)
to snext;

55 father ← snext;

56 On_receive Token(pj ∈ P, dj ∈ IN) from sj

57 begin

58 father ← nil ;

59 (snext, pnext, lnext, dnext) ← dequeue(Q);

60 if pj 6= ∅ then

61 foreach (s, p, l, d) ∈ Q do

62 (shead, phead, lhead, dhead) ← head(Q);

63 if pj > p or (pj = p and p = phead) then

64 l ← l + 1;

65 if l = F(p + 1) then

66 p ← p + 1;

67 l ← 0;

68 add (sj , pj , 0, dj) in Q;

69 reorder (Q) ;

70 if snext = self then

71 /* process can enter in CS */

72 notify(father = nil);

73 else

74 (shead, phead, lhead, dhead) ← head(Q);

75 Send Token
(
min(phead, pmax),dhead + 1

)
to snext;

76 father ← snext;

Figure 3: Our solution with the Level-Distance heuristic

10

by a coma and noted x(y), where x represents the requester and y the local priority of the request. Node n1

is the root, i.e., it owns the token and is in critical section. Nodes n2, n3, and n4 have requested the token

with priority 0, 0, and 1 respectively. Such an initial state is shown in Figure 4(a).

Let’s now consider that nodes n5, n8, and n7 issue one request, in this order, with priority 2, 3, and 3

respectively, noted 5(2), 8(3), and 7(3) respectively.

Figures 4(b), 4(c), and 4(d) show the state of the tree after each of the three new requests has been

taken into account by the original Kanrar-Chaki algorithm, the “Level” heuristic algorithm, and the “Level-

Distance” heuristic algorithm respectively. Notice that, in the three algorithms, all fathers of the requesting

nodes have added the received requests in their respective local queues. Furthermore, in the case of “Level”

and “Level-Distance” heuristics, we consider that c = 2 which implies that 8 (respectively, 16 and 32)

insertions of higher requests are required to a 0-level (respectively, 1-level and 2-level) priority request to be

upgraded to level 1 (respectively, level 2 and 3).

Each one of the new requests has the following results on the state of the pending requests and local

queues of the algorithms:

• original Kanrar-Chaki (Figure 4(b)):

(1) The priority of n3’s pending request in both Q3 and Q1 as well as the priority of n2’s pending

request in Q1 are increased till 3.

(2) The final satisfaction order of requests is: 4(1),5(2),8(3),3(0),7(3),2(0).

• “Level” heuristic (Figure 4(c)):

(1) The priority level of the n3’s pending request in Q1 is increased till 3 but does not change in Q3.

(2) The final satisfaction order of requests is: 8(3),7(3),5(2),4(1),2(0),3(0).

• “Level-Distance” heuristic (Figure 4(d)):

(1) Requests in Q3 are rescheduled according to requester’s distance.

(2) The final satisfaction order of requests is: 7(3),8(3),5(2),4(1),2(0),3(0).

This execution examples clearly show that the different heuristics change the order in which requests

are satisfied. We can also observe that both heuristics keep the original priority order. According to the

concepts of priority violation defined in section 3.1, we have:

• three favored requests (n4, n5, n3), three penalized requests (n5, n8, n7) and six priority violations for

the Kanrar-Chaki algorithm

• no priority violation when the heuristics is applied.

11

1

2 3

4 5

8

6 7 4(1)

4(1),2(0)

2(1), 3(0)

3(0)

(a) Initial state

1

2 3

4

8

6 7 4(1)

4(1), 2(0)

2(3), 3(3)

5(3), 6(3), 3(3),7(3)

5(2)

8(3)

8(3) 7(3) 5

(b) End state with Classical Kanrar-Chaki algorithm

1

2 3

4

8

6 7 4(1)

4(1), 2(0)

3(3), 2(1)

6(3), 7(3), 5(2),3(0)

5(2)

8(3)

8(3) 7(3) 5

(c) End state with "Level" heuristic

1

2 3

4

8

6 7 4(1)

4(1), 2(0)

3(3), 2(1)

7(3), 6(3), 5(2),3(0)

5(2)

8(3)

8(3) 7(3) 5

(d) End state with "Level-Distance" heuristic

(e) Legend

Figure 4: Example of execution by heuristics

12

4. Performance Evaluation

Compared to our previous work [7], we have significantly extended the performance evaluation study of

the algorithms. The results are presented in this section.

4.1. Experimental testbed and configuration

The experiments were conducted on a 32-nodes cluster with one process per node. It is worth emphasizing

that there is no network contention since there is one process per network card. Therefore, the side effect

due to the network is limited since there is just one process per network card. Each node has two 2.5GHz

Xeon processors and 16GB of RAM, running Linux 2.6. Nodes are linked by a 20 Gbit/s Ethernet switch.

The algorithms were implemented using C++ and OpenMPI.

An application is characterized by:

• N : number of processes.

• α: time to execute the critical section (CS).

• β: mean time interval between the release of the CS by a node and its request by this same node.

• γ: network transmission delay between two neighbor nodes.

• ρ: the ratio β/(α+ γ), which expresses the frequency with which the critical section is requested. The

value of this parameter is inversely proportional to load: a low value implies a high request load and

vice-versa. In other words:

– High load (0.1N ≤ ρ < 0.375N): a scenario where the majority of application processes request

the critical section;

– Intermediate load (0.375N ≤ ρ < 3N): a scenario where some sites compete to get the CS;

– Low load (3N ≤ ρ ≤ 10N): a scenario where concurrent requests to the CS are rare.

The parameter γ must be take into account whenever its value is not negligible. In this case, the

transfer of the token message can be seen as an extension of the critical section time α, decreasing,

therefore ρ.

• θ: the duration of the experiment.

The following metrics were considered in our experiments:

• Number of messages per request: for a given type of message, it is the ratio between the total number

of messages of this type and the total number of requests.

13

• Number of priority violations: described in section 3.1. However, we express it as the percentage of

issued requests, i.e., it is normalized with regard to the number of requests.

• Response time: the delay between the moment a node requests the CS and the moment it gets access

to it.

• CS execution rate: ratio of the sum of all requested critical section execution durations over θ.

For all experiments, we have considered a logical binary tree topology and 8 different priority levels.

In the figures that follow, CommOpti corresponds to a modified version of Kanrar-Chaki algorithm with

the communication optimization of Chang algorithm described in section 2, while CommOpti_Level and

CommOpti_LevelDistance correspond to this message traffic optimized algorithm when the “Level”, and

“Level-Distance” heuristics are respectively applied to it. We have also included Chang’s algorithm (see

section 2) in our performance evaluation experiments.

We classify the above algorithms in two classes: (1) "no-level" which comprises Kanrar-Chaki, Chang,

and CommOpti algorithms and (1) "level" composed by “Level”, and “Level-Distance”algorithms.

4.2. Constant load during an experiment

In this section, we present and discuss some performance evaluation results when request load within the

same experiment does not vary. Processes issue a request periodically. The interval between two requests

of the same process is chosen randomly according to a Poisson distribution where the average is computed

using the parameter ρ (load). For each new request, every process randomly chooses a priority according to

a uniform distribution.

In order to have a stationary request rate scenario, the first five CS accesses of each site are not taken

into account. Consequently, the average request load keeps constant during the whole experiment.

Our study was divided in two phases. We firstly considered one fixed average load and then, we evaluated

the impact of different loads, but each one does not vary during each experiment, on the behavior of the

algorithms.

4.2.1. Single constant load

Figure 5 summarizes the behavior of the algorithms with regard to the metrics described in section 4.1

when the load is fixed to ρ = 0.5N (around of 51 % processus are waiting to access the CS).

We can observe in the Figure 5(a) that the number of priority violations of Kanrar-Chaki algorithm is

25% smaller than Chang’s algorithm. However, this gain is obtained at the expense of message complexity

(Figure 5(b)), i.e., 45 % of additional messages. On the other hand, the performance of CommOpti confirms

that the simple addition of the message traffic optimization mechanism in Kanrar-Chaki algorithm is enough

14

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t) rho = 0,5N

(a) Total number of violations in percentage of re-

quest

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance
nu

m
be

r
of

 m
es

sa
ge

s
pe

r
re

qu
es

t rho = 0,5N

REQUEST
TOKEN

(b) Number of messages sent in network per request

ordered by type

 0

 20

 40

 60

 80

 100

 120

 140

 160

Kanrar_Chaki

Chang
CommOpti

CommOpti_Level

CommOpti_LevelDistance

av
er

ag
e

re
sp

on
se

 ti
m

e
(m

s)

rho = 0,5N

(c) Response time to obtain the token

 1

 10

 100

 1000

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(i

n
m

s) rho = 0,5N

prio0
prio1
prio2
prio3
prio4
prio5
prio6
prio7

(d) Response time to obtain the token by priority

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

ra
te

 o
f

us
e

(p
er

ce
nt

)

rho = 0,5N

(e) CS execution rate

Figure 5: Performance of priority-based algorithms

15

to obtain a message complexity which is of the same order of Chang algorithm with the same number of

violations of the original algorithm.

Nevertheless, the number of priority violations in CommOpti is still very high. The "level" heuristic,

i.e., CommOpti_Level, considerably reduces the number of violations: a reduction ratio of 25. We should

point out that this amazing reduction takes place despite the increase in the number of messages (40 % of

message overhead). Such a behavior can be explained since processes reach the highest priority more slowly

when compared to CommOpti and, therefore, are more likely to forward a greater number of requests that

originally had a higher priority. Aiming at reducing the message overhead generated by the "level" heuristic,

the "distance" heuristic was introduced in the algorithm: CommOpti_LevelDistance presents a reduction

of 15 % of messages when compared to CommOpti_Level and still has a very small number of priority

violations, similarly to the latter.

Concerning the average response time, we can see in Figure 5(c) that the global average response time

is the same for the different algorithms but the standard deviation is quite high, especially for "level"

algorithms. Indeed, Figure 5(d) shows that the waiting depends on the priority. The original algorithm of

Kanrar-Chaki has a regular behavior (shape of stairs), i.e., the higher the priority, the shorter the average

response time. However, the other algorithms do not present such a regular behavior for different priorities:

response time of priority 0 is hugely increased (a "best-effort" approach) while the highest priorities present

a strong improvement in CS access time. When we compare the response time of CommOpti_Level and

CommOpti_LevelDistance, we can observe that there is no much difference in terms of average. On the

other hand, the reduction in the number of messages of CommOpti_LevelDistance induces an increase in

the standard deviation of the lowest priorities.

Finally, Figure 5(e) shows that the heuristics do not degrade the overall performance: the CS execution

rate is the same for all of them (around 95%).

In conclusion, the above results confirm that the postponement of priority increment is essential for

respecting priority order while request locality is effective in reducing the number of messages generated by

an algorithm.

Study of priority violation:

Figure 6 presents some evaluation results aiming at thoroughly studying priority violations.

For ρ = 0.5N , the sub-figures show (see section 3.1):

• Figure 6(a) and 6(b): the percentage of penalized requests and favored requests respectively;

• Figure 6(c) and 6(d): for each priority level, the percentage of penalized requests and favored requests

respectively;

16

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

nu
m

be
r

of
 v

io
la

te
d

re
qu

es
t (

pe
rc

en
t)

rho = 0,5N

(a) Number of penalized requests in percentage

 0
 10
 20
 30
 40
 50
 60
 70
 80

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

nu
m

be
r

of
 v

io
la

tin
g

re
qu

es
t (

pe
rc

en
t)

rho = 0,5N

(b) Number of favored requests in percentage

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

nu
m

be
r

of
 v

io
la

te
d

re
qu

es
ts

 (
pe

rc
en

t)

rho = 0,5N

prio0
prio1
prio2
prio3
prio4
prio5
prio6
prio7

(c) Number of penalized requests per priority

 0

 20

 40

 60

 80

 100

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

nu
m

be
r

of
 v

io
la

tin
g

re
qu

es
ts

 (
pe

rc
en

t)
rho = 0,5N

prio0
prio1
prio2
prio3
prio4
prio5
prio6
prio7

(d) Number of favored requests per priority

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

av
er

ag
e

nu
m

be
r

of
 v

io
la

tio
ns

 b
y

vi
ol

at
ed

 r
eq

ue
st

rho = 0,5N

(e) average number of favored requests per penalized request

 0

 2

 4

 6

 8

 10

 12

Kanrar_Chaki

Chang

CommOpti

CommOpti_Level

CommOpti_LevelDistance

av
er

ag
e

nu
m

be
r

of
 v

io
la

tio
ns

 b
y

vi
ol

at
in

g
re

qu
es

t

rho = 0,5N

(f) average number of penalized requests per violating re-

quest

Figure 6: Priority violation analysis

17

• Figure 6(e) and 6(f): the average number of penalized requests per favored request and the average

number of favored requests per penalized request respectively as well as their respective standard

deviation.

As we can note in Figures 6(a) and 6(b), "no-level" algorithms induce more penalized requests than

favored ones, while in "level" algorithms the number of both type of requests is the same and respectively

smaller than the former.

In Figure 6(c), we observe the above difference in absolute value for each priority. However, such a

difference for penalized requests is not the same for all classes of algorithms: in "level" algorithms, the

number of penalized requests increases linearly with the priority while in "no-level" algorithms, the most

penalized requests are those whose priority has an intermediate value.

To better understand these differences, we should remember that the chance of penalization of a request

depends on two factors:

• the number of requests that surpass a higher priority request depends only on the initial priority of

this request, and not on the algorithm itself: the higher the priority, the greater the number of requests

that is likely to surpass it.

• the probability of a request to surpass another one depends on both the priority increment mechanism

and the initial priorities.

In "level" algorithms, the increment postponement approach renders the second factor negligible. The

first factor thus explains the linearity between the number of violations and priority. Conversely, in "no-level"

algorithms, priority increment is fast and, therefore, non negligible. We then observe that:

• The rate of increments is faster for lower priority (priority 0 and 1) since they have higher chance of

being surpassed by a higher priority requests. Such a higher increment rate strongly penalizes priority

3 (an intermediate priority).

• Requests with the highest priority values (6 and 7) may be surpassed by many requests. However,

these requests either have priority values 5 and 4 which increase slowly or have priority values which

are much smaller than 6 and 7 (priorities 0 and 1).

Therefore, in "no-level" algorithms there is a trade-off between the two factors which tends to penalize more

those requests with intermediate priorities than the others.

Figure 6(e) shows that in "level" algorithms, penalized requests are surpassed only once (small standard

deviation), while in "no-level" algorithms requests are surpassed in average 4 to 6 times. Furthermore, by

Figures 6(a) and 6(b), we can conclude that in these algorithms the number of penalized requests is small

and the latter are surpassed by a small number of requests. Such a behavior explains the very good results

in terms of priority violations of Figure 5(a). This same observation also applies to Figure 6(f).

18

4.2.2. Impact of different loads

We present now some performance evaluation results related to the impact of different loads on each

algorithm. We conducted several experiments varying ρ, proportionally to the number of processes N : 0.1N ,

0.375N , 0.5N , 1N , 3N , 5N , and 10N which respectively correspond to 84.3%, 61.2%, 50.9%, 11.6%, 0.5%,

0.2% and 0.07% of processes waiting for accessing the CS (x-axis of figures 7 and 8).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

nu
m

be
r

of
 v

io
la

tio
n

(p
er

ce
nt

)

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(a) Total number of violations in percentage of request

 0

 2

 4

 6

 8

 10

 12

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

re
qu

es
t

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(b) Number of messages sent in network per request

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

ra
te

 o
f

us
e

(p
er

ce
nt

)

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(c) CS execution rate

Figure 7: Impact of the load over the number of messages, CS execution rate, and the number of violations

Figure 7(a) shows the total number of priority violations. We can observe that "level" algorithms are

insensitive to high loads: the number of violations remains low regardless of the value of ρ. In contrast, the

number of violations increases significantly for "no-level" algorithms when the load increases. Such a behav-

ior can be explained since higher loads present more concurrent requests which lead lower priority requests

to quickly upgrade their priority to the highest value. These algorithms can then no longer distinguish

priorities, generating, therefore, a large number of priority violations.

On the other hand, we observe in Figure 7(b) that the number of messages decreases when the load

increases whichever the algorithm. This behavior is a direct consequence of Raymond’s algorithm: a process

does not retransmit the request if it is already requesting the critical section. This figure also shows, as

19

discussed in section 4.2.1, the message overhead generated by the "level" heuristic, and the gain in terms

of number of messages reduction provided by the "distance" heuristic. It is worth remarking that the

effectiveness of the "distance" heuristic is all the more important as the load increases. The algorithm

becomes more effective for a load of 0.1N (84.3% of waiting processes). This is particularly useful for

applications with peak loads.

Concerning the access to critical section, we note in Figure 7(c) that all algorithms have the same

behavior, i.e., for a given value of ρ, any algorithm satisfies the same number of requests.

It is important to emphasize that the three sub-figures of Figure 7 confirm that in the case of low load,

algorithms "no-level" and "level" behave similarly.

Study of priority violation

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

nu
m

be
r

of
 v

io
la

te
d

re
qu

es
ts

 (
pe

rc
en

t)

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(a) Number of penalized requests in percentage

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

nu
m

be
r

of
 v

io
la

tin
g

re
qu

es
ts

 (
pe

rc
en

t)

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(b) Number of favored requests in percentage

 0

 2

 4

 6

 8

 10

 12

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

av
er

ag
e

nu
m

be
r

of
 v

io
la

tio
ns

 b
y

vi
ol

at
ed

 r
eq

ue
st

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(c) average number of favored requests by penalized request

 0

 2

 4

 6

 8

 10

 12

0.1 N
0.375 N

0.5 N
1 N 3 N 5 N 10 N

av
er

ag
e

nu
m

be
r

of
 v

io
la

tio
ns

 b
y

vi
ol

at
in

g
re

qu
es

t

Rho

Kanrar_Chaki
Chang

CommOpti
CommOpti_Level

CommOpti_LevelDistance

(d) average number of penalized requests by favored request

Figure 8: Impact of Load in Priority violation

Figures 8(a), 8(b), 8(c), and 8(d) respectively show the number of penalized requests, the number of

favored requests, the average number of times when a request is penalized, and the average number of times

20

when a request is favored.

In Figure 8(a), we observe that in the case of low load (10N), there is no penalized request whichever

the algorithm. When the load starts increasing (from 10N to 3N), some few requests are penalized. On

the other hand, with an intermediate load (from 3N to 0.5N), only in "no-level" algorithms, the number of

penalized requests increases significantly (up to 80%), while in "level" algorithms such a number increases

slightly. Finally, when the load is high (from 0.375N to 0.1N), the percentage of penalized requests increases

to 85% in "no-level" algorithms which corresponds to the proportion of requests having an initial priority

strictly greater than zero. Notice that requests whose initial priority is 0 can not be penalized. In other

words, in "no-level" algorithms, 100% of requests prone to be penalized, denoted penalizable, are eventually

penalized. We find a similar behavior for favored requests (Figure 8(b)).

Figure 8(c) focuses on the average number of requests exceeding a penalized request. Comparing this

figure with Figure 8(a), we note that when the number of penalized requests becomes relatively high (40%)

for an intermediate load (1N), they are surpassed in average twice. Beyond the threshold of 0.5N , almost all

penalizable requests are penalized, but the number of surpassing requests continues to grow strongly which

explains why the total number of violations continues to increase in heavy load (between 0.5N and 0.1N) in

Figure 7(a). We can, therefore, explain the bad performance in high load scenarios: all penalizable requests

are surpassed around 10 times.

4.3. Dynamic load during an experiment

The goal of the experiments described in this section is to evaluate the number of priority violations when

load varies during the same experiment. We also discuss the algorithms’ adaptiveness to load variation in

regard to priority violations. Aiming at ensuring a regular behavior of the algorithms, peak loads are

injected at regular interval during an experiment. We consider that load is characterized by the percentage

of processes which are waiting for the token.

Figures 9(a), 9(b),9(c), 9(d), and 9(e) show the number of violations for Kanrar-Chaki, Chang, CommOpti,

CommOpti_level, and CommOpti_levelDistance respectively.

Figure 9 shows, for all algorithms, the number of priority violations at a given interval of each experiment.

A given abscissa point in each sub-figure is a sample equals to an interval of 50 milliseconds. For a given

time sample, a point of a curve corresponds to the ratio of the total number of priority violations over the

total number of satisfied requests within the corresponding 50 millisecond interval. We have considered the

percentage of violations and not the absolute number of them because the throughput of critical section is

not exactly the same among different algorithms. Figures 9(a), 9(b), and 9(c) confirm that the percentage of

the number of priority violations increases significantly during the whole peak load for "no-level" algorithms.

In fact, this metric varies between a minimum value (around 100 %) and a maximum value (around 2500

%). Such a result is in accordance with Figure 7(a) where we could observe that no violation takes place

21

 0

 500

 1000

 1500

 2000

 2500

 50 100
 150

 200
 250

 300
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t)

L
oa

d
(p

er
ce

nt
ag

e
of

 r
eq

ue
st

in
g

si
te

)

time (s)

number of violations (percent)
Load

(a) Kanrar-Chaki

 0

 500

 1000

 1500

 2000

 2500

 50 100
 150

 200
 250

 300
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t)

L
oa

d
(p

er
ce

nt
ag

e
of

 r
eq

ue
st

in
g

si
te

)

time (s)

number of violations (percent)
Load

(b) Chang

 0

 500

 1000

 1500

 2000

 2500

 50 100
 150

 200
 250

 300
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t)

L
oa

d
(p

er
ce

nt
ag

e
of

 r
eq

ue
st

in
g

si
te

)

time (s)

number of violations (percent)
Load

(c) CommOpti

 0

 500

 1000

 1500

 2000

 2500

 50 100
 150

 200
 250

 300
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t)

L
oa

d
(p

er
ce

nt
ag

e
of

 r
eq

ue
st

in
g

si
te

)

time (s)

number of violations (percent)
Load

(d) CommOpti_Level

 0

 500

 1000

 1500

 2000

 2500

 50 100
 150

 200
 250

 300
 0
 10
 20
 30
 40
 50
 60
 70
 80
 90
 100

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t)

L
oa

d
(p

er
ce

nt
ag

e
of

 r
eq

ue
st

in
g

si
te

)

time (s)

number of violations (percent)
Load

(e) CommOpti_LevelDistance

Figure 9: Number of violations during the experiment for a dynamic load

22

in case of low load since the number of requests increases faster than the number of violations. In contrast,

"level" algorithms are insensitive to peak load. The number of violations is bounded by a maximum value

which is smaler than the minimum value of "no-level" algorithms. Such a result is consistent with both

Figures 8(c) and 8(d) where a request is penalized, on average, just once, regardless the load.

In conclusion, the present study of dynamic load confirms that "level" algorithms are load adaptive with

regard to priority violations.

4.4. Constant load and priority per process

In the previous experiments, priorities were randomly chosen at each new request. However, in many

applications, priorities are assigned to processes. Thus, contrarily to the previous experiments, in such

applications, a process issues all its requests with the same priority during the whole application execution.

On the other hand, in our approach, algorithms are based on a static logical tree topology and, therefore,

nodes’ position has an influence performance. The aim of the current section is to study the impact of

priority distribution over the tree in the performance of the algorithms.

We denote center of the graph the set of vertices whose eccentricity is equal to the graph’s radius.

Therefore, the maximum distances between vertices of the center (central points) and other vertices of the

graph are minimized.

The experiments have been conducted with constant load (ρ = 0.5N). Every process issues its requests

with the same given priority. We have considered three different priority distributions:

• Random: processes are randomly distributed over the tree independently of their respective priority

(Figure 10(a)).

• High center: processes that issue requests with the highest priorities are assigned to sites of the

center. Thus, the further the process is from the center, the lower its priority. (Figure 10(b)).

• Low center: processes that issue requests with the lowest priorities are assigned to sites of the center.

Hence, the further the process is from the center, the higher its priority. (Figure 10(c)).

On the one hand, regardless of the configuration, we observe the same behavior of the algorithms of

the previous experiments where processes issued requests with different priorities. CommOpti_Level and

CommOpti_LevelDistance algorithms present the best performance. On the other hand, the current

experiments show that the topology has an impact in the performance of the algorithms. By assigning

processes whose request have the highest priority in the center of the graph (High center, Figure 10(b)), the

critical section access time is reduced when compared to the random distribution for all algorithms (Figure

10(a)). This result is quite obvious (see Tables 11(a) and 11(b)) since sites of the center have more chance to

intercept the token, i.e., requests of the processes in the center, which have high priorities, will be satisfied

23

 1

 10

 100

 1000

 10000

 100000

Kanrar_Chaki

Chang
CommOpti

CommOpti_Level

CommOpti_LevelDistance

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(i

n
m

s)

rho = 0.5N

prio0
prio1
prio2
prio3
prio4
prio5
prio6
prio7

(a) Randomly priority positioning

 1

 10

 100

 1000

 10000

 100000

Kanrar_Chaki

Chang
CommOpti

CommOpti_Level

CommOpti_LevelDistance

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(i

n
m

s)

rho = 0.5N

prio0
prio1
prio2
prio3
prio4
prio5
prio6
prio7

(b) High priority graph center positioning

 1

 10

 100

 1000

 10000

 100000

Kanrar_Chaki

Chang
CommOpti

CommOpti_Level

CommOpti_LevelDistance

A
ve

ra
ge

 r
es

po
ns

e
tim

e
(i

n
m

s)

rho = 0.5N

prio0
prio1
prio2
prio3
prio4
prio5
prio6
prio7

(c) Low priority graph center positioning

Figure 10: Average response time according to priority position in the tree

24

A
léatoire

p
rio0

p
rio1

p
rio2

p
rio3

p
rio4

p
rio5

p
rio6

p
rio7

_
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e

K
an

rar_
C

h
aki

250,64
50,61

261,27
56,61

178,62
22,08

162,29
09,17

83,25
18,66

53,14
08,80

35,26
04,84

23,38
01,19

C
h
an

g
202,14

29,32
194,14

24,42
153,29

04,57
120,03

14,09
99,40

13,02
68,58

10,63
61,49

19,43
51,18

08,47

C
om

m
O

p
ti

312,89
105,34

334,91
102,74

197,40
22,05

193,45
34,42

90,61
26,49

53,29
10,13

33,64
03,91

21,98
00,77

C
om

m
O

p
ti_

level
34233,85

12746,94
29158,51

19071,79
12675,00

1871,17
238,27

10,42
41,50

01,56
14,53

00,73
06,93

00,52
03,95

00,12

C
om

m
O

p
ti_

level_
d
istan

ce
27194,55

21432,00
26597,70

18229,90
10205,80

5973,76
194,48

69,97
35,05

03,13
12,93

02,54
06,47

00,70
03,83

00,34

(a) Randomly priority positioning

(table of values)

C
entre

p
rioritaire

p
rio0

p
rio1

p
rio2

p
rio3

p
rio4

p
rio5

p
rio6

p
rio7

_
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e

K
an

rar_
C

h
aki

379,09
37,13

281,63
17,56

208,94
17,85

149,36
06,87

93,83
06,41

51,62
01,73

29,97
01,05

19,49
01,93

C
h
an

g
221,79

17,36
193,30

02,48
166,10

04,25
138,61

01,70
97,51

16,24
68,19

03,49
49,06

06,18
38,66

02,23

C
om

m
O

p
ti

473,59
73,12

326,99
34,75

226,17
28,11

148,14
12,63

86,01
04,44

45,89
02,19

24,89
00,83

14,69
01,58

C
om

m
O

p
ti_

level
45528,14

9531,29
39304,08

9208,16
11007,86

1920,55
190,47

36,32
35,24

01,70
12,70

00,26
06,37

00,16
03,65

00,13

C
om

m
O

p
ti_

level_
d
istan

ce
42140,91

12315,02
38438,71

5899,04
7891,51

2848,17
191,07

29,20
34,99

02,69
12,54

00,33
06,32

00,30
03,52

00,44

(b) High priority graph center posi-

tioning (table of values)

C
entre

n
on

p
rioritaire

p
rio0

p
rio1

p
rio2

p
rio3

p
rio4

p
rio5

p
rio6

p
rio7

_
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e
m

oy
E
c-typ

e

K
an

rar_
C

h
aki

144,21
21,85

143,93
18,13

176,29
18,16

118,65
05,10

126,79
17,46

82,35
14,55

39,63
00,25

33,18
02,12

C
h
an

g
108,58

21,64
143,00

24,33
158,06

07,05
145,92

10,33
108,09

03,88
84,04

06,10
72,31

05,24
60,53

01,61

C
om

m
O

p
ti

153,41
22,41

152,98
28,77

195,29
21,10

131,80
22,92

141,68
17,07

90,65
15,76

39,42
00,18

31,66
01,99

C
om

m
O

p
ti_

level
7963,77

1815,43
8946,36

3387,89
12166,91

1638,32
312,45

62,72
42,74

05,21
14,33

00,75
06,81

00,27
04,07

00,06

C
om

m
O

p
ti_

level_
d
istan

ce
7326,17

1582,07
7820,12

2334,06
10075,06

1079,55
221,74

73,01
33,55

03,79
12,86

01,29
06,48

00,29
03,84

00,17

(c) Low priority graph center posi-

tioning (table of values)

Figure 11: Average response time according to priority position in the tree

25

before the others reducing the distances traveled by the token. The experiments also provide two other

interesting results:

• overall performance gain is the same despite of the algorithm: average response time of high priority

requests are reduced by 40%.

• performance gain of Chang and Kanrar − Chaki algorithms with a high center configuration is

worse than those of CommOpti_Level and CommOpti_LevelDistance algorithms with a random

configuration. In other words, high (respectively, low) priority requests of the latter present shorter

(respectively, higher) response time than the former. On the other hand, all "no level" algorithms

present better performance in high center configuration than in random one which confirms that, for

these algorithms, priority distribution has an impact in response time (see Tables 11(a) and 11(b)).

Contrarily to the other two configurations (Random and High Center), grouping processes that issue

requests with low priorities in the center of the network (Low center) degrades performances of the algorithms

(Figure 10(c)). We can observe an inversion in the average response time: priority 2 requests have higher

response time than requests with priorities 0 and 1. This behavior shows the impact of priority distribution

in the algorithm. In such a configuration, there is in fact a tradeoff between priority and location in

the graph: low (respectively, high) priority requests such as 0 and 1 (respectively, 6 and 7) are favored

(respectively, penalized) by their center location but penalized (respectively, favored) by their respective

priority value. On the other hand, requests with intermediate priority (2 and 3) do not take advantage of

the center location neither of the priority value. Consequently, they are not favored at all which explains

their worst performance gain.

To conclude, when a process requests is associated to a given priority, the location in the graph has an

impact in the average response time of the requests.

4.5. Synthesis

We have compared our “Level”, and “Level-Distance” algorithms with Chang and Kanrar-Chaki algo-

rithms in two configurations. In the first one where processes can issue requests with different priorities, we

could observe two results in medium and high load scenarios:

• the increment postponement of the "level" algorithms respects more the priority order than "no-level"

algorithms;

• exploitation of request locality reduces message overhead induced by the increment postponement.

In the second configuration where processes issues requests always with the same priority, we observed

the impact of the topology on the waiting time. If low priority processes are located in the center of the

26

graph, then the most penalized requests those with medium priority. Conversely, if processes that issue low

priority requests are located in the graph edges, between two successive priorities, the waiting time of the

highest priority requests does not increase very much, i.e., there is a better respect of priorities.

5. Trade-off between the waiting time and the number of violations

A system configuration where priorities are assigned to processes with a "high center" topology policy

described in the section 4.4 may present a high waiting time for low priorities.

Let’s remember that in such a topology, the deeper the initial position of the node in the tree, the lower

the priority. Consequently, if we consider both a high number of processes in the system and request load,

the token will stay most of time in the center of the graph. A process q increases priorities in its local queue

only if it receives a higher priority request from its current sub-tree which, most of the time, is composed

of processes with lower priority than p. Thus, priorities in a process’s local queue increase only when the

process receives the token with a higher priority pending request, which is quite rare for processes with

low priority. Therefore, the latter presents a quite high waiting response time. To overcome this problem,

we have proposed an extension of the Level-Distance algorithm in [8], called the Awareness algorithm. It

provides a mechanism which allows every process to eventually know the total number of issued requests for

each priority. Thus, priorities are increased by considering requests from the whole system. Consequently,

requests of upper-areas of the graph will be taken into account and, therefore, requests with low priorities

will be less penalized.

Figure 12 illustrates the differences between the Kanrar-Chaki algorithm, the Level-Distance algorithm,

and the Awareness algorithm, in such a topology. This example shows the number of issued requests with

an initial priority p necessary to reach the configuration 2 from configuration 1. In the configuration 1, the

token is in the priority p area (the center of the graph), and processes S1 and S2 are waiting for the token

with priorit p − 2 and p − 1 respectively. In configuration 2, S2 holds the token and the priority of S1 in

the S2’s local queue has been incremented. This example clearly shows that there is a difference of factor

F(p) between the Level-Distance algorithm and the Awareness algorithm. This difference is even greater

when the level function is increasing. Table 13 summarizes for each algorithm the order of magnitude of the

number of requests issued with priority p necessary for a request with initial priority p′ to receive the token.

In [8], we evaluated the Awareness algorithm with 64 processes and high load (p = 0.1N). Contrarily to

the performances presented in section 4.4 for the high center priority distribution, the number of priorities

is directly linked to the height of the initial topology: nodes at tree level 0 (initial root node) and level 1

have the highest priorities and every other node has a strictly lower priority than its initial father (except

nodes at level 1). Since there are 64 processes organized in a binary tree, the number of priorities is equal to

6 (Log2(64)) instead of 8 (see section 4). In Figure 14, we compare the Kanrar-Chaki algorithm, the Chang

27

Figure 12: Differences between the three algorithms

Algorithm order of

Kanrar-Chaki p− p′

Level-Distance
p∑

i=p′+1

(p∏
j=i

F(j)
)

Awareness (p− p′)F(p)

Figure 13: Order of magnitude of the number of requests issued with priority p necessary for a request with initial priority p′

to receive the token

28

algorithm, the Level-distance algorithm, and the Awareness algorithm in terms of the number of priority

violations (Figure 14(a)) and average waiting time (Figure 14(b)). In the Level-Distance algorithm, some

requests with low priority have no response time (priorities 0, 1, and 2 for 0.1N). Such results correspond to

a huge response time for these priority levels since no request has been satisfied during the experiment, i.e.,

the Level-Distance algorithm strongly penalizes low priorities requests. We denote such a delay a “pseudo-

starvation” since the starvation cannot occur in theory but low priority requests are satisfied within a too

long interval. Comparing the later with the Awareness algorithms, we observe that high priorities (4 and

5) present almost the same response time in both algorithms. On the other hand, intermediate priorities

(2 and 3) are more penalized in the Awareness algorithm than in the Level-Distance algorithm while low

priorities (0 and 1) are much less penalized. However, this reduction of response time for the lowest priorities

comes at the cost of a small overhead in terms of priority violations. Since minimizing both the number of

violations and the waiting time metrics are two contradictory objectives, it is necessary to find a trade-off

which depends on the application needs which is possible by defining a suitable level function. In [8], we

study the impact of different level function families on these two metrics in the above algorithms. We have

observed that, considering a given number of violations, for any level function, the Awareness algorithm

considerably reduces the waiting time of low priority requests. Consequently, contrarily to the Level-Distance

algorithm, performance of the Awareness algorithm does not depend on the priority position on the graph

and, therefore, the above mentioned trade-off only depends on the level function.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Kanrar_Chaki

Chang
LevelDistance

Awareness

nu
m

be
r

of
 v

io
la

tio
ns

 (
pe

rc
en

t)

rho = 0,1N

(a) Number of violations (percentage of requests)

4
8

16
32
64

128
256
512

1024
2048
4096
8192

16384
32768

>= 65536

Kanrar_Chaki

Chang
LevelDistance

Awareness

A
ve

ra
ge

 w
ai

tin
g

tim
e

(i
n

m
s)

rho = 0,1N

prio0
prio1
prio2
prio3
prio4
prio5

(b) average waiting time per priority

Figure 14: Amount of violations and average waiting time

6. Conclusion

Based on Kanrar-Chaki algorithm, we have presented in this article an effective starvation-free priority-

based mutual exclusion algorithm. Priorities associated to requests can dynamically increase in order to

ensure that requests with low priority are satisfied within a bounded time. Starvation are thus avoided.

29

However, dynamic priorities induce priority inversion. Aiming at minimizing such a constraint, we have

proposed two heuristics. Evaluation results confirm that by postponing priority increment ("Level" heuris-

tic), the number of priority violations can be strongly reduced but at the expense of message overhead. On

the other hand, by taking into account request locality ("Level-distance" heuristic), the number of messages

sent over the network decreases.

We have also shown that our algorithm is load adaptive since there is no much variation in the number

of violations for different loads. Hence, our algorithms are quite suitable for applications with peak loads.

On the other hand, as observed in performance evaluation results, the postponement of priority increments

induces a higher response time for the lowest priorities and the location of processes on the logical tree

topology has an impact over performance. Therefore, in future work, we plan to propose priority-based

algorithms based on dynamic tree topologies.

7. Acknowledgment

Experiments presented in this paper were carried out using the Grid’5000 experimental testbed, being

developed under the INRIA ALADDIN development action with support from CNRS, RENATER and

several Universities as well as other funding bodies (see https://www.grid5000.fr).

References

[1] Ye-In Chang. Design of mutual exclusion algorithms for real-time distributed systems. J. Inf. Sci. Eng., 11(4):527–548,

1994.

[2] Andrzej M. Goscinski. Two algorithms for mutual exclusion in real-time distributed computer systems. J. Parallel Distrib.

Comput., 9(1):77–82, 1990.

[3] Ahmed Housni and Michel Trehel. Distributed mutual exclusion token-permission based by prioritized groups. In AICCSA,

pages 253–259, 2001.

[4] Theodore Johnson and Richard E. Newman-Wolfe. A comparison of fast and low overhead distributed priority locks. J.

Parallel Distrib. Comput., 32(1):74–89, 1996.

[5] Sukhendu Kanrar and Nabendu Chaki. Fapp: A new fairness algorithm for priority process mutual exclusion in distributed

systems. JNW, 5(1):11–18, 2010.

[6] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM, 21:558–565, July 1978.

[7] Jonathan Lejeune, Luciana Arantes, Julien Sopena, and Pierre Sens. Service level agreement for distributed mutual

exclusion in cloud computing. In 12th IEEE/ACM International Conference on Cluster, Cloud and Grid Computing

(CCGRID’12). IEEE Computer Society Press, May 2012.

[8] Jonathan Lejeune, Luciana Arantes, Julien Sopena, and Pierre Sens. A prioritized distributed mutual exclusion algorithm

balancing priority inversions and response time. In 42th International Conference on Parallel Processing (ICPP’13). IEEE

Computer Society, October 2013.

[9] Mamoru Maekawa. A
√
N algorithm for mutual exclusion in decentralized systems. ACM Trans. Comput. Syst., 3:145–159,

May 1985.

30

[10] F. Mueller. Priority inheritance and ceilings for distributed mutual exclusion. In Real-Time Systems Symposium, 1999.

Proceedings. The 20th IEEE, pages 340 –349, 1999.

[11] Frank Mueller. Prioritized token-based mutual exclusion for distributed systems. In IPPS/SPDP, pages 791–795, 1998.

[12] Mohamed Naimi and Michel Trehel. An improvement of the log(n) distributed algorithm for mutual exclusion. In ICDCS,

pages 371–377, 1987.

[13] Kerry Raymond. A tree-based algorithm for distributed mutual exclusion. ACM Trans. Comput. Syst., 7(1):61–77, 1989.

[14] Glenn Ricart and Ashok K. Agrawala. An optimal algorithm for mutual exclusion in computer networks. Commun. ACM,

24:9–17, January 1981.

[15] Lui Sha, Ragunathan Rajkumar, and John P. Lehoczky. Priority inheritance protocols: An approach to real-time syn-

chronization. IEEE Trans. Computers, 39(9):1175–1185, 1990.

[16] Ichiro Suzuki and Tadao Kasami. A distributed mutual exclusion algorithm. ACM Trans. Comput. Syst., 3(4):344–349,

1985.

[17] Martin G. Velazquez. A survey of distributed mutual exclusion algorithms. Technical report, Colorado state university,

1993.

31

Annexe: Proof of correctness

Model

We consider that T is discretized by the primitives algorithm execution. A request req ∈ Rt′ is a triplet

(s, t, p) of the set Π× T × P where (s, t, p) represents a critical section request by the site s at t ≤ t′ with

the priority p.

A request message Mreq in transit is a quadruplet denoted

〈(sini, tini, pini), p, d, si, sj〉req

of the set Rt × P × IN × Π × Π, tini ≤ t which represents the message transition for the initial request

(sini, tini, pini) from site si to site sj with a priority p and a distance d between sj and sini.

On the same principle, a token message Mtok is a quadruplet denoted

〈(sini, tini, pini), p, d, si, sj〉tok

of the set Rt × P × IN × Π × Π except that (sini, tini, pini), p and d can have ∅ as a value if no request is

piggybacked in the token.

We denote M t the set of transiting messages in the network at t ∈ T .

A process si can be at t ∈ T in one of the three following states : idletsi , requesting
t
si and inCSt

si . Its

local variables are :

• fathertsi ∈ Π indicating the father of site si ∈ Π at t ∈ T . If si is the root site at t then fathertsi = nil.

• Qt
si is the set which represents the local queue of site si ∈ Π at t ∈ T . An element of this queue is a

6-uplet ((sr, tr, pr), d, sn, p, l, t
′) ∈ Rt × IN× Π× P × IN× T where (sr, tr, pr) represents the request,

d is the distance in number of links between site si and site sr, sn is the neighbor of si in direction

to sr, p is the local priority of req = (sr, tr, pr) in Qt
si , l is the current level value and t′ ≤ t is the

moment where req has been added in Qt
si . This set is totally ordered by the relation ≺ such that ∀

(reqk, dk, sk, pk, lk, tk) ∈ Qt
si and ∀ (reqk′ , dk′ , sk′ , pk′ , lk′ , tk′) ∈ Qt

si

(reqk, dk, sk, pk, lk, tk) ≺ (reqk′ , dk′ , sk′ , pk′ , lk′ , tk′)⇔

(pk > pk′) ∨(pk = pk′ ∧ dk < dk′) ∨(pk = pk′ ∧ dk = dk′ ∧ lk < lk′)

∨(pk = pk′ ∧ dk = dk′ ∧ lk = lk′ ∧ tk < tk′)

The increment procedure incr(Qt
si , p) is modeled as :

∀(reqk, dk, sk, pk, lk, tk) ∈ Qt
si :

32

1. p > pk ∨
(
p = pk ∧ pk = PH(Qt

si)
)
∧ lk + 1 ≥ F(pk + 1)⇒ (reqk, dk, sk, pk + 1, 0, tk)

2. p > pk ∨
(
p = pk ∧ pk = PH(Qt

si)
)
∧ lk + 1 < F(pk + 1)⇒ (reqk, dk, sk, pk, lk + 1, tk)

3. ¬
(
p > pk ∨

(
p = pk ∧ pk = PH(Qt

si)
))
⇒ (reqk, dk, sk, pk, lk, tk)

where PH(Qt
si) is the highest local priority stored in Qt

si .

Safety property

Lemma 1. If there exists a root node, there is no pending token token message. Formally,

∀t ∈ T, ∃si ∈ Π, fathertsi = nil ⇔ @Mtok ∈M t

Proof.

* We prove by recurrence @Mtok ∈M t ⇒ ∃si ∈ Πfathertsi = nil : The property is true at t0 (M t0 = ∅

and an only si where fathertsi = nil) By assuming this property true until the moment tk, we will

prove it at the moment tk+1. If the next moment is a Request_CS procedure execution on a site

si, the root site does not send a Mtok message and fathertk+1
si = nil. If the next moment is a

Release_CS procedure execution on a site si : fathertk+1
si 6= nil ⇒ ∃Mtok ∈ M tk+1 if Qtk

si 6= ∅

or fathertk+1
si = fathertksi otherwise. This can be applied if the next moment is a Receive_Requeqt

procedure execution on a site si. Since we suppose @Mtok ∈M tk , the execution of the Receive_Token

procedure is impossible.

* We prove by recurrence ∃si ∈ Πfathertsi = nil⇒ @Mtok ∈M t : The property is true at t0 (fatherts0 =

nil) By assuming this property true until the moment tk, we will prove it at the moment tk+1. If the

next moment is a Request_CS procedure execution on a site si where fathertksi = nil M tk+1 = M tk

and according to the recurrence assumption, @Mtok ∈ M tk+1. If the next moment is a Release_CS

procedure execution on a site si, if Qtk
si 6= ∅ then fathertk+1

si 6= nil and a token message is sent,

otherwise fathertksi = fathertk+1
si = nil and no token message is sent. If the next moment is a

Receive_Request procedure execution on a site si, if fathertksi = nil and idletksi then fathertk+1
si 6= nil

and ∃Mtok ∈ M tk+1. Finally, if the next moment is a Receive_Token, either fathertk+1
si = nil and

@Mtok ∈M tk+1 either the token is just forwarded and fathertk+1
si 6= nil and ∃Mtok ∈M tk+1.

Lemma 2. ∀t ∈ T , there is at most one token message in M t

Proof. Since we consider reliable channels (no loss, no duplication), there is an only token message at each

token sending in the network. Moreover following functions induces a token message sending :

• In Receive_Req when fathertsi = nil. In this case, according to lemma 1 @Mtok ∈M t .

33

• In Receive_Token upon a receipt of the token. The token message is then removed in M t if the

current site enters in critical section, otherwise it forwards the token.

Consequently, it exists at most one message token in M t ∀t ∈ T .

Lemma 3. These is at most a site where father = nil. Formally,

∀t ∈ T , ∃si ∈ Π, fathertsi = nil ⇒ @sj ∈ Π, fathertsj = nil

Proof. Except at the initialization, fathertsi = nil uniquely when a site si receives the token at the moment

t. At each token sending, the father variable becomes systematically 6= nil. Since there exists at most one

token message in the system according to lemma 2 there is at most one root site ∀t ∈ T .

Theorem 1 (Safety). The "Level-distance" algorithm ensures the safety property

∀t ∈ T ,

∃si, inCSt
si ⇒ @sj ∈ Π, inCSt

sj

Proof. The application of lemmas 1, 2 and 3 implies that there exists at most one token in the system :

either the token is in the network, either it is owned by a unique root site. Since a site can enter in critical

section if it is requesting and if its variable father = nil, it exists at most one process in critical section.

Liveness property

Lemma 4. If at t ∈ T a request req is at the head of local queue of a site si, then ∃t′ > t where req will be

stored in the local queue of fathertsi . Formally, ∀t ∈ T , ∀si ∈ Π, ∃t′ > t,

(req,_,_,_,_,_) = H(Qt
si) ∧ father

t
si 6= nil⇒ (req,_,_,_,_,_) ∈ Qt′

fathertsi

Proof. When a new element is added in the head of Qt
si , the request is sent to the father. Upon receipt of

this message at t′ by si’s father, the request may be forwarded till reach the root site sk at tk. If sk exits

the critical section and has to forward the token to a next holder, the head element is piggybacked in the

token message and added at t′′ in Qt′′

father
tk
sk

when fathertksk will receive the token.

Lemma 5. If a request (reqa, da, sa, pa, la, ta) belong Qsi at t > ta then there exists t′ > t from which, every

new insertion of request (reqb, db, sb, pb, lb, tb), tb > t′ in Qsi always verifies

(reqa, da, sa, pa, la, ta) ≺ (reqb, db, sb, pb, lb, tb)

34

.

Proof. Suppose that such instant t′ does not exist. The element a of Qsi can forever be overtaken at each

new insertion of an element b. Each insertion implies the application of function incr:

• either pb > pa: la is increased and potentially pa. This implies eventually, ∃tph ∈ T where pa =

PH(Q
tph
si)

• either pb = pa ∧ db < da : Two cases are possible for the function incr :

– pa < PH(Qt
si): as we saw previously, this state is provisional till the time tph.

– pa = PH(Qt
si): la is increased and potentially pa. This implies eventually, ∃t′ ∈ T where

pa > PH(Q
t′

si). Since the priority value of received requests is bounded by pmax then every new

received request with priority pb is eventually always lower than pa (which in this case would be

equal to pmax + 1) implying that a ≺ b will be true at t′. Consequently, there is a contradiction

with our assumption.

• either pb = pa ∧ db = da ∧ lb > la: this case is impossible because ta < tb by assumption

• either pb = pa ∧ db = da ∧ lb = la ∧ ta > tb: this case is impossible because ta < tb by definition.

Lemma 6. If the local queue of si is non empty at time t ∈ T , then ∃t′ > t where si will receive the token.

Proof. Qt
si 6= ∅ is equivalent to say that there exists a head element associated with a request req. By

applying lemma 4, we can deduce that req is stored in the local queue of si’s father. This can be applied

recursively by message request forwarding till a site sk which can be at tk ≥ t :

• either sk does not insert the element associated with req in the head of Qtk
sk
: according to lemma 5, it

will exist in a finite time a number of elements between the head of queue and the element associated

with req which will decrease at each token receipt. Consequently, the element associated with req will

be at the head of queue of Qsk
in a finite time. We can thus apply again the same reasoning by taking

sk as starting.

• either sk holds the token. We consider then three cases:

– sk is in critical section and the element associated with req in Qtk
sk

is not the head: we apply the

same reasoning as the previous point.

35

– sk is in critical section and the element associated with req in Qtk
sk

is the head: since the critical

section time is assumed bounded, sk will execute eventually the Release_CS procedure. The

token will be sent in the direction of si. Since the transmission delay is assumed finite, si

eventually receives the token.

– sk is not in critical section: the token is sent in the direction of si which eventually receives the

token.

Theorem 2 (Liveness). The "Level-distance" algorithm ensures the liveness property

∀si ∈ Π ∀t ∈ T, ∃t′ ∈ T , t′ > t,

requestingtsi ⇒ inCS
t′

si

Proof. To be at the requesting state at t, a site si has to execute the Request_CS procedure. If si already

owns the token (fathertsi = nil) it enters directly in critical section. Otherwise, if fathertsi 6= nil then the

si’s request is stored in Qt
si . According to the lemma 6, site si eventually receives the token. When si

receives the token at t′ > t, the element associated with the request (si, t, p) is the head of the local queue,

then inCSt′

si is true. Otherwise according to lemmas 5 and 6, si’s request will be eventually at the head of

Q
t′′

si at t′′ > t and then inCSt′′′

si will be true t′′′ > t′′ > t upon token receipt.

36

