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In the free three-dimensional space, we consider a pair of identical ↑ fermions of some species
or in some internal state, and a pair of identical ↓ fermions of another species or in another state.
There is a resonant s-wave interaction (that is of zero range and infinite scattering length) between
fermions in different pairs, and no interaction within the same pair. We study whether this 2 + 2
fermionic system can exhibit (as the 3+1 fermionic system) a four-body Efimov effect in the absence
of three-body Efimov effect, that is the mass ratio α between ↑ and ↓ fermions and its inverse are
both smaller than 13.6069. . . . For this purpose, we investigate scale invariant zero-energy solutions
of the four-body Schrödinger equation, that is positively homogeneous functions of the coordinates
of degree s − 7/2, where s is a generalized Efimov exponent that becomes purely imaginary in the
presence of a four-body Efimov effect. Using rotational invariance in momentum space, it is found
that the allowed values of s are such that M(s) has a zero eigenvalue; here the operator M(s), that
depends on the total angular momentum `, acts on functions of two real variables (the cosine of
the angle between two wave vectors and the logarithm of the ratio of their moduli), and we write
it explicitly in terms of an integral matrix kernel. We have performed a spectral analysis of M(s),
analytical and for an arbitrary imaginary s for the continuous spectrum, numerical and limited to
s = 0 and ` ≤ 12 for the discrete spectrum. We conclude that no eigenvalue of M(0) crosses zero
over the mass ratio interval α ∈ [1, 13.6069 . . .], even if, in the parity sector (−1)`, the continuous
spectrum of M(s) has everywhere a zero lower border. As a consequence, there is no possibility of
a four-body Efimov effect for the 2+2 fermions.

We also enunciated a conjecture for the fourth virial coefficient of the unitary spin-1/2 Fermi gas,
inspired from the known analytical form of the third cluster coefficient and involving the integral
over the imaginary s-axis of s times the logarithmic derivative of the determinant of M(s) summed
over all angular momenta. The conjectured value is in contradiction with the experimental results.

PACS numbers: 67.85.-d, 21.45.-v, 34.50.-s

I. INTRODUCTION AND MOTIVATION

In three-dimensional cold atomic gases, thanks to mag-
netic Feshbach resonances, it is now possible to induce
resonant s-wave interactions between the particles [1].
This means that the s-wave scattering length a is in ab-
solute value much larger than the range (or the effective
range) of the interaction. Essentially, one can assume
that 1/a = 0, and since the de Broglie atomic wavelength
is also much larger than the range of the interaction, one
can replace the interactions by scaling invariant Wigner-
Bethe-Peierls two-body contact conditions on the wave-
function [2]: one realizes the long sought unitary limit.

Perhaps the most striking phenomenon that can take
place in that regime is the Efimov effect, predicted for
three particles with appropriate statistics and mass ra-
tios [3]. It corresponds to the occurrence of an infinite
number of bound states, with an asymptotically geomet-
ric spectrum close to the zero-energy accumulation point.
The geometric part of the spectrum is characterized by
a ratio, predicted by Efimov’s zero-range theory, and a
global energy scale that depends on the microscopic de-
tails of the interaction. The mere existence of such an
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energy scale forces us to supplement the two-body con-
tact conditions by three-body ones, that involve a length
scale, the so-called three-body parameter, and that break
the scale invariance at the three-body level. It is at this
cost that the zero-range model becomes well defined and
leads to a self-adjoint Hamiltonian. The Efimov effect is
now observed experimentally with cold atoms [4], which
gives access to the value of the three-body parameter [5].

A natural question is to know whether or not a four-
body Efimov effect is possible [6, 7], leading to an in-
finite, asymptotically geometric, spectrum of tetramers,
with an energy ratio predicted by a zero-range theory
and a global energy scale fixed by a four-body parame-
ter appearing in four-body contact conditions. It is now
understood that a prerequisite to the four-body Efimov
effect is the absence of three-body Efimov effect: it is in-
deed expected that the introduction of three-body con-
tact conditions (in terms of the three-body parameter)
imposed by the three-body Efimov effect is sufficient to
also render the four-body problem well defined, that is
without the need for a four-body parameter; as predicted
in reference [6], no geometric sequence of tetramer states
can then be found but, as shown numerically for four
bosons [8], sequences of four-body complex energy reso-
nances are expected in general, with the same geometric
ratio as the trimer Efimov spectrum (see [9, 10] for early
studies not accessing the imaginary part of the energy).
This prerequisite rules out systems with more than one
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boson [3] as possible candidates for a four-body Efimov
effect, and suggests to use fermions to counterbalance the
Efimov effect by the Pauli exclusion principle, at least in
three dimensions (what happens in lower dimensions or
with resonant interactions in other channels than the s-
wave is discussed in [11, 12]).

Consider then the so-called p+ q fermionic problem: p
identical fermions of the same species or spin state reso-
nantly interact in free space with q identical fermions of
another species or spin state. It is assumed that there is
no interaction between the identical fermions, since they
cannot scatter in the s wave. It is convenient to adopt
a pseudo-spin notation, with ↑ for the first species and
↓ for the second. The two species have in general dif-
ferent masses m↑ and m↓, and the crucial idea is to use
their mass ratio as an adjustable parameter to search for
the four-body Efimov effect without triggering the three-
body one.

The 3+1 or ↑↑↑↓ resonant fermionic problem was inves-
tigated in reference [13]. A four-body Efimov effect was
predicted for a mass ratio 13.384 < m↑/m↓ < 13.6069 . . ..
Beyond 13.6069 . . . the three-body Efimov effect sets in as
shown in [3, 14, 15], which blocks the four-body Efimov
effect as discussed above: apart from a finite number of
tetramer states, one expects an infinite number of four-
body resonances with the same geometric ratio as for the
2 + 1 problem.

The main motivation of the present work is to deter-
mine the presence or the absence of a four-body Efimov
effect in the 2 + 2 or ↑↑↓↓ fermionic problem. To our
knowledge, no general and rigorous answer was given to
this problem. One may think attacking it with the Born-
Oppenheimer approximation. We indeed expect (as for
the three-body case) that the only possibility for a four-
body Efimov effect is to have a large mass imbalance
between the two species, for example the ↑ fermions are
much heavier than the ↓ ones. It is found that, in pres-
ence of two ↑ fermions at fixed positions, there is a single
bound state for the ↓ particle, which creates an effec-
tive ∝ −~2/(m↓r

2) attraction between the ↑ fermions.
For a large enough m↑/m↓ mass ratio, this indeed beats
the centrifugal barrier ∝ ~2/(m↑r

2) between the ↑ par-
ticles (they are fermions and approach each other with
a non-zero angular momentum), which qualitatively ex-
plains the occurrence of a three-body Efimov effect in
the 2 + 1 problem, as pointed out in 1973 by Efimov [3].
However, as there is a single bonding orbital, one cannot
put a second ↓ fermion in that orbital, but one can at
best put one in the ground, zero-energy scattering state,
which has two consequences: (i) the Born-Oppenheimer
attractive potential between the ↑ particles is not low-
ered by the second ↓ fermion, so no four-body Efimov
effect is predicted at a mass ratio strictly below the three-
body Efimov effect threshold, and (ii) as emphasized in
[16], the second ↓ fermion, being in a zero-energy eigen-
state, does not have a fast motion as compared to the
one of the heavy particles, which sheds doubts on the
validity of the Born-Oppenheimer approximation. Alter-

natively, one may expect that this 2 + 2 problem was
already solved numerically in the literature; however no
convincingly dense coverage of the mass ratio interval
between 1 and 13.6069 . . . seems to be available in the
numerics [17] considering the narrowness of the above
mentioned mass interval. To obtain a firm answer to the
question, we generalize the method of reference [13, 18],
deriving from the zero-range model momentum space in-
tegral equations for the 2 + 2 fermionic problem at zero
energy (see also the most general formulation of reference
[19]), and using rotational symmetry and scale invariance
to reduce them to a numerically tractable form.

Another motivation is to pave the way for the calcu-
lation of the fourth virial coefficient of a two-component
unitary Fermi gas: this would make an interesting bridge
between few-body and many-body physics. For a unit
mass ratio m↑/m↓ = 1, the value of this virial coeffi-
cient was already obtained experimentally from a mea-
surement of the equation of state of a gas of ultracold
atoms [20, 21]. On the theory side, there exist two main
techniques. First, the diagrammatic technique, used ex-
actly (all diagrams are kept) for the third virial coeffi-
cient [22, 23], and approximately (only some diagrams are
kept, those relevant in the perturbative regime of a large
effective range or a small scattering length) for the fourth
virial coefficient [24] leading to a value different from but
reasonably close to the experimental value. Second, the
harmonic regulator technique [25], used with success for
the third virial coefficient [26–29], that requires to deter-
mine the spectrum of up to four particles in an isotropic
harmonic trap. A first, brute force numerical solution of
this trapped four-body problem [30] was not able to re-
cover even the sign of the experimental value. In a more
analytical way, this spectrum can be deduced from the
solutions of the zero-energy free space problem [31, 32],
due to the SO(2, 1) dynamical symmetry of the unitary
Fermi gas [32–34], so that the four-body integral equa-
tions written here may also be useful for the solution of
the virial problem.

Our article is organized as follows. In section II we
derive the zero-energy momentum-space integral equa-
tions in general form. In section III we successively use
the rotational invariance, the scale invariance and the
parity invariance to put the integral equations in a max-
imally reduced form. This reduced form, written in sec-
tion IV A, exactly expresses the fact that some operator
M , depending on the angular momentum ` and the scal-
ing exponent s, has a zero eigenvalue, which motivates its
spectral analysis; it allows to show that two components
of the continuous spectrum ofM can be expressed exactly
in terms of the Efimov transcendental functions appear-
ing in the ↑↑↓ and ↑↓↓ three-body problems (see section
IV B) and that there is a third, unexpected continuum
due to a term with no equivalent in the 3 + 1 problem
(see section IV C). The question of the existence of the
four-body Efimov effect in the 2 + 2 fermionic problem
is the subject of section V, whereas the secondary mo-
tivation of this work, i.e. the fourth virial coefficient of
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the spin 1/2 unitary Fermi gas, is relegated to the Ap-
pendix B, where its expression in terms of the operator
M is conjectured from a transposition of the known ana-
lytic expression of the third virial coefficient [28, 29], and
the conjectured value is compared to the experimental
[20, 21] and theoretical [24, 30] values. We conclude in
section VI.

II. DERIVATION OF THE GENERAL
FOUR-BODY INTEGRAL EQUATIONS

Particles 1 and 2, of positions r1 and r2, belong to
species ↑. Particles 3 and 4, of positions r3 and r4,
belong to species ↓. The four-body wavefunction ψ is
subjected to the usual Wigner-Bethe-Peierls contact con-
ditions, for a zero-range interaction of s-wave scatter-
ing length a between opposite-spin particles. For all
i ∈ {1, 2} and all j ∈ {3, 4}, when the distance rij be-
tween particles i and j tends to zero, at fixed position
Rij = (m↑ri +m↓rj)/(m↑ +m↓) of their center of mass
(different from the positions of the remaining two parti-
cles), one imposes

ψ↑↑↓↓(r1, r2, r3, r4) =
rij→0

(
1

rij
− 1

a

)
µ↑↓

2π~2

×Aij((rk −Rij)k 6=i,j) +O(rij) (1)

where the form of the regular part Aij supposes that
the center of mass of the four particles is at rest, and
where µ↑↓ = m↑m↓/(m↑+m↓) is the reduced mass of two
opposite-spin particles. Due to the fermionic antisymme-
try, the regular parts are not independent functions:

A13 = A24 = −A14 = −A23 ≡ A (2)

Schrödinger’s equation at zero eigenenergy E = 0, writ-
ten in the language of distributions, is then

Hψ↑↑↓↓ = A(r2 −R13, r4 −R13)δ(r1 − r3)

−A(r2 −R14, r3 −R14)δ(r1 − r4)

−A(r1 −R23, r4 −R23)δ(r2 − r3)

+A(r1 −R24, r3 −R24)δ(r2 − r4) (3)

with the kinetic energy Hamiltonian

H =

4∑
n=1

− ~2

2mn
∆rn (4)

and δ(r) is the Dirac distribution in three dimensions,
stemming from the identity ∆r(1/r) = −4πδ(r).

We now go to momentum space and we take the
Fourier transform of Schrödinger’s equation. In the left-
hand side, each Laplace operator gives rise to a factor
−k2

n, where kn is the wave-vector of particle number n.
In the right-hand side, one obtains for example for the

first term:∫ 4∏
n=1

d3rne
−i

∑4
n=1 kn·rnA(r2−R13, r4−R13)δ(r1−r3)

= (2π)3Ã(k2,k4)δ(

4∑
n=1

kn) (5)

where the tilde indicates the Fourier transform. Intro-
ducing the function D ≡ (2π)3Ã, we obtain the four-
body momentum space ansatz generalizing to the 2+2
fermionic problem the one of the 3+1 fermionic problem
[13, 18]:

ψ̃↑↑↓↓(k1,k2,k3,k4) =

δ

(
4∑

n=1

kn

)
4∑

n=1

~2k2
n

2mn

[D(k2,k4)

−D(k2,k3)−D(k1,k4) +D(k1,k3)] (6)

The ansatz obeys fermionic antisymmetry and
Schrödinger’s equation, not yet the contact condition (1),
that it suffices to implement for (i, j) = (1, 3). One thus

takes the inverse Fourier transform of ψ̃ at (r1, r2, r3, r4),
with the parametrization:

r1 = R13 +
m3

m1 +m3
r13 (7)

r3 = R13 −
m1

m1 +m3
r13 (8)

Only the contribution ψ24 of D(k2,k4) to ψ diverges for
r13 → 0; in that inverse Fourier transform, we then take
K13 = k1 +k3, k13 = µ13(k1/m1−k3/m3) and k2,k4 as
integration variables (clearly µ13 = µ↑↓), so that k1 ·r1 +

k3 ·r3 = K13 ·R13 +k13 ·r13 and
~2k2

1

2m1
+

~2k2
3

2m3
=

~2k2
13

2µ13
+

~2K2
13

2(m1 +m3)
; integration over K13 is straightforward, due

to the momentum conservation, and integration over k13

also can be done using

u(r) =

∫
d3k13

(2π)3

eik13·r

k2
13 + q2

13

=
e−q13r

4πr
(9)

One obtains

ψ24(r1, r2, r3, r4) =

∫
d3k2d

3k4

(2π)9

2µ13

~2
u(r13)

× ei[k2·(r2−R13)+k4·(r4−R13)]D(k2,k4) (10)

with q13 ≥ 0 such that

~2q2
13

2µ13
=

~2(k2 + k4)2

2(m1 +m3)
+

~2k2
2

2m2
+

~2k2
4

2m4
(11)

Taking r13 → 0 in ψ24 is then elementary. In the con-
tribution to ψ of D(k2,k3), D(k1,k4) and D(k1,k3),
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noted as ψ6=24, one can directly take r13 = 0. Thanks
to momentum conservation one can replace k1 + k3 by
−(k2 + k4) within the position-dependent phase factor,
so that the positions r2−R13 and r4−R13 appear as in
Eq. (10):

ψ6=24(r1 = R13, r2, r3 = R13, r4) =∫
d3k2d

3k4

(2π)9
ei[k2·(r2−R13)+k4·(r4−R13)]

∫
d3k1d

3k3

(2π)3

δ

(
4∑

n=1

kn

)
4∑

n=1

~2k2
n

2mn

[−D(k2,k3)−D(k1,k4) +D(k1,k3)] (12)

Finally the contact condition at the unitary limit, that
is for 1/a = 0, leads to the following integral equation for
D:

0 =
µ

3/2
↑↓

2π~2

[
(k2 + k4)2

m↑ +m↓
+
k2

2

m↑
+
k2

4

m↓

]1/2

D(k2,k4)

+

∫
d3k1d

3k3

(2π)3

δ

(
4∑

n=1

kn

)
4∑

n=1

~2k2
n

2mn

[D(k2,k3)+D(k1,k4)−D(k1,k3)]

(13)

where the first term is simply
q13µ13

2π~2
D(k2,k4). Contrar-

ily to the 3+1 fermionic case [13, 18], D is not subjected
to any condition of exchange symmetry.

III. TAKING ADVANTAGE OF SYMMETRIES

A. Overview

The unknown function D(k2,k4) in the integral equa-
tion (13) depends on six real variables. This is already
a strong reduction, as compared to the twelve real vari-
ables of the original four-body wavefunction, but still this
makes a numerical solution challenging.

Fortunately one can use rotational invariance as in sec-
tion III B: the unknown function D can be considered for
example as being the mz = 0 component of a spinor of
angular momentum `. Then it is known how the var-
ious 2` + 1 components of the spinor transform under
an arbitrary common rotation of k2 and k4, in terms of
rotation matrices having spherical harmonics as matrix
elements, so that it suffices to know the value of the 2`+1
component of the spinor in the particular configuration
where vector k2 points along x axis in the positive direc-
tion and k4 lies in the xy upper half-plane y ≥ 0, at an
angle θ24 ∈ [0, π] with respect to k2. As this particular
configuration is characterized by the cosine of the angle

θ24 and the two moduli k2 and k4, the unknown function
D(k2,k4) can be represented in terms of 2`+ 1 unknown

functions f
(`)
mz of these three real variables [18]:

D(k2,k4) =
∑̀

mz=−`

[Y mz` (e2 · ez, e4⊥2 · ez, e24 · ez)]∗

× f (`)
mz (k2, k4, u24) (14)

In this expression we have introduced the unit vectors

e2 =
k2

k2
(15)

e4⊥2 =
1

v24

(
k4

k4
− u24e2

)
(16)

e24 =
k2 ∧ k4

|k2 ∧ k4|
(17)

Here θ24 ∈ [0, π] is the angle between k2 and k4, and the
notations

u24 ≡ cos θ24 and v24 ≡ sin θ24 (18)

will be used throughout the paper. It is apparent that
e4⊥2 is obtained by projecting e4 = k4/k4 orthogonally
to e2 and by renormalizing the result to unity. Then
(e2, e4⊥2, e24) forms a direct orthonormal basis. In that
basis, an arbitrary (unit) vector n has uniquely defined
spherical coordinates, that is polar angle θn ∈ [0, π] with
respect to axis e24 and azimuthal angle φn ∈ [0, 2π[ in
the e2 − e4⊥2 plane with respect to axis e2. Then

Y mz` (e2 · n, e4⊥2 · n, e24 · n) ≡ Y mz` (θn, φn) (19)

where the right-hand side is the standard notation for
the spherical harmonics [35]. Integral equations can then

be obtained for the f
(`)
mz , see section III B.

For an infinite s-wave scattering length the Wigner-
Bethe-Peierls contact conditions (1) are scale invariant.
As the integral equation (13) was further specialized to
the zero energy case, its solution can be taken as scale
invariant, which allows one to eliminate one more variable
[13]:

f (`)
mz (k2, k4, u24) = (k2

2 + k2
4)−(s+7/2)/2(chx)s+3/2

× eimzθ24/2Φ(`)
mz (x, u24) (20)

with

x ≡ ln
k4

k2
(21)

The first factor contains the scaling exponent of the so-
lution, which involves the unknown quantity s. By in-
serting the ansatz (20) into the linear integral equations
of section III B, one obtains linear integral equations for

the unknown functions Φ
(`)
mz (x, u), represented by a ma-

trix M (`)(s) that depends parametrically on s, see sec-

tion III C; requiring that the functions Φ
(`)
mz (x, u) are not
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identically zero, one gets an implicit equation for s, in
the form [49]

detM (`)(s) = 0 (22)

The way the first factor in Eq. (20) is parametrized by
the quantity s ensures compatibility with the notation
used by Efimov for the three-body problem [3]. In the
three-body problem, the Efimov effect takes place if and
only if one of the scaling exponents s is purely imaginary,
and the geometric trimer energy spectrum has then a ra-
tio exp(−2π/|s|). In the four-body problem, with our
definition of s, the four-body Efimov effect occurs if and
only if there is a purely imaginary s solving Eq. (22), in
which case there exists a geometric sequence of tetramer
eigenenergies with a ratio exp(−2π/|s|). A justification
is given in [13]. The second factor in the ansatz (20) en-
sures that the matrix M(s) is hermitian for purely imagi-
nary s, with bounded diagonal matrix elements, which is
both mathematically and numerically advantageous; as
compared to [13] it contains a additional term s in the
exponent, that for purely imaginary s suppresses phase
oscillations in the matrix elements of M(s) at large |x|
[50]. The third factor in Eq. (20) is a phase factor tak-
ing into account the fact that exchanging k2 and k4 in
Eq. (14) transforms the spherical harmonics Y mz` into

(−1)`eimzθ24Y −mz` with the same values of the variables
[18]; it ensures that the matrix M(s) transforms in the
simplest way under the exchange of m↑ and m↓, which
must leave our 2 + 2 problem invariant.

A last reduction of the problem can be obtained from
parity invariance. It turns out that, under the transfor-
mation (k2,k4) → (−k2,−k4), the term of index mz in
the sum (14) acquires a factor (−1)mz [18]. This shows

that the odd-parity functions Φ
(`)
mz (that is with mz odd)

are decoupled from the even-parity functions Φ
(`)
mz (that is

with mz even) in the integral equations, and that M (`)(s)
has zero matrix elements between the odd and the even
channels.

B. Rotational invariance

To obtain the integral equations for the unknown func-

tions f
(`)
mz in Eq. (14) we use a variational formulation:

The integral equation (13) is equivalent to

∂D∗(k2,k4)E [D,D∗] = 0 (23)

where D and its complex conjugate D∗ are taken as inde-
pendent variables, ∂D∗ is the functional derivative with
respect to D∗ and the functional E is given by

E = Ediag + E24,23 + E24,14 − E24,13 (24)

with the diagonal part

Ediag =

∫
d3k2d

3k4D
∗(k2,k4)D(k2,k4)

×
µ

3/2
↑↓

2π~2

[
(k2 + k4)2

m↑ +m↓
+
k2

2

m↑
+
k2

4

m↓

]1/2

(25)

and the generic off-diagonal part

E24,ij =

∫
d3k2d

3k4d
3k1d

3k3

(2π)3
D∗(k2,k4)D(ki,kj)

× δ(k1 + k2 + k3 + k4)
~2

2m↑
(k2

1 + k2
2) + ~2

2m↓
(k2

3 + k2
4)

(26)

Then one inserts the ansatz (14) into these functionals.
Assuming that one is able to integrate over all variables
other than k2, k4, θ24 and ki, kj , θij , one obtains a func-

tional of the f
(`)
mz and f

(`)∗
mz , which it remains to differenti-

ate with respect to f
(`)∗
mz to obtain the integral equations

for the f
(`)
mz .

Integration is simplified by the following remark: The

final integral equations and their solutions f
(`)
mz cannot

depend on the specific vector ez introduced in Eq. (14).
One can then replace ez by an arbitrary unit vector n
in the ansatz (14), and one can average the resulting
functional E over n uniformly on the unit sphere, for fixed

f
(`)
mz . The result of this average is particularly simple

when the orthonormal basis of Eqs. (15,16,17) reduces to
the usual Cartesian basis:

(e2, e4⊥2, e24) = (ex, ey, ez) (27)

Then [51]

〈Y mz` (e2·n, e4⊥2·n, e24·n)[Y
m′z
` (ei·n, ej⊥i·n, eij ·n)]∗〉n

=
1

4π

(
〈`,mz|R(ij)|`,m′z〉

)∗
(28)

where 〈. . .〉n indicates the average over the direction of n
and the quantum operator R(ij) represents (in the usual
spin-` irreducible representation, with vectors |`,mz〉 of
angular momentum mz~ along z) the unique real space
rotation R(ij) that maps the Cartesian basis onto the
basis (ei, ej⊥i, eij):

(ei, ej⊥i, eij) = R(ij)(ex, ey, ez) (29)

After average over n, and integration over k1 and k3 in
E24,ij , it remains an integral over k2 and k4, with an
integrand invariant by common rotation of k2 and k4.
To evaluate that integrand, one can then indeed assume
that k2 is along x (in the positive direction) and that k4

lies in the plane xy in the upper half y ≥ 0:

k2 = k2ex (30)

k4 = k4(cos θ24ex + sin θ24ey) with θ24 ∈ [0, π] (31)
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so that

(e2, e4⊥2, e24) = (ex, ey, ez) (32)

and one can use Eqs. (28,29). Then one pulls out a factor
4π (resulting from integration over the solid angle of k2)
compensated by the 4π denominator in Eq. (28), and an
uncompensated factor 2π (resulting from the integration
over the azimuthal angle of k4 for the spherical coordi-
nates of polar axis k2/k2 = ex for k4), and one is left
with an integration over the moduli k2 and k4 and over
the angle θ24.

For the functional Ediag, this gives a simple result:

Since i = 2 and j = 4, the matrix R(ij) is the iden-
tity matrix, R(ij) reduces to the identity operator; also
there is no k1 or k3 integration. One obtains

Ediag =
∑̀

mz=−`

2π

∫ ∞
0

dk2k
2
2dk4k

2
4

∫ 1

−1

du24|fmz (k2, k4, u24)|2

×
µ

3/2
↑↓

2π~2

(
k2

2 + k2
4 + 2k2k4u24

m↑ +m↓
+
k2

2

m↑
+
k2

4

m↓

)1/2

(33)

with the same notation as in Eq. (18). For the generic
off-diagonal part this leads to

E24,ij =
∑̀

mz,m′z=−`

2π

∫ ∞
0

dk2k
2
2dk4k

2
4

∫ 1

−1

du24

∫
d3k1d

3k3

(2π)3(
〈`,mz|R(ij)|`,m′z〉

)∗
f (`)∗
mz (k2, k4, u24)f

(`)
m′z

(ki, kj , uij)

× δ(k1 + k2 + k3 + k4)
~2(k21+k22)

2m↑
+

~2(k23+k24)
2m↓

(34)

The way to proceed with the integration over the direc-
tions of k1 and k3 depends on the indices i and j.

1. Case (i, j) = (2, 3)

For (i, j) = (2, 3), one trivially integrates over k1 using
the Dirac distribution, that imposes k1 = −(k2+k3+k4),
and one integrates over k3 using spherical coordinates of
polar axis ex and of azimuthal axis ey; the azimuthal
angle is called φ, and the polar angle is called θ23 since
it is the angle between k2 and k3 [see Fig. 1(a)]. Then
R(ij) in Eq. (29) is the rotation of axis x and of angle φ:

R(23) = Rx(φ) and R(23) = e−iφLx/~ (35)

where Lx is the angular momentum operator along x.
Also

k2
1 = k2

2 + k2
3 + k2

4 + 2k2k3u23 + 2k2k4u24

+ 2k3k4(u23u24 + v23v24 cosφ) (36)

with u23 = cos θ23 and v23 = sin θ23 as in Eq. (18). This
gives

E24,23 =
∑̀

mz,m′z=−`

2π

∫ ∞
0

dk2dk3dk4k
2
2k

2
3k

2
4

∫ 1

−1

du23du24

∫ 2π

0

dφ

〈`,mz|eiφLx/~|`,m′z〉f
(`)∗
mz (k2, k4, u24)f

(`)
m′z

(k2, k3, u23)

(2π)3
[
~2(k21+k22)

2m↑
+

~2(k23+k24)
2m↓

]
(37)

where k1 is given by Eq. (36) and we used the fact that
Lx has real matrix elements in the standard |`,mz〉 basis.

2. Case (i, j) = (1, 4)

For (i, j) = (1, 4), one integrates over k3 using the
Dirac distribution, that imposes k3 = −(k1 + k2 + k4)
and one integrates over k1 using spherical coordinates in
a rotated basis

(eX , eY , eZ) = (ez, e4 ∧ ez, e4) with e4 =
k4

k4
. (38)

The direction eZ of k4 is taken as the polar axis, so that
the polar angle is θ14; eX is taken as the azimuthal axis,
with the azimuthal angle called φ, see Fig. 1(b). Then
the real space rotation R(ij) in Eq. (29) is

R(14) = RZ(φ− π

2
)Rz(θ24 − θ14)

= Rz(θ24)Rx(φ− π

2
)Rz(−θ14) (39)

and the corresponding operator has matrix elements

〈`,mz|R(14)|`,m′z〉 = e−imzθ24

× 〈`,mz|e−i(φ−
π
2 )Lx/~|`,m′z〉eim

′
zθ14 (40)

Using ex = [R(14)]−1e1 = u24eZ + v24eY and e1 =
u14eZ + v14(cosφ eX + sinφ eY ) we get

k2
3 = k2

1 +k2
2 +k2

4 + 2k1k2[u14u24 +v14v24 cos(φ−π/2)]

+ 2k1k4u14 + 2k2k4u24. (41)

This gives:

E24,14 =
∑̀

mz,m′z=−`

2π

∫ ∞
0

dk1dk2dk4k
2
1k

2
2k

2
4

∫ 1

−1

du14du24

∫ 2π

0

dφ

eimzθ24〈`,mz|ei(φ−π/2)Lx/~|`,m′z〉e−im
′
zθ14

(2π)3
[
~2(k21+k22)

2m↑
+

~2(k23+k24)
2m↓

]
× f (`)∗

mz (k2, k4, u24)f
(`)
m′z

(k1, k4, u14) (42)

where k3 is given by Eq. (41).
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FIG. 1: (Color online) Positions and parametrisations of the
wavevectors appearing in the angular integration in the func-
tionals E24,ij . The vectors k2 and k4 are given by Eqs. (30,31).
(a) For (i, j) = (2, 3), k1 = −(k2 + k3 + k4) and one inte-
grates over k3 using spherical coordinates of polar axis x and
azimuthal axis y. (b) For (i, j) = (1, 4), k3 = −(k1 +k2 +k4)
and one integrates over k1 using the polar axis Z (direction of
k4) and the azimuthal axis X (direction of ez) as defined by
Eq. (38), leading to the polar angle θ14 and the azimuthal an-
gle φ (< 0 in the figure). The dashed line gives the direction
of the component eXY

1 of e1 = k1/k1 in the XY plane. (c) For
(i, j) = (1, 3), one integrates over the rotation R, such that
k1 and k3 are given by the action of R on vectors kfix

1 and kfix
3

in the xy plane as in Eqs. (43,44), using the parametrisation
in terms of Euler angles associated to the convenient axes X,
Y and Z of Eq. (48).

3. Case (i, j) = (1, 3)

For (i, j) = (1, 3), we find it convenient to replace the
integration over k1 and k3 by an integration over the
moduli k1 and k3, over the angle θ13 ∈ [0, π] and over a
rotation matrixR uniformly distributed over the rotation
group SO(3), the vectors k1 and k3 being given by the
action of R on vectors fixed in the xy plane:

k1 = Rkfix
1 with kfix

1 = k1ex (43)

k3 = Rkfix
3 with kfix

3 = k3(u13ex + v13ey) (44)

Then R is precisely the rotation matrix R(ij) of Eq. (29)
and

E24,13 =
∑̀

mz,m′z=−`

2

∫ ∞
0

(
4∏

n=1

dknk
2
n

)∫ 1

−1

du13du24

∫
SO(3)

dR

(〈`,mz|R|`,m′z〉)
∗
f (`)∗
mz (k2, k4, u24)f

(`)
m′z

(k1, k3, u13)

× δ(k2 + k4 +R(kfix
1 + kfix

3 ))
~2(k21+k22)

2m↑
+

~2(k23+k24)
2m↓

(45)

where the factor 2 originates from (4π × 2π)2/[4π(2π)3],
R is the operator representing R and dR is the invariant
measure over the group SO(3) normalized to unity (see
§8.2 of reference [35]) [52]. To integrate over R, we use
the Euler parametrisation as in Eq. (7.1-12) of reference
[35]:

R = RZ(α)RY (β)RZ(γ) (46)

where the Euler angles α and γ run over an interval of
length 2π and the Euler angle β runs over [0, π], so that
the invariant measure is (see §8.2 of reference [35])

dR =
dα sinβdβdγ

8π2
(47)

Due to the occurrence of k2 + k4 in the argument of
the Dirac distribution in Eq. (45), the convenient direct
orthonormal basis defining the rotation axes X, Y and
Z is now [see Fig. 1(c)]

(eX , eY , eZ) = (ez ∧
k2 + k4

|k2 + k4|
, ez,

k2 + k4

|k2 + k4|
). (48)

Then the Dirac distribution can be written as [53]

δ(k2 +k4 +R(kfix
1 +kfix

3 )) = δ(sin γ)δ(sin(β0−β cos γ))

× δ(|k2 + k4| cos(β0 − β cos γ) + |kfix
1 + kfix

3 |)
| sinβ0| |kfix

1 + kfix
3 | |k2 + k4|

(49)

where we have introduced the oriented angle β0 between
kfix

1 + kfix
3 and k2 + k4 such that [see Fig. 1(c)]

kfix
1 + kfix

3 = |kfix
1 + kfix

3 |(− sinβ0 eX + cosβ0 eZ). (50)

There is no dependence on α in the right-hand side of
Eq. (49): in the argument of δ, one can write k2 + k4 as
RZ(α)(k2 + k4) and, due to the rotational invariance of
the three-dimensional Dirac distribution, one can factor
out and remove the rotationRZ(α). The integration over
α in Eq. (45) then pulls out in the matrix element of R
the orthogonal projector on the state of total angular
momentum ` and of vanishing angular momentum along
Z: ∫ 2π

0

dα e−iαLZ/~ = 2π|`,mZ = 0〉〈`,mZ = 0| (51)
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In the integral over γ, for example over the interval
[−π/2, 3π/2], only the points γ = 0 and γ = π con-
tribute. The contribution of γ = π can be deduced
from the one of γ = 0 by changing β into −β, due to
RZ(π)RY (β)RZ(π) = RY (−β) and to the invariance of
kfix

1 + kfix
3 and |mZ = 0〉 by rotation of axis Z. In the

integral over β ∈ [0, π], the γ = π contribution can then
be taken into account by extending the integration of the
γ = 0 contribution to β ∈ [−π, 0]: one can take γ = 0 in
Eq. (49) and one faces∫ π

−π
dβ| sinβ|eiβm

′
zδ(sin(β0−β))δ(|k2 +k4| cos(β0−β)

+ |kfix
1 + kfix

3 |) = δ(|k2 + k4| − |kfix
1 + kfix

3 |)

×
∫ π

−π
dβ| sinβ|eiβm

′
z

∑
n∈Z

δ(β − β0 − π − 2πn)

= δ(|k2 + k4| − |kfix
1 + kfix

3 |)| sinβ0|(−1)m
′
zeiβ0m

′
z (52)

Due to the 2π periodicity of the integrand we have shifted
the domain of integration so as to only keep for example
the term n = 0 of the Dirac comb. Finally, using β0 =
τ24 − τ13, where τ24 is the angle ∈ [0, π] between k2 and
k2 + k4 and τ13 is the angle ∈ [0, π] between kfix

1 and
kfix

1 + kfix
3 so that (up to a phase factor)

|`,mZ = 0〉 = e−iτ24Lz/~|`,mx = 0〉, (53)

and using the property that [54]

〈`,mx = 0|`,m′z〉 = 0 if `+m′z is odd, (54)

allowing one to replace (−1)m
′
z with (−1)`, we obtain

E24,13 =
∑̀

mz,m′z=−`

(−1)`

2π

∫ ∞
0

(
4∏

n=1

dknk
2
n

)∫ 1

−1

du13du24

eimzτ24〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉e−im
′
zτ13

|k2 + k4|
[
~2(k21+k22)

2m↑
+

~2(k23+k24)
2m↓

]
|kfix

1 + kfix
3 |

×δ(|k2+k4|−|kfix
1 +kfix

3 |)f (`)∗
mz (k2, k4, u24)f

(`)
m′z

(k1, k3, u13)

(55)

knowing that |`,mx = 0〉 has real components in the basis
|`,mz〉 up to a global phase, and that k2 and k4 are given
by Eqs. (30,31) and kfix

1 and kfix
3 by Eqs. (43,44).

C. Scale invariance

To take advantage of the scale invariance of the zero-
energy solution, one uses the ansatz (20) with s ∈ iR, as
physically explained in section III A, and one inserts it in
the various terms (33,37,42,55) of the functional (24). In
Eq. (33) one performs in the integral over k4 the change
of variable k4 = exk2, where x ranges from −∞ to +∞,

and one sets u24 = u for conciseness, also introducing the
mass ratio

α ≡ m↑
m↓

. (56)

One pulls out a constant factor F , that will be given and
discussed later, to obtain

Ediag = F
∑̀

mz=−`

∫
R
dx

∫ 1

−1

du

[
α

(1 + α)2

(
1 +

u

chx

)
+

e−x + αex

2(α+ 1) chx

]1/2

|Φ(`)
mz (x, u)|2 (57)

In Eq. (37) one performs the change of variable k4 = exk2

and k3 = ex
′
k2 in the integrals over k4 and k3, also setting

θ24 = θ, u24 = u, v24 = v and θ23 = θ′, u23 = u′, v23 = v′

for concision. One then pulls out the same factor F to
obtain

E24,23 = F
∑̀

mz,m′z=−`

∫
R
dxdx′

∫ 1

−1

dudu′
(
ex chx′

ex′ chx

)s/2

×

(
ex+x′

4 chx chx′

)1/4

Φ(`)∗
mz (x, u)Φ

(`)
m′z

(x′, u′)

×
∫ 2π

0

dφ

(2π)2

e−imzθ/2〈l,mz|eiφLx/~|l,m′z〉eim
′
zθ
′/2

D24,23(φ;x, u;x′, u′;α)
(58)

In the denominator, we have introduced the notation

D24,23 =

~2(k21+k22)
2m↑

+
~2(k23+k24)

2m↓

~2k3k4
µ↑↓

(59)

where k1 is given by Eq. (36) so that

D24,23(φ;x, u;x′, u′;α) = ch(x− x′)

+
1

1 + α
(e−x−x

′
+ e−x

′
u+ e−xu′ + uu′ + vv′ cosφ).

(60)

In Eq. (42) one performs the change of variables k4 =

exk2 and k1 = ex−x
′
k2 (so that k4/k1 = ex

′
) in the inte-

grals over k4 and k1, and the change of variable φ = π
2 +φ′

in the integral over φ [55], also setting θ24 = θ, u24 = u,
v24 = v and θ14 = θ′, u14 = u′, v14 = v′. Again pulling
out the factor F one gets

E24,14 = F
∑̀

mz,m′z=−`

∫
R
dxdx′

∫ 1

−1

dudu′
(
e−x chx′

e−x′ chx

)s/2

×

(
e−(x+x′)

4 chx chx′

)1/4

Φ(`)∗
mz (x, u)Φ

(`)
m′z

(x′, u′)

×
∫ 2π

0

dφ′

(2π)2

eimzθ/2〈l,mz|eiφ
′Lx/~|l,m′z〉e−im

′
zθ
′/2

D24,14(φ′;x, u;x′, u′;α)
(61)
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In the denominator we have introduced the notation

D24,14 =

~2(k21+k22)
2m↑

+
~2(k23+k24)

2m↓

~2k1k2
µ↑↓

(62)

with k3 given by Eq. (41) so that

D24,14(φ′;x, u;x′, u′;α) = ch(x− x′)

+
α

1 + α
(ex+x′ + ex

′
u+ exu′ + uu′ + vv′ cosφ′). (63)

Finally, in Eq. (55), one performs the change of vari-

ables k4 = exk2 and k3 = ex
′
k1 in the integrals over

k4 and k3, also setting θ24 = θ, u24 = u, τ24 = τ and
θ13 = θ′, u13 = u′, τ13 = τ ′. The integration over k1 is
straightforward due to the occurrence of a Dirac distri-
bution in Eq. (55). Due to the phase factor in the ansatz
(20), there naturally appear the angles γ ≡ τ − θ/2 and
γ′ = τ ′ − θ′/2. Since τ is the angle between k2 and
k2 + k4 [see Fig. 1(c)], one has according to Eqs. (30,31)
and using the usual representation of vectors in the xy
plane by complex numbers:

eiγ =
1 + exeiθ

|1 + exeiθ|
e−iθ/2 =

e(x+iθ)/2 + e−(x+iθ)/2

|e(x+iθ)/2 + e−(x+iθ)/2|
(64)

As θ ∈ [0, π], the real part cos γ of this expression is
non negative so that one can choose γ ∈ [−π2 ,

π
2 ]. Then

forming the ratio of the imaginary part to the real part
of the same expression gives the value of tan γ and

γ = atan

[
th
(x

2

)
tan

(
θ

2

)]
with tan

(
θ

2

)
=

(
1− u
1 + u

)1/2

(65)
One has the same expressions for γ′, replacing the vari-
ables x, θ and u by x′, θ′, u′. This leads to

E24,13 = F
∑̀

mz,m′z=−`

∫
R
dxdx′

∫ 1

−1

dudu′
[

(u′ + chx′) chx′

(u+ chx) chx

]s/2

×
(−1)`Φ

(`)∗
mz (x, u)Φ

(`)
m′z

(x′, u′)

4π[(u+ chx)(u′ + chx′) chx chx′]1/4

× eimzγ〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉e−im
′
zγ
′(

e−x′+αex′

1+α

)
(u+ chx) +

(
e−x+αex

1+α

)
(u′ + chx′)

(66)

In all the results (57,58,61,66) there appears a factor

F =
µ↑↓
8~2

∫ +∞

0

dk2

k2
. (67)

This factor contains a diverging integral, making these
last calculations not entirely rigorous. We have checked

however that always the same diverging integral is pulled
out, even if one singles out a wavenumber other than k2

(performing for example the change of variables k2 =
e−xk4 and k1 = e−x

′
k4 in the integrals over k2 and k1

in Eq. (42)). This is certainly due to the scale invari-
ance of dk2/k2 = d(ln k2). Alternatively, one can write

the integral equation for the f
(`)
mz deduced from the func-

tional derivatives of Eqs. (33,37,42,55) of the functional

Eq. (24) with respect to f
(`)∗
mz ; at this stage, one has only

used rotational invariance. Then, one inserts the scale
invariant ansatz (20), and one obtains exactly the same

integral equations for the Φ
(`)
mz as those derived from the

functional derivatives of Eqs. (57,58,61,66) with respect

to Φ
(`)∗
mz .

D. Parity invariance

The term of index mz in the ansatz (14) is simply mul-
tiplied by (−1)mz under the action of parity (k2,k4) →
(−k2,−k4) [18]. This means that the odd-mz compo-

nents of Φ
(`)
mz are decoupled from the even-mz compo-

nents of Φ
(`)
mz in the integral equation. This property can

also be obtained by an explicit calculation: first, for mz

and m′z of different parities, the coupling amplitude be-
tween |`,mz〉 and |`,m′z〉 must vanish in Eq. (55); this
can be seen from Eq. (54). Second, it also vanishes in
Eqs. (58,61) after integration over φ or φ′: Lx obeys the
selection rule ∆mz = ±1, and in an expansion of eiφLx

in powers of φ, only even powers of φ and Lx survive
due to the parity of the denominator D. In what follows,
at a given angular momentum `, we shall distinguish the
manifold of parity (−1)`+1, where E24,13 and the contri-
bution of D(k1,k3) in Eq. (13) are zero, and the manifold
of parity (−1)` where they are a priori non zero. Note
that, in the particular case ` = 0, there exists only the
manifold of parity (−1)`.

IV. FINAL FORM AND ASYMPTOTIC
ANALYSIS

A. Explicit form of the integral equation

By taking the functional derivative of E of Eq. (24)

with respect to Φ
(`)
mz , using the forms (57,58,61,66) of the

various terms and not forgetting the minus sign in front
of the last contribution in Eq. (24), we obtain the form
of the integral equation (13) maximally reduced by use
of the rotational symmetry and of the scale invariance:
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0 =

[
α

(1 + α)2

(
1 +

u

chx

)
+

e−x + αex

2(α+ 1) chx

]1/2

Φ(`)
mz (x, u) +

∫
R
dx′
∫ 1

−1

du′
∑̀

m′z=−`

K
(`)
mz,m′z

(x, u;x′, u′;α)Φ
(`)
m′z

(x′, u′)

(68)
with the following expression for the matrix kernel K(`):

K
(`)
mz,m′z

(x, u;x′, u′;α) =(
ex chx′

ex′ chx

)s/2(
ex+x′

4 chx chx′

)1/4 ∫ 2π

0

dφ

(2π)2

e−imzθ/2〈`,mz|eiφLx/~|`,m′z〉eim
′
zθ
′/2

ch(x− x′) + 1
1+α [(u+ e−x)(u′ + e−x′) + vv′ cosφ]

+

(
e−x chx′

e−x′ chx

)s/2(
e−x−x

′

4 chx chx′

)1/4 ∫ 2π

0

dφ

(2π)2

eimzθ/2〈`,mz|eiφLx/~|`,m′z〉e−im
′
zθ
′/2

ch(x− x′) + α
1+α [(u+ ex)(u′ + ex′) + vv′ cosφ]

− (−1)`

4π[(u+ chx)(u′ + chx′) chx chx′]1/4

(
(u′ + chx′) chx′

(u+ chx) chx

)s/2
eimzγ〈`,mz|`,mx = 0〉〈`,mx = 0|`,m′z〉e−im

′
zγ
′(

e−x′+αex′

1+α

)
(u+ chx) +

(
e−x+αex

1+α

)
(u′ + chx′)

(69)

Here, the scaling exponent s is purely imaginary, so that a
four-body Efimov takes place in our 2+2 fermionic prob-
lem if Eq. (68) has a non-identically zero solution Φ(`) for
some non-zero s. We recall that the angle θ ∈ [0, π] is
such that u = cos θ and v = (1−u2)1/2 = sin θ, and that
the angle γ is given by Eq. (65); the same relations hold
among the primed variables.

The first, second and third contributions in Eq. (69)
originate respectively from the terms D(k2,k3),
D(k1,k4) and D(k1,k3) in the unreduced integral
equation (13); the diagonal term in Eq. (68) emanates
from the diagonal term of that equation. The integrals
over φ can be evaluated after insertion of a closure
relation in the eigenbasis of Lx [56]. Importantly, the
third contribution in Eq. (69) vanishes when ` + mz or
` + m′z are odd, i. e. in the parity channel (−1)`+1, as
shown by the property (54) and as already pointed out
in section III D.

It is interesting to note the decoupled form of the
prefactors in each contribution of Eq. (69), of the form
[f(x, u)]s/2+1/4[f(x′, u′)]−s/2+1/4 with a function f given
by ex/(2 chx), e−x/(2 chx) and 1/[(u+chx) chx], respec-
tively. The fact that this function f(x, u) is not common
to all contributions prevents one from suppressing the s
dependence of the matrix kernel K(`) by a simple gauge
transform on Φ(`): As expected, the s-dependence of the
problem (68) is non trivial.

Our results (68,69) must obey the symmetry of the
2 + 2 problem under the exchange of ↑ and ↓. First, this
exchange has the effect of changing the mass ratio α into
its inverse 1/α, see Eq. (56). Second, the momenta k2

and k4 in D(k2,k4) are exchanged, so that x of Eq. (21)
is changed into its opposite; this also reverts the direction
of the quantization axis k2 ∧ k4 along which the angular
momentum mz is measured in Eq. (14): it changes mz

into −mz according to the identity [18]

e−iπLx/~|`,mz〉 = (−1)`|`,−mz〉; (70)

on the contrary, the non-oriented angle θ24 ∈ [0, π] be-
tween k2 and k4 is unchanged, so that the variable u is
unaffected. Hence, one must have

K
(`)
mz,m′z

(x, u;x′, u′;α) = K
(`)
−mz,−m′z

(−x, u;−x′, u′;α−1)

(71)
for all values of the argument and of the indices of the
kernel. It is clear that Eq. (69) indeed obeys the symme-
try requirement (71): the first and second contributions
are interchanged, whereas the third one is invariant since
γ is changed into −γ, see Eq. (65). Note that our re-
sults also respect the parity invariance, see section III D,
and that the matrix kernel is hermitian as our variational
derivation guarantees:

K
(`)
mz,m′z

(x, u;x′, u′;α) =
[
K

(`)
m′z,mz

(x′, u′;x, u;α)
]∗

(72)

B. Recovering the three-body problem from
four-body asymptotics

The right-hand side of the integral equation (68) de-
fines an operator M (`)(s) acting on the spinor functions

Φ
(`)
mz (x, u). The spectrum of this operator is physically

relevant, since a four-body Efimov effect takes place with
an Efimov scaling exponent s ∈ iR if and only if one of
the eigenvalue Ω of M (`)(s) is zero. As M (`)(s) is a her-
mitian operator, since s is here purely imaginary, its spec-
trum is real and in general includes a discrete part and
a continuous part. The discrete spectrum corresponds to
localized, square integrable eigenfunctions; we are able
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to determine it only numerically. The expected contribu-
tion to the continuous spectrum corresponds to extended
functions, that explore arbitrarily large values of |x|; as
we now explain, it can be determined analytically from
the asymptotic analysis of the kernel (69) when x and
x′ tend to ±∞, by a generalisation of the discussion of
reference [13]. There is also an unexpected contribution
to the continuous spectrum, whose analysis is deferred to
section IV C.
Sector x → +∞, x′ → +∞: Clearly, the diagonal
part of M (`)(s) in Eq. (68) tends exponentially rapidly
to a finite and non-zero value, and the second and third
contributions to the kernel in Eq. (69) tend exponentially
fast to zero. In the first contribution in Eq. (69), the pref-
actor tends exponentially to unity since ex/(2 chx)→ 1,
and in the denominator of the integrand, all the x or
x′-dependent terms are exponentially suppressed, except
the first one ch(x−x′) since no hypothesis must be made
on the magnitude of the difference x−x′. The eigenvalue
problem then asymptotically reduces to

Ω→(`)Φ̃(`)
mz (x, u) =

[
α(2 + α)

(1 + α)2

]1/2

Φ̃(`)
mz (x, u)+

∫
R
dx′

∑̀
m′z=−`∫ 1

−1

du′
∫ 2π

0

dφ′

(2π)2

〈`,mz|eiφ
′Lx/~|`,m′z〉

ch(x− x′) + uu′+vv′ cosφ′

1+α

Φ̃
(`)
m′z

(x′, u′)

(73)

where the arrow in the exponent of Ω indicates that x and
x′ tend to positive infinity, and the phase factors e−imzθ/2

and eim
′
zθ
′/2 have been eliminated by a gauge transform

on the spinor, Φ
(`)
mz (x, u) = e−imzθ/2Φ̃

(`)
mz (x, u). Then,

one performs a spin rotation, by moving to the internal
basis of the eigenstates |`,mx〉 of Lx, in which eiφLx/~ is

diagonal: the components Φ̃
(`)
mx(x, u) are all decoupled.

For a given mx, with |mx| ≤ `, the trick is to extend

Φ̃
(`)
mx(x, u) into a function of the real variable x and of

the vector n on the two-dimensional unit sphere:

F (`)
mx(x,n) ≡ Φ̃(`)

mx(x, cos θ)eimxφ (74)

where θ ∈ [0, π] and φ ∈ [0, 2π] are the polar and az-
imuthal angles of n in spherical coordinates, e.g. with re-
spect to x and y axes, n = (cos θ, sin θ cosφ, sin θ sinφ).

In the phase factor eimxφ
′

in the numerator and in cosφ′

in the denominator, one can then replace φ′ by φ′ − φ:
the integrand is a periodic function of φ′ of period 2π
and its integral has the same value whatever the inter-
val of length 2π over which φ′ runs. Then, one recog-
nizes the scalar product n · n′ = uu′ + vv′ cos(φ − φ′)
where n′ = (cos θ′, sin θ′ cosφ′, sin θ′ sinφ′). The eigen-
value problem is now

Ω→(`)
mx F (`)

mx(x,n) =
[α(2 + α)]1/2

1 + α
F (`)
mx(x,n)

+

∫
R
dx′
∫
|n|=1

d2n

(2π)2

F
(`)
mx(x′,n′)

ch(x− x′) + n·n′
1+α

(75)

The corresponding operator is invariant by translation
along x and by rotation of n over the unit sphere. Its

eigenfunctions F
(`)
mx(x,n) can therefore be taken as plane

waves of the variable x and spherical harmonics of the
variables (θ, φ), with the same quantum number mx (this
is imposed by the form (74)) but with any integer quan-
tum number L ≥ |mx| for the total angular momentum:

F (`)
mx(x,n) = eikxY mxL (θ, φ) (76)

As usual for a rotationally invariant operator, the eigen-
value does not depend on mx. It only depends on L,
so it suffices to specialize to mx = 0, where Y 0

L (θ, φ) ∝
PL(cos θ), where PL(X) is the Legendre polynomial of
degree L. Then, one gets the continuous spectrum “to
the right” (x, x′ → +∞):

Ω→(`)
mx (α) ∈ {ΛL(ik, α−1),∀k ∈ R,∀L ≥ |mx|} (77)

The function ΛL of s ∈ iR and of the mass ratio was
introduced and analytically calculated in [36, 37], gener-
alizing previous results [38, 39]:

ΛL(s, β) ≡ (1 + 2β)1/2

1 + β
+

∫ 1

−1

du

∫
R

dx

2π

e−sxPL(u)

chx+ β
1+βu

= cos ν(β)+
1

sin ν(β)

∫ π
2 +ν(β)

π
2−ν(β)

dθ PL

(
cos θ

sin ν(β)

)
sin(sθ)

sin(sπ)

(78)

where, in the second expression obtained after integration
over x [37],

ν(β) = asin
β

1 + β
(79)

is a mass angle. For all β > 0, it is found numerically for
even L that the maximal value of ΛL(s, β) over s ∈ iR+

is reached at s = 0, and the minimal value is reached
for |s| → +∞ (where ΛL(s, β) tends to cos ν(β)). For
odd L, the situation is found to be reversed: ΛL(s, β) is
minimal at s = 0 and maximal at infinity. To summarize,
we expect that

cos ν(β) ≤ ΛL(s, β) ≤ ΛL(0, β) ∀s ∈ iR, L even,

ΛL(0, β) ≤ ΛL(s, β) ≤ cos ν(β) ∀s ∈ iR, L odd (80)

This allows to determine the borders of the continuous
component of quantum number L in Eq. (77), see Fig. 2.
A physical explanation for the emergence of the function
ΛL is postponed to the end of the section.
Sector x → −∞, x′ → −∞: The calculation closely
resembles the previous one, except that it is now the
second contribution in the right-hand side of Eq. (69)
that survives. This was expected from the symmetry
relation (71). We arrive at the continuous spectrum “to
the left” (x, x′ → −∞):

Ω←(`)
mx (α) ∈ {ΛL(ik, α),∀k ∈ R,∀L ≥ |mx|} (81)
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that differs from (77) by the occurrence of α (rather than
1/α) in the argument of the ΛL function [57]. The bor-
ders of the L-components of that continuum are plotted
in Fig. 2 for the first few values of L, using the numeri-
cally checked property (80).
Parity considerations: At fixed `, the results (77,81)
are expressed in terms of the quantum number mx,
whereas the original problem only distinguishes between
an even parity manifold (mz is even) and an odd parity
manifold (mz is odd). In practice, due to the property
(54), the continua (77,81) with L = 0 can be realized
only in the manifold of parity (−1)`, at any considered
total angular momentum ` (obviously one must then take
mx = 0). The other continua (with L ≥ 1) can all be re-
alized, in both odd and even manifolds, for all values of
` ≥ 0 [58].
Physical discussion: The function ΛL(s, β) appears in
the unitary three-body problem of two fermionic parti-
cles interacting with a single distinguishable particle, β
being the mass ratio of the majority-to-minority species.
For s ∈ iR this function is given by the first form in
Eq. (78); it can be analytically extended to real values
of s using e.g. the second form in Eq. (78) [37]. The
zero-energy solutions of this three-body problem have an
Efimov scaling exponent s: the three-body wavefunction
scales as Rs−2, R being the three-particle hyperradius,
and the allowed values of s at total angular momentum
L must solve

ΛL(s, β) = 0. (82)

This three-body system exhibits an Efimov effect if and
only if this equation has a purely imaginary solution s ∈
iR∗. This occurs only at odd L, starting from a mass
ratio [14]

β > αc(2; 1) = 13.60696 . . . (83)

for L = 1, and at increasingly larger critical mass ratios
for L = 3, 5, . . . [37, 40].

It is thus apparent that the asymptotic analysis of the
2 + 2 fermionic problem brings up the three-body prob-
lem. This is intuitive in position space: imagine that at
fixed position r4 6= 0 of the fourth particle (of spin ↓), the
positions (ri)1≤i≤3 of the other particles (of spin ↑↑↓) si-
multaneously tend to zero; then the four-body wavefunc-
tion ψ(r1, r2, r3, r4) must reproduce the behavior of the
zero-energy scattering state of two ↑ and one ↓ particles,
characterized by a mass ratio β = m↑/m↓ = α, in partic-
ular it must exhibit the same scaling exponents s as the
2 + 1 problem (see §5.3.6 in reference [34]); as these scal-
ing exponents solve Eq. (82) with β = α, this explains the
occurrence of ΛL(s, α) in the spectrum (81) [59]. Even if
` = 0 for the four-body system, L can take any value, as
the angular momentum can be distributed among parti-
cle 4 and the first three particles. The equivalent in mo-
mentum space of the considered limit is to have divergent
(ki)1≤i≤3 at fixed k4, which, due to scale invariance, is
equivalent to having k4 → 0 at fixed (ki)1≤i≤3, that is
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FIG. 2: (Color online) Analytically obtained borders of the
continuous spectrum of M(s) (s ∈ iR+) corresponding to the
limits x→ ±∞. It is a collection of components characterized
by an angular momentum quantum number L of a three-body
asymptotic problem (not to be confused with the total angular
momentum ` of the four-body states), leading to a continuous
set of eigenvalues ranging from ΛL(0, α) to cos[ν(α)] for x→
−∞, and ranging from ΛL(0, 1/α) to cos[ν(1/α)] for x→ +∞,
where α is the mass ratio given by Eq. (56), the ΛL function
is given by Eq. (78) and the mass angle ν is given by Eq. (79).
We plot cos[ν(α)] (black solid line) and ΛL(0, α) (color dashed
lines, with L = 0, 2, 4 from top to bottom above the solid
line, and L = 1, 3 from bottom to top below the solid line) as
functions of α ∈ [0, αc(2; 1)] where αc(2; 1) is the critical mass
ratio (83) for the Efimov effect in the ↑↑↓ three-body problem.
Due to the α↔ 1/α symmetry of the 2+2 fermionic problem,
one can restrict to α ≥ 1 (that is to the right of the vertical
dotted line); the borders of the x→ −∞ continuum can then
be directly read on the figure, and the ones of the x → +∞
continuum can be obtained by mentally folding back the α ≤ 1
part of the figure into the α ≥ 1 part.

x → −∞ according to Eq. (21). This is why β = α cor-
responds to the spectrum (81). A similar reasoning with
r2 fixed with (ri)i 6=2 tending to zero leads to β = 1/α
and x→ +∞, as for the spectrum (77).

C. A third, unexpected continuum

The first two contributions in Eq. (69) are innocuous:
the denominator in their integrands cannot vanish, see
Eqs. (59,60) and Eqs. (62,63), and, as we have seen, they
have a short range in the (x, x′) space. On the contrary,
the third contribution in Eq. (69), which is non-zero only
in the (−1)` parity sector, diverges when (x, u)→ (0,−1)
or (x′, u′) → (0,−1). This creates doubt about the
bounded nature of the eigenvalues of M(s), s ∈ iR, for
that parity. We investigate this problem mathematically
in the appendix A and we conclude thatM(s) is bounded.

Physically, this divergence of the kernel leads to a quite
interesting effect: the emergence of a third component of
the continuous spectrum of M(s), different from the pre-
viously discussed x → ±∞ continua. The intuitive idea
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is that one can turn the eigenvalue problem ΩΦ = M(s)Φ
into an integral equation with a bounded kernel through
an appropriate change of variables, with the consequence
that one of the new variables, that we shall call t, can
tend to −∞, in which case the eigenvector Φ takes a
plane wave structure ∝ exp(ikt), k ∈ R, with a spec-
trum:

Ω�(`) ∈
{

1√
2

[1− (−1)`

ch(kπ/2)
],∀k ∈ R

}
[parity(−1)`]

(84)
This is an unexpected feature of the 2+2 fermionic prob-
lem, absent in the 3 + 1 fermionic case [13].

To obtain this result, we construct a local approxima-
tion to the integral equation in the vicinity of (x, u) =
(0,−1), (x′, u′) = (0,−1), keeping only the leading di-
verging contributions. We use

y ≡ π − θ (85)

rather than u = cos θ as integration variable, so that
y, y′ → 0 when u, u′ → −1. This pulls out a Jaco-
bian sin y′ that we absorb (in a way preserving the her-
miticity of the problem) with a change of function. We
also take into account the fact that the third, diverg-
ing contribution in Eq. (69) involves a projector onto the
|`,mx = 0〉 state, and that the phase factors eimzγ and

e−im
′
zγ
′
, [(u+chx) chx]−s/2 and [(u′+chx′) chx′]s/2 can

be eliminated by a change of gauge. Hence the ansatz

Φ(`)
mz (x, u) =

(x2 + y2)−s/2

y1/2
eimzγ〈`,mz|`,mx = 0〉Φ(x, y)

(86)
where sin y was linearized, u+chx was quadratized. The
resulting local eigenvalue problem is(

Ω− 1√
2

)
Φ(x, y) = − (−1)`

21/2π

∫
D

dx′dy′(yy′)1/2

[(x2 + y2)(x′2 + y′2)]1/4

× Φ(x′, y′)

x2 + y2 + x′2 + y′2
(87)

where we have conveniently restricted the integration to
the upper half (y > 0) of the disk D of radius ρ0 � 1
centered in (0, 0). In polar coordinates

(x, y) = (ρ cosψ, ρ sinψ) (88)

only (yy′)1/2 depends on ψ in the kernel. It depends on
ψ in a factorised way so that Φ is also factorised:

Φ(x, y) = ρ−1/2Φ(ρ)(sinψ)1/2 (89)

and, since
∫ π

0
dψ′ sinψ′ = 2,(

Ω− 1√
2

)
Φ(ρ) = − (−1)`21/2

π

∫ ρ0

0

dρ′
(ρρ′)1/2

ρ2 + ρ′2
Φ(ρ′)

(90)
The scale invariance of this kernel motivates the logarith-
mic change of variable

t = ln
ρ

ρ0
and φ(t) =

(
ρ

ρ0

)1/2

Φ(ρ) (91)

The resulting eigenvalue problem

Ωφ(t) =
1

21/2
φ(t)− (−1)`

21/2π

∫ 0

−∞

dt′φ(t′)

ch(t− t′)
(92)

admits Eq. (84) as a continuous spectrum with eigen-
functions φ(t) that are for t→ −∞ linear superpositions
of eikt and e−ikt, since

∫
R dte

ikt/ ch t = π/ ch(kπ/2); we
have checked numerically that it has no discrete eigen-
value [60].
Physical interpretation: We collect Eqs. (86,89,91),
taking as a particular solution of Eq. (92) at t large and
negative the function φ(t) = 1, which corresponds to an
asymptotic plane wave in t space with a vanishing wave
vector, that is to k = 0 in Eq. (84) [61]. Restricting for
simplicity to a zero total angular momentum ` = 0 [62],
we then find that

Φ
(0)
0 (x, u) ∝

(x,u)→(0,−1)

1

ρs+3/2
(93)

A more inspiring writing is obtained in terms of the
center-of-mass and relative wavevectors K24 = k2 + k4

and k24 = (k2 − αk4)/(1 + α) of particles 2 and 4:

Φ(0)(x, u) ∝
K24/k24→0

(
k24

K24

)s+3/2

(94)

One has indeed ρ2 ' 2(u + chx) and K2
24 = 2k2

2e
x(u +

chx), so that K24 and ρ vanish in the same way when
(x, u) → (0,−1); also the ratio K24/k24 tends to zero if
and only if u + chx → 0 [63]. Restricting to a small
neighbourhood of the singularity, K24 < εk24, where
ε� 1, we can in the ansatz (20) approximate the factor
(chx)s+3/2 by one and, in the denominator, approximate

k2
2 +k2

4 = 2k2
24 +2α−1

α+1k24 ·K24 + 1+α2

(1+α)2K
2
24 by its leading

order approximation 2k2
24 to isolate the singular behavior

of D(k2,k4):

Dsing(k2,k4) ∝ 1

k
s+7/2
24

(
k24

K24

)s+3/2

(95)

The key idea is then to see how this translates into
a singularity of the regular part A13 of the four-body
wavefunction that appears in the Wigner-Bethe-Peierls
contact condition (1). As we have seen below Eq. (5),
A13 = A is related to D(k2,k4) by a Fourier transform;
using (k24,K24) rather than (k2,k4) as integration vari-
ables, and the fact that k2·r2+k4·r4 = k24·r24+K24·R24,
where r24 = r2−r4 and R24 = (m2r2 +m4r4)/(m2 +m4)
are the relative and center-of-mass coordinates of the par-
ticles 2 and 4, we obtain for the contribution to A of the
singularity of D:

Asing(r2−R13, r4−R13) ∝
∫
K24<εk24

d3k24d
3K24e

iK24·(R24−R13)

× eik24·r24

k
s+7/2
24

(
k24

K24

)s+3/2

(96)



14

Integrating over the solid angles for k24 and K24, per-
forming the change of variable K24 = qk24r24/|R24−R13|
at fixed k24, changing the order of integration over k24

and q and finally integrating over k24 [64] we obtain

Asing(r2 −R13, r4 −R13) ∝ |R24 −R13|s−3/2

r24

×
∫ ε|R24−R13|/r24

0

dq

qs+1/2
[|q − 1|s−1/2 − (q + 1)s−1/2]

(97)

It then becomes obvious that the singularity in D(k2,k4)
at k2 +k4 = 0 is linked to a 1/r24 divergence of the regu-
lar part A13 of the four-body wavefunction at r24 = 0 [65]
[66]. This was physically expected: A13(r2 − R13, r4 −
R13) is essentially the wavefunction of particles 2 and
4 knowing that particles 1 and 3 have converged to the
same location in the s-wave; since 2 and 4 are in differ-
ent spin states, they interact in the s-wave and must be
sensitive to the 2− 4 Wigner-Bethe-Peierls contact con-
ditions, which implies a 1/r24 divergence when r24 → 0.
Such a divergence of A13 was already pointed out in the
scattering problem of two ↑↓ dimers in reference [41], and
in the general N↑ + N↓ fermionic problem when N↑ ≥ 2
and N↓ ≥ 2 in reference [42] (see footnote 20 of that
reference) [67].

This interpretation of the matrix kernel singularity at
(x, u) = (0,−1) has a simple, though illuminating impli-
cation: The 1/r24 divergence in A13 can take place only
when the particles 2 and 4 converge to the same location
in the relative partial wave of zero angular momentum,
since ↑ and ↓ particles resonantly interact only in the s-
wave. In such a configuration the angular momentum ` of
the function A13 (that is of the whole system) is carried
out by the center of mass motion of particles 2 and 4 with
respect to R13; in this case there is a univocal link be-
tween the angular momentum ` and the parity, as for sin-
gle particle systems, and the parity of A13 must be (−1)`.
This explains why the singularity at (x, u) = (0,−1), and
ultimately the third continuum (84), can appear only in
that parity channel [68].

V. SEARCH FOR THE FOUR-BODY EFIMOV
EFFECT

In the 3 + 1 fermionic problem, the signature of a
four-body Efimov effect was that an eigenvalue of the
corresponding M(s = 0) operator crosses zero for some
value of α below αc(2; 1) ' 13.6069, specifically for
α = αc(3; 1) ' 13.384 [13]. The question here is to know
whether or not such a crossing can occur for the 2 + 2
fermionic problem, that is for M(s = 0) corresponding
to Eqs. (68,69). We answer this question by a numerical
calculation of the eigenvalues of M(s = 0).
Numerical implementation: In the (−1)`+1 par-
ity sector, we truncate the x variable in a symmet-
ric way, that is to [xmin = −xmax, xmax], and we dis-

cretize it with a uniform step dx according to the
usual mid-point integration method. We use θ rather
than u = cos θ as integration variable, so that we use
Φ̌(x, θ) = (sin θ)1/2Φ(x, u) rather than Φ(x, u) as the
unknown function; multiplying the eigenvalue problem
ΩΦ = M(s = 0)Φ by (sin θ)1/2, we get an hermi-
tian eigenvalue problem with the same eigenvalues, the

same diagonal part and a kernel Ǩ
(`)
mz,m′z

(x, θ;x′, θ′) =

(sin θ sin θ′)1/2K
(`)
mz,m′z

(x, u;x′, u′) with u = cos θ, u′ =

cos θ′. For better accuracy, we use the Gauss-Legendre
integration scheme [44] for θ′ as this angular variable is
naturally bounded to [0, π] [69].

In the (−1)` parity sector, there is the additional com-
plication that the kernel diverges at the point (x, θ) =
(0, π), making the previous (x, θ) discretisation ineffi-
cient. At a small distance from this point, say less than
ρ0, the optimal set of variables is (t, ψ), where ψ ∈ [0, π]
is defined by Eq. (88) and t ∈ R− is given by Eq. (91),
since the resulting kernel is bounded after a convenient

change of the unknown function Φ̃
(`)
mz (t, ψ) = ρ Φ̌

(`)
mz (x, θ),

see Eq. (92). So we resort to a mixed scheme: for
ρ = [x2 + (π − θ)2]1/2 > ρ0, we use the (x, θ) set
of variables, with x uniformly discretised with a step
dx submultiple of ρ0 and θ discretised according to a
Gauss-Legendre scheme over the interval [0, θmax] where
θmax = π for |x| > ρ0 and θmax = π − (ρ2

0 − x2)1/2 for
|x| ≤ ρ0, the number of angular points being scaled lin-
early with θmax; for ρ < ρ0, we use the (t, ψ) set of vari-
ables, with t truncated to [tmin, 0] and discretized with
a uniform step dt according to the mid-point integra-
tion method, and ψ ∈ [0, π] discretised according to the
Gauss-Legendre scheme [70].

Results: The numerically obtained spectrum of M(s =
0) for the 2 + 2 fermionic problem is plotted in Fig. 3
[left half for the (−1)` parity channels, right half for the
(−1)`+1 parity channels], for the first values 0 ≤ ` ≤ 3
of the four-body internal angular momentum quantum
number `, as a function of the mass ratio α =

m↑
m↓

. It

is a symmetric function under the exchange α↔ 1/α so
the figure is restricted to α ≥ 1; as the starting integral
equation (13) assumes scale invariance, which is broken
by the three-body Efimov effect beyond the threshold
αc(2; 1) = 13.6069 . . ., the figure is also restricted to α <
αc(2; 1).

For the (−1)` parity channels, the spectrum is entirely
within the limits of the analytically predicted continu-
ous spectrum, which are shown as dashed lines, except
for even ` in a barely visible small triangle [71] close to
Ω = 0.75 with 1 ≤ α . 1.2: this means that the neces-
sarily discrete numerical spectrum must tend to a con-
tinuum when the truncations xmax = −xmin and tmin

tend to +∞ and −∞ respectively. The lower border of
the continuum corresponds for even ` to the k → 0 limit
in Eq. (84), that is zero, and for odd ` to the smallest

of the two quantities, 1/
√

2 [this is the k → +∞ limit
of Eq. (84)] and ΛL=1(0, α) [this is the minimal value of
Eq. (81), see Fig. 2]. The upper border of the continuum
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FIG. 3: (Color online) Eigenvalues of M(s = 0) as functions of the mass ratio α ∈ [1, 13.6], for various values of the angular
momentum ` and the parity [left half for the parity (−1)`, right half for the parity (−1)`+1], obtained numerically after

discretisation and truncation of the variables x and θ in the zone ρ ≡ [x2 + (π − θ)2]1/2 > ρ0 and of their log-polar versions
t ≡ ln(ρ/ρ0) and ψ in the zone ρ < ρ0 (see text): xmax = −xmin = 12, dx = 1/5, dθ ' π/15, ρ0 = 2/5, tmin = −12, dt = 1/5,
dψ = π/15, with the Gauss-Legendre integration scheme for the integrals over θ and ψ, and the mid-point integration formula
for the integrals over x and t. For the (−1)`+1 parity channels the ρ < ρ0 zone is not useful and is not included in the numerics.
The boundaries of the continuous spectrum of M(s) are given by black thick dashed curves: for the (−1)`+1 parity channels,
this corresponds to the x→ +±∞ continua of Eqs. (77,81) with all L ≥ 1; for the (−1)` parity channels, this corresponds to
the x → + ±∞ continua of Eqs. (77,81) with all L ≥ 0 and to the (x, θ) → (0, π) [that is t → −∞] continuum of Eq. (84).
Contrarily to the 3 + 1 case, no eigenvalue of M(s = 0) is found to cross zero for α < αc(2; 1) = 13.6069 . . .: no four-body
Efimov effect is found for the 2 + 2 fermionic problem.

corresponds, whatever the parity of `, to ΛL=0(0, 1/α)
[this is the maximal value of Eq. (77), see Fig. 2].

For the (−1)`+1 parity channels, there are three dif-
ferences. First, the continuum (84) cannot be realized,
so that the lower border of the continuous spectrum of
M(s = 0), now given by ΛL=1(0, α), reaches zero only at
α = αc(2; 1). Second, the L = 0 continua in Eqs. (77, 81)
cannot be realized so that the upper border of the contin-
uum of M(s = 0), given by ΛL=2(0, 1/α), is everywhere
below 1 = limα→+∞ ΛL=2(0, 1/α). Third, the contin-
uum presents, in the α − Ω plane for 1.53 . α, a large
void internal area, corresponding to ΛL=2(0, α) < Ω <
ΛL=1(0, 1/α). Still, many numerically found eigenvalues
lay in this internal area: these eigenvalues must corre-
spond to the discrete spectrum of M(s = 0), with local-
ized (square-integrable) eigenfunctions [72]. We checked
this numerically by calculating the density of states of
M(s = 0), in practice the histogram of its eigenval-
ues, for increasing values of the numerical truncation
xmax = −xmin: by doubling the values of xmax and
xmin, the spacing ≈ π/xmax between successive k in
Eqs. (77,81) is approximately divided by two so that the
density of states of the numerical quasi-continuum is ap-
proximately multiplied by two, whereas the density of
states of the discrete spectrum is essentially not (only
exponentially weakly) affected as soon as xmax is much
larger than the localized eigenfunctions width in x space.
This is what is observed in Fig. 4, knowing that the lo-

cations of the internal and external borders of the con-
tinuum (corresponding to the dashed lines in Fig. 3) are
indicated by vertical dashed lines in Fig. 4.

Synthesis: Contrarily to the 3+1 case, no discrete eigen-
value of M(s = 0) (necessarily discrete because it would
be below the lower border of the continuum) crosses zero
for α < αc(2; 1) = 13.6069 . . ., that is below the three-
body Efimov effect threshold: no four-body Efimov ef-
fect is found for the 2 + 2 fermionic problem [73]. This
conclusion is apparent in Fig. 3, obtained for all the in-
ternal angular momentum quantum numbers 0 ≤ ` ≤ 3.
It extends to all the angular momentum values that we
were able to numerically explore, 4 ≤ ` ≤ 12, as we
have shown with a dedicated careful spectral analysis
almost perfectly at the three-body critical mass ratio,
α = 13.6069, see Fig. 5.

VI. CONCLUSION

We have studied in three dimensions a four-body 2 + 2
fermionic system with resonant interactions and we have
derived its momentum space integral equations at zero
energy. By using rotational invariance and scale invari-
ance, we have reduced them to a numerically tractable
two-dimensional form (the unknown function depends on
two variables only). With these equations we have nu-
merically shown that no four-body Efimov effect occurs
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FIG. 4: (Color online) Histogram of the eigenvalues Ω of
M(s = 0) for a mass ratio α = 10 and an angular momentum
` = 1 in the (−1)`+1 parity channels, obtained numerically af-
ter discretisation and truncation of the x and θ variables. The
numerical grid is the same as in Fig. 3, except that much larger
values of xmax = −xmin are used, to reveal the emergence of
the continuous part of the spectrum in the xmax → +∞ limit:
xmax = 48 (red bars in the foreground) and xmax = 96 (blue
bars in the background). The black vertical dashed lines in-
dicate the analytically predicted borders of the continuous
spectrum (as in Fig. 3); in between the first two ones and
in between the last two ones, it is indeed observed that the
number of eigenvalues per bin is approximately multiplied by
two when xmax is doubled. On the contrary, the histogram
is unaffected by the change of xmax in the bins strictly in be-
tween the second and third dashed lines, indicating that the
corresponding eigenvalues belong to the discrete spectrum of
M(s = 0), with localized eigenfunctions in x space.

for the 2+2 fermionic system in angular momentum chan-
nels 0 ≤ ` ≤ 12. The 3+1 fermionic system thus remains
the only known one exhibiting a four-body Efimov effect
[13].

A detailed treatment of the second motivation for de-
riving these integral equations, that is a calculation of
the already measured [20, 21] fourth cluster coefficient b4
of the spin 1/2 unitary Fermi gas, is beyond the scope of
this paper. Still we have numerically calculated an ed-
ucated guess for b4 inspired from the analytical form of
the third cluster coefficient b3 [28, 29]: it is found that
this guess does not reproduce the experimental value (see
Appendix B) so that a dedicated work is needed and left
for the future.
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FIG. 5: (Color online) Numerically determined minimal

eigenvalue Ωmin of M (`)(s = 0) almost at the three-body
critical mass ratio, α = 13.6069 ' αc(2; 1), as a function
of the numerical cut-off tmin = −xmax. For each given cut-
off value, each angular momentum ` from 0 to 12 and parity
sector (−1)` and (−1)`+1 contributes as a point in the figure:
The fact that the points (in red) are superimposed and can-
not be distinguished shows that Ωmin does not depend on `
nor on the parity. Furthermore, Ωmin is always positive, it
is linear in 1/x2

max and extrapolates to zero for infinite cut-
off (see blue line): This is perfectly consistent with the fact
that Ωmin corresponds to the lower border of the 2 + 1 con-
tinuum ΛL=1(ik, α), where k has a minimal, discrete value
scaling as 1/xmax in presence of the numerical cut-off, and
ΛL=1(ik, αc(2; 1)) vanishes quadratically at k = 0. In other
words, there is no negative Ωmin and no four-body Efimov
effect for 2 + 2 fermions.

Appendix A: Is the spectrum of M(s) bounded ?

In the parity sector (−1)`, the third contribution in
Eq. (69) diverges when (x, u) → (0,−1) or (x′, u′) →
(0,−1). The question is to know if this makes the oper-
ator M(s) unbounded, for a purely imaginary s = iS.

To investigate this problem, we construct a simplified
functional that focuses on the diverging part of the ma-
trix kernel (69), replacing each non-zero limit expression
by its limit, and replacing the vanishing expressions by
their leading order (here quadratic) approximations:

u+ chx ' 1

2
(x2 + y2) with y ≡ π − θ. (A1)

Dropping numerical factors and other bounded pieces
(for example the bit raised to the power s, of modulus
one), we obtain the mean-Ω functional

〈Ω〉 =

∫
dxdu

∫
dx′du′ Φ∗(x,u)Φ(x′,u′)

[(x2+y2)(x′2+y′2)]1/4(x2+y2+x′2+y′2)∫
dxdu|Φ(x, u)|2

(A2)
where the integrals are taken over some convenient neigh-
borhood of (x, u) = (0,−1). It is convenient to use the
angle θ rather than u = cos θ as integration variable,
which pulls out a Jacobian sin θ ' y; we absorb it in the
integral in the denominator of Eq. (A2) with the change
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of function

Φ̌ = (sin θ)1/2Φ(x, u) (A3)

A factor (sin θ sin θ′)1/2 ' (yy′)1/2 remains in the inte-
grand in the numerator. We restrict the integration over
(x, y) to the upper half y > 0 of the disk x2 + y2 < 1.
Then it is natural to move to polar coordinates:

(x, y) = (ρ cosφ, ρ sinφ) (A4)

so that x2 + y2 = ρ2, x′2 + y′2 = ρ′2 and (yy′)1/2 =
(ρρ′)1/2(sinφ sinφ′)1/2. The occurrence of the Jacobians
ρ and ρ′ in the elements ρdρ and ρ′dρ′ motivates the
change of variable in the radial integration:

X = ρ2 and X ′ = ρ′2. (A5)

Then, considering Φ̌ as a function of X and φ, we obtain

〈Ω〉 =

∫ 1

0
dXdX′

X+X′

∫ π
0
dφdφ′(sinφ sinφ′)1/2Φ̌∗(X,φ)Φ̌(X ′, φ′)

2
∫ 1

0
dX

∫ π
0
dφ |Φ̌(X,φ)|2

(A6)
To get rid of the polar angle φ, we introduce

Φa(X) ≡
∫ π

0

dφ (sinφ)1/2Φ̌(X,φ) (A7)

so that the integral over φ and φ′ in the numerator
of Eq. (A6) reduces to the product Φ∗a(X)Φa(X ′). In
that numerator, we use the fact that the modulus of
the integral over X and X ′ is less than the integral

of the modulus, and that
1

X +X ′
≤ 1

(X2 +X ′2)1/2
.

In the denominator of Eq. (A6), at fixed X, we ap-
ply over the interval φ ∈ [0, π] the Cauchy-Schwarz in-
equality |〈f |g〉|2 ≤ 〈f |f〉 〈g|g〉 (in Dirac’s notation) with
f(φ) = (sinφ)1/2 and g(φ) = Φ̌(X,φ); after integration
of the resulting inequality over X, we get:∫ 1

0

dX |Φa(X)|2 ≤ 2

∫ 1

0

dX

∫ π

0

dφ |Φ̌(X,φ)|2 (A8)

whose right-hand side is the denominator of Eq. (A6).
We arrive at

|〈Ω〉| ≤

∫ 1

0
dX

∫ 1

0
dX ′ |Φa(X)| |Φa(X′)|

(X2+X′2)1/2∫ 1

0
dX |Φa(X)|2

(A9)

We again move to polar coordinates

(X,X ′) = (r cosψ, r sinψ) (A10)

so as to simplify the factor
1

(X2 +X ′2)1/2
=

1

r
with the

Jacobian and to obtain

|〈Ω〉| ≤
∫ π/2

0
dψ
∫ R(ψ)

0
dr|Φa(r cosψ)||Φa(r sinψ)|∫ 1

0
dX |Φa(X)|2

(A11)

Since the domain of integration over (X,X ′) is the square
[0, 1]2, ψ runs over [0, π/2] and, at fixed ψ, r runs over
[0, R(ψ)] with

R(ψ) = min

(
1

cosψ
,

1

sinψ

)
. (A12)

In the integral over r at fixed ψ, we again use the Cauchy-
Schwarz inequality over the interval r ∈ [0, R(ψ)] with
f(r) = |Φa(r cosψ)| and g(r) = |Φa(r sinψ)|:

∫ R(ψ)

0

dr|Φa(r cosψ)||Φa(r sinψ)| ≤[∫ R(ψ)

0

dr|Φa(r cosψ)|2
]1/2 [∫ R(ψ)

0

dr|Φa(r sinψ)|2
]1/2

(A13)

In the first factor in the right-hand side of Eq. (A13), we
perform the change of variable X = r cosψ, so that

∫ R(ψ)

0

dr|Φa(r cosψ)|2 =
1

cosψ

∫ R(ψ) cosψ

0

dX|Φa(X)|2

≤ 1

cosψ

∫ 1

0

dX|Φa(X)|2 (A14)

where we used R(ψ) cosψ ≤ 1 and the non-negativeness
of |Φa|2. The last integral in Eq. (A14) is nothing but
the denominator in the right-hand side of Eq. (A11)! We
proceed similarly in the second factor in the right-hand
side of Eq. (A13), except that cosψ is replaced with sinψ.
Finally the denominator in Eq. (A11) cancels out, so that

|〈Ω〉| ≤
∫ π/2

0

dψ

(cosψ sinψ)1/2
< +∞ (A15)

and the spectrum of M(s) is bounded, when s ∈ iR.

Appendix B: Enunciating and testing a conjecture
for b4

1. The cluster expansion

Consider a spatially uniform spin 1/2 Fermi gas at
thermal equilibrium in the grand canonical ensemble in
the thermodynamic limit, with a temperature T , and a
single chemical potential µ since the gas is unpolarized.
The well-known cluster expansion is a series expansion of
its pressure in powers of the fugacity z = exp(βµ) in the
non-degenerate limit µ → −∞ for a fixed temperature
T , with β = 1/(kBT ) [45]. For our gas, it is generally
written as

Pλ3

kBT
= 2

∑
n≥1

bnz
n (B1)
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where the overall factor 2 accounts for the number of spin
components and λ is the thermal de Broglie wavelength

λ =

(
2π~2

mkBT

)1/2

(B2)

When reexpanded in terms of the small degeneracy pa-
rameter ρλ3, where ρ is the total density, the cluster
expansion gives rise to the virial expansion with virial
coefficients an [45]. In practice, one rather considers the
deviation ∆bn of bn from its ideal Fermi gas value, that
is (for n > 1) from the mere effect of Fermi statistics:

bn =
(−1)n+1

n5/2
+ ∆bn (B3)

While the cluster expansion has been studied for a long
time and the second cluster coefficient b2 was obtained
analytically in reference [46] (note that b1 = 1 accord-
ing to the ideal gas law), there is a renewed interest in
the cluster coefficients for n > 2. First, the new chal-
lenge is to calculate the bn for resonant s-wave interac-
tions (with a scattering length a much larger in abso-
lute value than the interaction range), whereas previous
studies were concentrating on the hard sphere model [47].
Second, the bn have been extracted up to n = 4 in the
unitary limit, from a measurement of the equation of
state of ultracold atomic Fermi gases [20, 21]. The two
independent groups have reported consistent values of
the fourth cluster coefficient:

∆bENS
4 = 0.096(15) and ∆bMIT

4 = 0.096(10) (B4)

2. In the unitary limit

For zero-range interactions with infinite s-wave scat-
tering length a−1 = 0, i.e. in the unitary limit, the har-
monic regulator method used in [25], that introduces an
isotropic harmonic trapping potential, is quite efficient,
due to the SO(2, 1) dynamical symmetry resulting from
the scale invariance [33, 48] and the subsequent separa-
bility of Schrödinger’s equation in hyperspherical coordi-
nates [32, 38] in the trap. The value of bn can be deduced
from the canonical partition functions, that is from the
energy spectra, of all the possible k-body problems in the
trap, with k ≤ n. One has the following expansion of the
grand potential Ω of the thermal equilibrium gas in the
trap:

−Ω

kBTZ1
=

∑
(n↑,n↓)∈N2∗

Bn↑,n↓(ω)z
n↑
↑ z

n↓
↓ (B5)

where Z1 is the canonical partition function for one parti-
cle in the trap, and it is convenient at this stage to be gen-
eral and introduce independent chemical potentials µσ for
the various spin components σ, so that zσ = exp(βµσ).
Then, from the asymptotically exact local density ap-
proximation [26] (see also [25]), and introducing also the

deviations ∆Bn↑,n↓(ω) of Bn↑,n↓(ω) from the ideal Fermi
gas value [74], one has

2∆bn = n3/2
n−1∑
n↑=1

∆Bn↑,n↓=n−n↑(0
+) (B6)

where ∆B(0+) = limω→0+ ∆B(ω) and where we could
restrict the sum to nσ 6= 0, σ =↑, ↓, since the fully po-
larized configurations are non-interacting and have zero
deviations from the ideal gas.

For n = 3, extending to fermions the technique ini-
tially developed for bosons [28], the following analytical
expression was obtained [29] [75]:

∆B2,1(0+) =
∑
`∈N

(
`+

1

2

)∫ +∞

0

dS

π
S
d

dS
[ln Λl(iS, α)]

(B7)
where the function Λl is given by Eq. (78), and the mass
ratio between the opposite spin component α is equal to
one (so that ∆B2,1 = ∆B1,2). It gives

∆b3 ' −0.355103 (B8)

in agreement with previous numerical studies [26, 27] and
with the experimental values [20].

For n = 4, the problem is still open. A numerical
attempt [30], with brute force calculation of the 4-body
unitary spectrum in the trap, has produced the value

∆bBlume
4 = −0.016(4) (B9)

The disagreement with the experimental results (B4) is
attributed to uncertainties in extrapolating to ω → 0
the numerical values of ∆Bn↑,n↓(ω), in practice obtain-
able only for ~ω & kBT . An approximate diagrammatic
theory [24] (keeping even in the unitary limit only the
diagrams that have leading contribution in the perturba-
tive regime of a large effective range or a small scattering
length) gives an estimate closer to the experimental val-
ues (B4),

∆bLevinsen
4 ≈ 0.06 (B10)

Extending the analytical method of reference [28] to the
fermionic four-body problem is technically challenging
and goes beyond the scope of the present work. On the
contrary, it is reasonable here to propose and test a guess
by direct transposition of Eq. (B7): the transcendental
function Λl(s) of the three-body problem is formally re-
placed by detM (`)(s) for the four-body problem, where
det is the determinant and the operator M (`)(s), acting

on the spinor functions Φ
(`)
mz (x, u) as in the right-hand

side of Eq. (68), was introduced and spectrally discussed
in section IV B for the 2 + 2 fermionic problem, and has
a known equivalent for the 3 + 1 fermionic problem, see
Eq. (14) of reference [13]. Indeed, in both cases, the
scaling exponents s (purely imaginary in the efimovian
channels, real otherwise) allowed by Schrödinger’s equa-
tion in the unitary Wigner-Bethe-Peierls model are such
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that Λl(s) = 0 for n = 3, or such that Eq. (68) has

a non-zero solution Φ
(`)
mz (x, u), that is M (`)(s) admits a

zero eigenvalue. Hence our conjecture:

∆Bconj
n↑,n↓

(0+) =
∑
`∈N

(
`+

1

2

)

×
∫ +∞

0

dS

π
S
d

dS
[ln detM (`)

n↑,n↓
(iS)] (B11)

with (n↑, n↓) ∈ {(1, 3), (2, 2), (3, 1)} andM
(`)
n↑,n↓ is the op-

erator M (`) for the four-body problem with nσ particles
in each spin component σ.

3. Existence of the logarithmic derivative of the
determinant

The conjecture (B11) is not as innocent as it may look
at first sight. The difficulty is that M (`) is actually an op-
erator, and not a finite size matrix: it has a continuous
spectrum, constituting an infinite, dense set of “eigen-
values”; even its discrete spectrum may present accumu-
lation points, leading to an infinite but countable num-
ber of eigenvalues. In other words, the determinant of
M (`)(iS) is not finite. Numerically, as we have already
done in section V, one of course truncates the unbounded
variable x to the compact interval [−xmax, xmax], which
amounts to imposing the boundary conditions to the
spinor:

Φ(`)
mz (x = ±xmax, u) = 0 ∀u ∈ [−1, 1],∀mz ∈ {−`, . . . , `}

(B12)
After discretization of the x and u variables, M (`)(iS) is
then replaced by a matrix, with a well-defined determi-
nant; still it remains to know if there is convergence of
the integrand in Eq. (B11) when xmax → +∞. As we
now see, the answer is positive.

The key point is that what appears in the integrand of
Eq. (B11) is not the determinant itself, rather its loga-
rithmic derivative, which can be written as

d

dS
ln detM (`)(iS) = Tr

{
[M (`)(iS)]−1 d

dS
M (`)(iS)

}
(B13)

where Tr is the trace and M−1 the inverse of M .
Parity (−1)`+1: In the parity sector (−1)`+1, the spec-
trum of M (`)(iS) is at non-zero distance from 0 for a
mass ratio α = 1, as there is no 4-body Efimov effect,
see Fig. 3. So the inverse of M (`)(iS) is well defined.
Also the operator M (`)(iS) is local in the x basis, mean-
ing that the off-diagonal matrix elements of the opera-
tor D−1/2K(`)D−1/2 are rapidly decreasing functions of
|x−x′|, for example there exists a constant A(`) such that

|〈x, u, `,mz|K(`)(iS)|x′, u′, `,m′z〉|
[d(x, u)d(x′, u′)]1/2

≤ A(`)

ch(x− x′)
(B14)

for all x, x′, u, u′ and all mz,m
′
z of parity opposite to `,

and for all S ∈ R. Here, we have used Dirac’s notation

and singled out as in Eq. (68) a diagonal part and a kernel
part,

M (`)(iS) = D +K(`)(iS) (B15)

where the operator D is positive and defined by the
diagonal-element function d(x, u),

D|x, u, `,mz〉 = d(x, u)|x, u, `,mz〉 with

d(x, u) =

[
α

(1 + α)2

(
1 +

u

chx

)
+

e−x + αex

2(α+ 1) chx

]1/2

(B16)

This locality is apparent for the first two contributions
in the right-hand side of Eq. (69): each contribution is
bounded, and is consistent with Eq. (B14) at the four
infinities (x, x′) = (±∞,±∞) (see reasoning in section
IV B). We then expect that the inverse of M (`)(iS), that
can be written as

[M (`)(iS)]−1 = D−1 +K
(`)
inv(iS) (B17)

is also local, from the geometric series expansion:

(D +K)−1 = D−1/2(11 +D−1/2KD−1/2)−1D−1/2

= D−1 +D−1/2
∑
n≥1

(−1)n(D−1/2KD−1/2)nD−1/2

(B18)

each term of the series being local (for simplicity, we omit
to write the exponent (`) and the argument iS). This
holds of course if the operator D−1/2KD−1/2 is small
enough. For ` = 1 in the 2 + 2 fermionic problem, this
can be made rigorous: the best constant in Eq. (B14) is

A =
2(2−

√
3)

3π
' 0.05686 (B19)

Then [76]

|〈x, u, ` = 1,mz = 0|K(`=1)
inv (iS)|x′, u′, ` = 1,m′z = 0〉|

[d(x, u)d(x′, u′)]−1/2
≤

2A√
1− (2πA)2

sh
(

2δ
π |x− x

′|
)

sh(2|x− x′|)
(B20)

with δ = arccos(−2πA) ∈]π/2, π[.
This locality per se is not enough to ensure the conver-

gence of the trace in Eq. (B13). Making the trace explicit
in that equation and injecting a closure relation leads to
the writing

d

dS
ln detM (`)(iS) =

∫
R
dxdx′

∫ 1

−1

dudu′
∑
mz,m′z

(−1)`+1

〈x, u, `,mz|[M (`)(iS)]−1|x′, u′, `,m′z〉

× 〈x′, u′, `,m′z|
d

dS
M (`)(iS)|x, u, `,mz〉 (B21)
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where the sum is restricted to mz and m′z of parity oppo-
site to that of ` as the exponent (−1)`+1 indicates. The
locality of M(iS)−1, and even of d

dSM(iS), exponentially
bounds the excursion of |x − x′| in the integral over x′,
but still there remains the integral over the unbounded
variable x. One must take advantage of the structure of
K(iS) and of its derivative: splitting

K(iS) = K1(iS) +K2(iS), (B22)

where K1 and K2 respectively correspond to the first
term and the second term in the right-hand side of
Eq. (69), one finds

d

dS
K(iS) = i[D1,K1(iS)] + i[D2,K2(iS)] (B23)

where [A,B] = AB − BA is the commutator of two op-
erators and the diagonal operators Dj are defined by the
following diagonal functions

d1(x) =
1

2
ln

e+x

2 chx
(B24)

d2(x) =
1

2
ln

e−x

2 chx
(B25)

such that

Dj |x, u, `,mz〉 = dj(x)|x, u, `,mz〉 (B26)

Clearly the diagonal term D−1 in M−1, see Eq. (B17),
has a zero contribution to the trace, as [D, Dj ] = 0.
Eq. (B21) is correspondingly rewritten as

d

dS
ln detM (`)(iS) =

∫
R
dxdx′

∫ 1

−1

dudu′
∑
mz,m′z

(−1)`+1

〈x, u, `,mz|K(`)
inv(iS)|x′, u′, `,m′z〉

×
2∑
j=1

i[dj(x
′)−dj(x)]〈x′, u′, `,m′z|K

(`)
j (iS)|x, u, `,mz〉

(B27)

Then d1(x) tends exponentially rapidly to 0 when x →
+∞, whereas it diverges linearly with x when x→ −∞;
the contrary holds for d2(x). A second property is that
there exists a constant B such that

|〈x, u, `,mz|K1(iS)|x′, u′, `,m′z〉| ≤(
e+x+x′

4 chx chx′

)1/4
B

ch(x− x′)
(B28)

|〈x, u, `,mz|K2(iS)|x′, u′, `,m′z〉| ≤(
e−x−x

′

4 chx chx′

)1/4
B

ch(x− x′)
(B29)

This is due to the fact, evident from Eqs. (59,60), that
the denominator in the integral over φ in Eq. (69), is
always larger than (µ↑↓/m↑) ch(x − x′). Then, for |x −
x′| = O(1), the upper bound for the matrix elements of
K1 (respectively K2) tends exponentially fast to 0 when
x → −∞ (respectively x → +∞), due to the first factor
in Eqs. (B28,B29), which suppresses the linear divergence
in d1(x) (respectively in d2(x)). Then the integral over
x and x′ in the trace converges exponentially rapidly at
infinity, the logarithmic derivative of the determinant of
M (`)(iS) in the (−1)`+1 parity channel is well defined [77]
and its value can be calculated with a rapidly vanishing
error in the truncation xmax when xmax → +∞. The
numerics agree with this conclusion, and indicate that
the surprisingly low value xmax = 5 is sufficient.
Parity (−1)`: The situation is physically quite differ-
ent for the (−1)` parity sector, at least for even `: The
third contribution in Eq. (69) is non zero, and it leads
to a continuous part in the spectrum of M (`)(iS) that
reaches zero for even `, see Eq. (84). Then the spectrum
of the inverse [M (`)(iS)]−1 is no longer bounded, and its
matrix elements are not bounded even if one uses the op-
timal (t, ψ) representation in which the matrix elements
of M (`)(iS) are bounded, see Eq. (92), when the lower
cut-off tmin on the t variable tends to −∞. Then, as we
shall see, there is no exponential locality in the t-basis
but still the logarithmic derivative of the determinant of
M (`)(iS) has a finite limit when tmin → −∞, which is
approached with an error vanishing linearly with 1/tmin.

To derive this property, a spectral or “Fourier-space”
analysis is more appropriate than the “real”-space analy-
sis of the previous parity case. After the gauge transform
and the change of functions performed in Eqs. (86,89,91),
the asymptotic t → −∞ part of the eigenstates of
M (`)(iS) of the continuum (84) can be written as

φk(t) = eikt − eiθ(k,S)e−ikt, k > 0 (B30)

see Fig. 6. The plane waves eikt and e−ikt are indeed two
linearly independent solutions of the eigenvalue problem
(92) with

Ω = Ωk =
1√
2

[
1− 1

ch(kπ/2)

]
(B31)

[see Eq. (84), here ` is even]. The right solution is some
specific superposition of these two degenerate solutions,
with a relative amplitude determined by the physics at
t = O(1), that is for (x, u) not extremely close to (0,−1).
Analytically the value of this relative amplitude is an un-
known function of k and S, but we know that it must be
of modulus one, so that we can express it as in Eq. (B30)
in terms of a mere phase shift θ(k, S) ∈ R: (i) the “Hamil-
tonian” M (`)(iS) for the spinor is hermitian, so that
the corresponding evolution operator is unitary and con-
serves probability, (ii) the third continuum (84) is not de-
generate with the other continua for the considered mass
ratio α = 1, so the wave eikt incoming from t = −∞
has no channel to escape and must fully get out by the
incoming channel.
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t

g δ(t)

t=0t=t
min

t=L

exp(ikt)

-e
iθ(k,S)

exp(-ikt)

FIG. 6: Diagram giving the structure of the eigenstates of the
third continuum (84), in terms of the variable t of Eq. (91):
k > 0 is the wave vector of the incoming wave, −k the one of
the reflected wave with a phase shift θ(k, S). The reflection
due to the physics at t = O(1) is, in a toy model, represented
by a Dirac scattering potential at t = 0 and a hard wall acting
as a mirror at t = L; the toy model exemplifies the expected
low k behavior (B32) of θ(k, S).

The key property that we shall use is that, as it is com-
mon in one-dimensional scattering problems, the phase
shift θ(k, S) vanishes linearly at low k:

θ(k, S) =
k→0

kb(S) + o(k) (B32)

where b(S) is a S-dependent effective scattering length.
We present two plausible arguments to establish this.
The first argument results from the assumption that the
writing (B30) can be smoothly extended from k > 0 to
k < 0: This implies that if one directly replaces k by −k
in Eq. (B30), the resulting wave t 7→ e−ikt− eiθ(−k,S)eikt

must reproduce the physical solution eikt − eiθ(k,S)e−ikt

up to a global phase factor, so that eiθ(k,S) = e−iθ(−k,S)

and there exists an integer q such that

−θ(−k, S) = θ(k, S) + 2qπ (B33)

The fact that, in one dimension, the arbitrarily low en-
ergy waves are generically fully retroreflected (no matter
how small, but non-zero, the scattering potential is) leads
to θ(k, S)→ 0 for k → 0 and to q = 0 in Eq. (B33); then
if θ(k, S) is a smooth function of k, Eq. (B32) holds. The
second argument utilizes some model for the scattering
potential in the region t = O(1), introducing on purpose
most singular potentials, see Fig. 6: a pointlike fixed scat-
tering center of coupling constant g = ~2/(2meffa) placed
at t = 0 at a distance L from a hard wall (the second el-
ement acts as a mirror and ensures that the wave is fully
reflected at all energies). At low k, the dispersion re-
lation Ωk can be quadratized, Ωk ≈ ~2k2/(2meff) with
meff > 0, leading to an effective Schrödinger equation
and scattering problem, so that at fixed S

eiθ(k) =
(ka)−1 + (tan kL)−1 + i

(ka)−1 + (tan kL)−1 − i
(B34)

The phase shift θ(k, S) is indeed an odd function of k,
and at low k one indeed obtains the linear law (B32) with
2/b(S) = 1/a(S) + 1/L(S).

Then the property (B32) leads to the conclusion that
the logarithmic derivative of the determinant of M (`)(iS)
has a finite limit when the lower cut-off value tmin tends
to −∞, as we now see. Similarly to Eq. (B12), this lower
cut-off corresponds to the boundary condition

φ(tmin) = 0 (B35)

which, considering (B30), leads to the quantization con-
dition for k [78]:

2k|tmin|+ θ(k, S) = 2nπ, ∀n ∈ N∗ (B36)

Then the contribution of the corresponding eigenvalues
to the logarithmic derivative of the determinant is

d

dS
ln detM (`)(iS)|� =

∑
n>0

d

dS
ln Ωk =

∑
n>0

Ω−1
k

dΩk
dk

dk

dS

(B37)
Taking the derivative of Eq. (B36) with respect to S at
fixed n we obtain

dk

dS
= − ∂Sθ(k, S)

2|tmin|+ ∂kθ(k, S)
(B38)

In the large |tmin| limit, one can neglect ∂kθ(k, S) in the
denominator and one can replace in Eq. (B37) the sum
over n by an integral

∫
dn. According to Eq. (B36),

2
dk

dn
|tmin| →

tmin→−∞
2π (B39)

so that

d

dS
ln detM (`)(iS)|� →

tmin→−∞
−
∫ +∞

0

dk

2π

1

Ωk

dΩk
dk

∂Sθ(k, S)

(B40)
This is finite even if Ωk vanishes quadratically in k = 0,
i.e. it is saved from a näıvely expected logarithmic diver-
gence, because the phase shift θ(k, S) vanishes linearly
with k, and so does its derivative with respect to S.

This main point being established, there remains a
problem of practical interest, the speed of the conver-
gence with |tmin|. The answer is provided by Poisson’s
summing formula:∑

n∈Z
f(λn) =

1

λ

∑
n∈Z

f̂(2πn/λ) (B41)

for any λ > 0 and for an arbitrary function f(k), f̂(x) =∫
R dk exp(−ikx)f(k) being its Fourier transform. For

simplicity, we give details in the case where θ(k, S) is
linear in k at all k, that is θ(k, S) = kb(S). From the
quantization condition (B36) one has

k = λn with λ =
2π

2|tmin|+ b(S)
(B42)

so that

dk

dS
= −db(S)

dS

λ

2π
k (B43)
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This, together with Eqs. (B37), leads to a function f
given by

f(k) =
k db(S)

dS

Ωk

dΩk
dk

(B44)

such that

d

dS
ln detM (`)(iS)|� = − λ

2π

∑
n>0

f(λn) (B45)

Then using the fact that the function f is even, one can
express the sum over N∗ in terms of the sum over Z, and

then in terms of f(0) and f̂ :∑
n>0

f(λn) = −1

2
f(0) +

1

2

∑
n∈Z

f(λn)

= −1

2
f(0) +

1

2λ

∑
n∈Z

f̂(2πn/λ) (B46)

The function f is a smooth function of k, in particular
in k = 0, that rapidly decreases at infinity, so that its

Fourier transform f̂(q) is also rapidly decreasing when
|q| → +∞. In the large |tmin| limit, 1/λ diverges linearly
in |tmin| and one commits an exponentially small error
O[exp(−C|tmin|)] (C is some constant) in neglecting the
n 6= 0 terms in the last sum over n in Eq. (B46). As a
consequence,

d

dS
ln detM (`)(iS)|� =

tmin→−∞
− 1

2π

∫ +∞

0

dk
k db(S)

dS

Ωk

dΩk
dk

+
db(S)
dS

2|tmin|+ b(S)
+O[exp(−C|tmin|)] (B47)

where we have replaced λ, f(0) and f̂(0) by their values.
When θ(k, S) is not a linear function of k, we obtain the
general result

d

dS
ln detM (`)(iS)|� =

tmin→−∞
− 1

2π

∫ +∞

0

dk
∂Sθ(k, S)

Ωk

dΩk
dk

+ lim
k→0

1
2
dΩk
dk ∂Sθ(k, S)

Ωk[2|tmin|+ ∂kθ(k, S)]
+O[exp(−C|tmin|)]

(B48)

In any case, when tmin → −∞, the limiting value of the
logarithmic derivative of the determinant of M (`)(iS) is
approached with an error that vanishes only polynomially
with 1/tmin [79]

On the contrary, if the dispersion relation Ωk nowhere
approaches zero, as for an odd ` in the parity sec-
tor (−1)`, the limk→0 term in the right-hand side of
Eq. (B48) is zero and the convergence of the logarith-
mic derivative of the determinant is exponentially fast
with |tmin|, as also observed numerically; this last situa-
tion is then similar to the exponentially fast convergence
of d

dS ln detM (`)(iS) when xmax → +∞, which is always
achieved for the continua (77,81), even when the third
term in Eq. (69) is active.

4. Other convergence issues

To show that the conjectured values (B11) are finite,
one must also check that the integral over S is conver-
gent at infinity, and that the sum over the angular mo-
menta ` is convergent. This we have initially explored
numerically. First, at a given `, we found that the loga-
rithmic derivative of the determinant of M (`)(iS) rapidly
decreases when S → +∞, presumably exponentially fast,
see Fig. 7(a). Second, after the integration over S is
taken, one observes also a rapid convergence of the series
over `, see Fig. 7(b), if one takes the precaution to be
accurate enough in the discretization of the integral over
u [80].

These numerical results suggest that the contribu-
tion of angular momentum ` to ∆Bconj

2,2 (0+) and to

∆Bconj
3,1 (0+) can be obtained, when ` is large enough,

from a perturbative calculation in Eq. (B13), lim-

ited to leading order in the operators K
(`)
j defined by

Eqs. (B15,B22), at least for the 2+2 problem in the par-
ity channel (−1)`+1 where Kinv in Eq. (B17) has a chance
of being bounded. This idea was implemented with suc-
cess at the three-body level in reference [28], treating the
integral term in Eq. (78) as a perturbation of the constant
term [81].

Let us implement the idea for the 2+2 problem, in the
parity sector (−1)`+1 of the subspace of angular momen-
tum `. We truncate Eq. (B18) to order one included in
the operator K, to obtain

d

dS
ln detM ' Tr

[(
D−1 −D−1KD−1

) d

dS
K

]
(B49)

Then we split K as in Eq. (B22) and we use the commu-
tator structure (B23). Using the invariance of the trace
in a cyclic permutation and the fact that the diagonal
operators D of Eq. (B16) and Dj of Eq. (B26) commute,
we find that only the crossed quadratic contributions in
K1 and K2 survive, so that

d

dS
ln detM ' Tr

[
−D−1K1D−1 d

dS
K2 − (1↔ 2)

]
=

d

dS
Tr
(
−D−1K1D−1K2

)
(B50)

Integrating by parts in Eq. (B11) and using the fact that
the integrand is an even function of S we obtain the ap-
proximation∫ +∞

0

dS

π
S
d

dS
ln detM '

∫
R

dS

2π
Tr
(
D−1K1D−1K2

)
(B51)

Calculating the trace in the |x, u, `,mz〉 basis (with ` +
mz odd) and injecting a closure relation in that basis as
e.g. in Eq. (B21), we realize that the integrand has a
very simple dependence with S, due to simplifications as
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FIG. 7: (Color online) Convergence in the integration over S and summation over ` in Eq. (B11) (we recall that the mass

ratio is α = 1). (a) The logarithmic derivative of the determinant of M (`)(iS) is a rapidly decreasing function of S; the figure
takes as an example (a1) the ` = 0 channel of the 2 + 2 fermionic problem (for a numerical cut-off tmin = −9, thus without
extrapolation; note the minus sign in the vertical axis), (a2) the ` = 0 channel of the 3 + 1 fermionic problem. (b) The sum
over ` also seems to converge well, see the contribution of each angular momentum channel to the result (B11) for (b1) the
2 + 2 problem and (b2) the 3 + 1 problem: black disks for the parity sector (−1)`, red disks for the parity sector (−1)`+1; the
plus signs indicate the corresponding cumulative sums. Convincing evidence is even shown in (b3) for the 2 + 2 problem in
the (−1)`+1 parity sector and in (b4) for the 3 + 1 problem in both parity sectors, where the numerical results (black disks for
parity (−1)`, red disks for parity (−1)`+1) are compared to the perturbative results (B54) and (B60) [red asterisks for parity
(−1)`, black asterisks for parity (−1)`+1] that extend to four bodies a technique developed for three bodies in reference [28]
and are expected to be exact asymptotic equivalents for `→ +∞ (what is actually plotted is the absolute value of the results,
so as to allow for a log scale, but their sign is indicated with the label “< 0” of the same color as the corresponding disks
when they are negative: the negative black (red) disks are indicated with a black (red) “< 0” label; note that the black (red)
asterisks have always the same sign as the corresponding red (black) disks).

follows:(
ex chx′

ex′ chx

)s/2(
e−x

′
chx

e−x chx′

)s/2
= ei(x−x

′)S (B52)

where we wrote the phase factor of the first term as it
is in Eq. (69) and the phase factor of the second term
of Eq. (69) with x ↔ x′, and used s = iS with S real.
So the integral over x or x′ takes the form of a Fourier
transform with respect to x or x′, with S as the conjugate
variable; this is the Fourier transform of a smooth rapidly

decreasing function of x or x′, so that, as a function of
S, it is a rapidly decreasing function. This gives a reason
for the numerically observed fast decay of d

dS ln detM at
large S. Also, integration over S is straightforward due
to

∫
R

dS

2π
ei(x−x

′)S = δ(x− x′) (B53)

We finally obtain the leading order approximation
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∆Bconj
2,2 (0+)|(`)

parity(−1)`+1 '
2`+ 1

(4π)2

∫
R
dx

∫ π

0

dθ

∫ π

0

dθ′
∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

vv′

d(x, u)d(x, u′) chx

×

1

4

1∑
n=0

1∑
n′=0

(−1)(`+1)(n+n′)T`(θ + nπ, θ′ + n′π, φ, φ′){
1 +

1

1 + α

[
(u+ e−x)(u′ + e−x) + vv′ cosφ

]}{
1 +

α

1 + α
[(u+ ex)(u′ + ex) + vv′ cosφ′]

} (B54)

In the integrand of Eq. (B54), d(x, u) is given by Eq. (B16), we again use the notations u = cos θ and v = sin θ and
the same for θ′, and we introduced the function

T`(θ, θ′, φ, φ′) ≡
∑̀

mz,m′z=−`

e−imzθ〈`,mz|eiφLx/~|`,m′z〉eim
′
zθ
′
〈`,m′z|eiφ

′Lx/~|`,mz〉 (B55)

= Tr`

[
e−iθLz/~eiφLx/~eiθ

′Lz/~eiφ
′Lx/~

]
=

sin[(2`+ 1)δ/2]

sin(δ/2)
(B56)

where the trace is taken over the whole subspace {|`,mz〉,−` ≤ mz ≤ `} of angular momentum ` without any parity
restriction and the angle δ ∈ [0, π] is such that [82]

1 + 2 cos δ = uu′(1 + cosφ cosφ′)− (u+ u′) sinφ sinφ′ + vv′(cosφ+ cosφ′) + cosφ cosφ′ (B57)

The sum over n and n′ in the numerator of the inte-
grand of Eq. (B54) suppresses the contribution to T`
of the states |`,mz〉 and |`,m′z〉 of the wrong parity,

(−1)mz = (−1)m
′
z = (−1)`. We expect the approxi-

mation (B54) to be an exact asymptotic equivalent for
` → +∞, and this is also what the comparison to the
numerical results in Fig. 7(b3) indicates. Amazingly it is
already good for ` = 1, as it deviates from the numerical
value by about 9% only.

This perturbative treatment can also be applied to the
3 + 1 problem, using the integral equations of reference

[13]. The main difference is that the spinor Φ
(`)
mz (x, u)

is now subjected to a condition reflecting the fermionic
exchange symmetry of the two ↓ particles that are spec-
tators of the interacting ↑↓ pair [18],

Φ
(`)
−mz (−x, u) = (−1)`+1Φ(`)

mz (x, u) (B58)

This means that the kernel K(`) must be restricted to
the corresponding subspace, hence the occurrence of a
projector P = (1 + U)/2 on that subspace, where the
unitary operator U such that in Dirac’s notation

U |x, u, `,mz〉 = (−1)`+1| − x, u, `,−mz〉
= −eiπLx/~| − x, u, `,mz〉 (B59)

is an involution (U2 = 11) [83]. The interesting point is
now that, even if d

dSK is a sum of commutators as in
Eq. (B23), the corresponding Dj do not commute with
the projector P . As a consequence, when one expands
M−1 up to first order in K, d

dS ln detM contains both
a contribution of order one in K and two contributions
of order two in K. Here is the result in the subspace of
angular momentum ` and parity ε [84]:
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∆Bconj
3,1 (0+)|(`)parity ε '

2`+ 1

2π
√

2

∫ π

0

dθ

∫ 2π

0

dφ

2π

v

d31(0, u)

1

2

1∑
n=0

εnT`(θ + nπ, 0, φ+ π, 0)

3 +
2α

1 + α
(2u+ u2 + v2 cosφ)

+
2`+ 1

8π2

∫
R
dx

∫ π

0

dθ

∫ π

0

dθ′
∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

vv′

d3,1(x, u)d3,1(x, u′) chx

×

1

4

1∑
n=0

1∑
n′=0

εn+n′T`(θ + nπ, θ′ + n′π, φ, φ′){
2 + e−2x +

2α

1 + α

[
e−x(u+ u′) + uu′ + vv′ cosφ

]}{
2 + e2x +

2α

1 + α
[ex(u+ u′) + uu′ + vv′ cosφ′]

}

− 2`+ 1

4π2

∫
R
dx′
∫ π

0

dθ

∫ π

0

dθ′
∫ 2π

0

dφ

2π

∫ 2π

0

dφ′

2π

(
ex
′

chx′

)1/2
vv′

d31(0, u)d31(x′, u′)

×

1

4

1∑
n=0

1∑
n′=0

εn+n′T`(θ + nπ, n′π, φ, φ′ + π)[
2e−x

′
+ ex

′
+

2α

1 + α
(ue−x

′
+ u′ + uu′ + vv′ cosφ)

] [
2e−x

′
+ ex

′
+

2α

1 + α
(ue−x

′
+ u′ + uu′ + vv′ cosφ′)

] (B60)

where d31(x, u) defines the diagonal part D of the opera-
tor M for the 3 + 1 problem (as d(x, u) did for the 2 + 2
problem), see reference [13]:

d31(x, u) =

[
1 + 2α

(1 + α)2
+

αu

(1 + α)2 chx

]1/2

(B61)

As can be checked in Fig. 7(b4), this approximation is
in good agreement with the numerical results even for
` = 0, where it deviates from the exact result only by
' 13%. In the large ` limit the first contribution in the
right-hand side of Eq. (B60) rapidly dominates over the
other two; summing over the two parity sectors ε = ±1
and restricting for simplicity to a mass ratio α = 1, one
can integrate it over θ and φ at fixed δ ∈ [0, π], where
1 + 2 cos δ = u + cosφ + u cosφ as shown by Eq. (B57)
taken with θ′ = φ′ = 0, to obtain the rapidly decreasing
large-` equivalent [85]

∆Bconj
3,1 (0+)|(`) ∼

`→+∞

2`+ 1

2π2

∫ π

0

dδ sin[(`+ 1/2)δ]

×
arccos

8 cos2 δ + 5 cos δ − 1

3(3 + cos δ)

[(5 + 4 cos δ)(1 + cos δ + cos2 δ)]1/2
(B62)

5. The verdict

The numerical results for our conjecture (B11) are

∆Bconj
2,2 (0+) = −0.0617(2) (B63)

∆Bconj
3,1 (0+) = +0.02297(4) (B64)
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FIG. 8: (Color online) Fourth order cluster coefficient (B67)
for a harmonically trapped unpolarized spin 1/2 unitary
Fermi gas at temperature T , as a function of β~ω, with
β = 1/(kBT ), ω the angular oscillation frequency of a fermion
in the trap and α = m↑/m↓ = 1. Blue line with symbols: re-
sults of reference [30] obtained by brute force numerical cal-
culation of the up-to-four-body spectra in the trap (disks:
actually calculated values; circles: values resulting from an
extrapolation). Red lines: our conjecture (B66) (the values
slightly differ depending on the linear or cubic extrapolation
to the numerical cut-off limit 1/tmin → 0−).

leading, after use of Eq. (B6), to

∆bconj
4 = −0.063(1) (B65)

This clearly disagrees with the experimental values (B4).
Remarkably, for ∆B3,1(0+) our conjectured value is very
close to the approximate diagrammatic result 0.025 of
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[24], whereas for ∆B2,2(0+) it widely differs from the
(still approximate) result −0.036 of [24] (these values
were communicated to us privately by Jesper Levinsen).

A useful complementary test is to compare to the theo-
retical results of reference [30]. As mentioned above and
in that reference, these results, obtained with the har-
monic regulator technique, are trustable at non-zero val-
ues of β~ω without extrapolation to β~ω = 0 (ω is the an-
gular oscillation frequency in the trap and β = 1/(kBT )).
It is actually straightforward to extend with the same no-
tations the conjecture (B11) to a non-zero value of ω, see
Eq. (38) of reference [28]:

∆Bconj
n↑,n↓

(ω) =
∑
`∈N

(
`+

1

2

)

×
∫ +∞

0

dS

π

sin(Sβ~ω)

sh(β~ω)

d

dS
[ln detM (`)

n↑,n↓
(iS)] (B66)

Since | sin(Sβ~ω)/ sh(β~ω)| ≤ S, this does not raise
new convergence issues and the numerical evaluation of
∆Bconj

2,2 (ω) and ∆Bconj
3,1 (ω) is straightforward once the

logarithmic derivatives of the determinant of M are
known. The resulting value of the fourth in-trap clus-
ter coefficient

∆B4(ω) ≡ 1

2
[∆B3,1(ω) + ∆B2,2(ω) + ∆B1,3(ω)] (B67)

(with ∆B3,1 = ∆B1,3 for the mass ratio α = 1) is plotted
as a function of β~ω in Fig. 8. It clearly disagrees with
the results of reference [30], not only with the ones re-
sulting from the extrapolation to β~ω = 0 but also with
the actually calculated ones.

The conjecture is thus invalidated, and more theoret-
ical work is needed to derive the correct analytical ex-
pression for ∆b4 of the unitary Fermi gas.
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Ulmanis, S. Häfner, M. Repp, A. Arias, E.D. Kuhnle, M.
Weidemüller, Phys. Rev. Lett. 112, 250404 (2014); S.-K.
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〈n|R|`,m′z〉 =
∑
m′′z

Y
m′′z
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dk1dk3k

2
1k

2
3

∫ 1

−1
du13φ(Rkfix

1 ,Rkfix
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To show this one makes in the integral defining I the unit
Jacobian change of variable k1 → Rk1 and k3 → Rk3,
where R is any rotation: I =

∫
d3k1d

3k3φ(Rk1,Rk3).
As the result does not depend on R, we can av-
erage it over SO(3), with the normalized invariant
measure. Exchanging the order of integration over R
and over k1 and k3, we get I =

∫
d3k1d

3k3Jk1,k3

with Jk1,k3 ≡
∫

SO(3)
dRφ(Rk1,Rk3). In Jk1,k3 one

then performs the change of variable R → Rρ,
where ρ is any rotation. As the measure is invariant,
Jk1,k3 =

∫
SO(3)

dRφ(Rρk1,Rρk3). Then for any given

k1 and k3, one chooses ρ such that ρk1 = kfix
1 and

ρk3 = kfix
3 , so that Jk1,k3 =

∫
SO(3)

dRφ(Rkfix
1 ,Rkfix

3 ).

Inserting this expression of Jk1,k3 into I and ex-
changing again the order of integration gives
I =

∫
SO(3)

dR
∫
d3k1d

3k3φ(Rkfix
1 ,Rkfix

3 ). At fixed

k1 one integrates over k3 in spherical coordinates of
polar axis k1; as the integrand does not depend on
the azimuthal angle, we pull out a factor 2π. The
resulting integral over k3 and θ13 does not depend on the
direction of k1 so, after integration over k1 in spherical
coordinates of arbitrary polar axis, one pulls out an
additional factor 4π and gets the desired relation.

[53] A three-dimensional δ(k) is the product of three one-
dimensional δ(un · k) where (un) is an orthonormal ba-
sis. As explained in the text one can take k = k2 + k4 +
RY (β)RZ(γ)(kfix

1 + kfix
3 ). We first take u1 = eY so that

u1·k = (RZ(−γ)eY )·(kfix
1 +kfix

3 ) = sin γ eX ·(kfix
1 +kfix

3 ) =
− sin γ sinβ0|kfix

1 + kfix
3 | where we used Eq. (50). This

gives the factor δ(sin γ) in Eq. (49). As explained in
the text we can restrict to the case γ = 0 (up to a
change β ↔ −β) and we are left with a two-dimensional
Dirac δ(k⊥) in the plane orthogonal to eY . In princi-
ple k⊥ = k2 + k4 + RY (β)(kfix

1 + kfix
3 ) but we can

equivalently take k⊥ = RY (−β)(k2 + k4) + kfix
1 + kfix

3

due to the rotational invariance of the Dirac distribu-
tion. Using RY (−β)eZ = cosβ eZ − sinβ eX and tak-

ing u2 =
kfix
1 +kfix

3

|kfix
1 +kfix

3 |
= cosβ0 eZ − sinβ0 eX and its dual

u3 = sinβ0 eZ + cosβ0 eX in the ZX plane, we justify
Eq. (49).

[54] Similarly to Eq. (53), |`,mx = 0〉 = s+e
−i(π/2)Ly/~

|`,mz = 0〉 = s−e
−i(−π/2)Ly/~|`,mz = 0〉 where s± are

just signs since |`,mx = 0〉 can be taken with real compo-
nents in the |`,mz〉 basis (Ly has purely imaginary ma-

trix elements). Then s−s+〈`,mz = 0|e−iπLy/~|`,mz =

0〉 = 1. The action of e−iπLy/~ in Cartesian coordinates
is (x, y, z) → (−x, y,−z); in spherical coordinates of po-
lar axis z it is (θ, φ) → (π − θ, π − φ). For Y mz=0

` (θ, φ),
which does not depend on φ, this is equivalent to the
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action of parity (θ, φ) → (π − θ, π + φ) and it pulls out
a factor (−1)l so that s− = (−1)`s+ and |`,mx = 0〉 =

(s+/2)(e−i(π/2)Ly/~+(−1)`e−i(−π/2)Ly/~)|`,mz = 0〉. Se-
ries expanding the exponentials in this last expression,
and using the fact that Ly only couples states of differ-
ent mz parity, one gets Eq. (54).

[55] One can keep [0, 2π] as the range of integration over φ′

since the integrand is a periodic function of φ′ of period
2π.

[56] For b0 > b1 > 0,
∫ 2π

0
dφ
2π

eimxφ

b0+b1 cosφ
= z
|mx|
0 /[(b0− b1)(b0 +

b1)]1/2 with z0 = −b1/{b0 + [(b0 − b1)(b0 + b1)]1/2}.
[57] If x→ −∞, x′ → +∞ or x→ +∞, x′ → −∞, the matrix

kernel (69) entirely tends exponentially to zero, which
does not bring any significant new information.

[58] This is trivial for ` = 0. For ` ≥ 1, this results from
the fact that, for L ≥ 1, one can take mx = 1. Then
〈`,mz|`,mx = 1〉 6= 0, except if ` is even and mz =
0 (in agreement with Eq. (54), considering the x ↔ y
symmetry), in which case one may return to the choice
mx = 0 and use the fact that 〈`,mz = 0|`,mx = 0〉 6= 0
for even `.

[59] Let us explain more physically why the ΛL function ap-
pears in the expression of the continuous spectrum. The
idea is to consider a physical state of the 2 + 2 fermionic
system, corresponding to a non-zero square integrable

solution Φ
(`)
mz (x, u) of Eq. (68), and to see how the four-

body wavefunction scales when three particles, say 1, 2
and 3, converge to the same location, the fourth parti-
cle being at some other fixed location. As we have seen,
an extended eigenstate of the continuum that varies for
x → −∞ as eikxeimzθ/2〈`,mz|`,mx = 0〉PL(u), k ∈ R,
has an eigenvalue Ω = ΛL(ik, α). According to the ana-
lytic continuation argument of reference [13], this implies

that the Ω = 0 localized eigenstate Φ
(`)
mz (x, u) vanishes for

x→ −∞ as eκxeimzθ/2〈`,mz|`,mx = 0〉PL(u), where the
real quantity κ is the minimal positive root of

ΛL(κ, α) = 0

with L chosen so as to minimize κ (minimizing κ amounts
to selecting the most slowly decreasing exponential func-
tion eκx, that is the leading contribution for x → −∞).
This implies that κ is one of the possible scaling expo-
nents s3 of the 2 + 1 fermionic problem, see Eq. (82). In
order to determine the limit of Eq. (10) when r13 and
|r2 −R13| → 0 tend to zero with the same scaling law,
that is both are proportional to the vanishing hyperradius
R123 of particles 1, 2 and 3, we determine the large k2

limit of the integrand of ψ24 in Eq. (10) at fixed k4: Omit-
ting to write the angular part for simplicity, we find that

D(k2,k4) scales as k−2−κ
2 k

κ−s−3/2
4 , so that its Fourier

transform, according to the usual power-law counting ar-
gument, scales as |r2 −R13|κ−1|r4 −R13|s−κ−3/2. The
same reasoning applies to ψ14. At fixed |r4 −R13| > 0,
the four-body wavefunction therefore scales as Rκ−2

123 =
Rs3−2

123 , exactly as predicted by Eq. (5.179) of reference
[34]. This whole discussion is formal for the 2+2 fermionic
problem since, as we shall see, there is no four-body Efi-
mov effect, but it explicitly applies to the 3 + 1 fermionic
problem and nicely completes reference [13].

[60] The continuous spectrum Ω�(`) can be recovered by
keeping only but exactly the last contribution in Eq. (69)

to the matrix kernel K
(`)

mz ,m′z
of Eq. (68), that is without

resorting to a local approximation of this contribu-
tion around (x, u) = (0,−1). The explicit calculation
remains simple for a unit mass ratio α = 1. The
eigenvectors of the resulting operator are then of the

form Φ
(`)
mz (x, u) = eimzγ〈`,mz|`,mx = 0〉Φ(x, u)

with the ansatz Φ(x, u) = (chx)−(s−1/2)/2(u +

chx)−(s+7/2)/2χ(
√

2k24/K24), k24 and K24 being the
relative and center-of-mass wave numbers of particles 2
and 4, so that 2k24/K24 = ( ch x−u

ch x+u
)1/2. One then obtains

the integral equation for χ(k): Ω(2k2 + 1)1/2χ(k) =

(k2 + 1)1/2χ(k)− 2(−1)`

π

∫ +∞
0

dk′k′2χ(k′)/(1 + k2 + k′2).

Further setting χ(k) = k−3/2(1 + 2k2)−1/4ψ(t) with

k = exp(−t), one obtains Ωψ(t) =
(

1+e−2t

1+2e−2t

)1/2

ψ(t) −
2(−1)`

π

∫
R dt
′ ψ(t′) exp[−3(t+t′)/2]

(1+e−2t+e−2t′ )[(1+2e−2t)(1+2e−2t′ )]1/4
. The

t → −∞ continuum of that eigenvalue problem solves

(
√

2Ω−1)ψ∞(t) = − (−1)`

π

∫
R dt
′ ψ∞(t′)
ch(t−t′) , with plane wave

solutions ψ∞(t′) = eikt reproducing (84). The ansatz
for Φ(x, u) results from the fact that D(k2,k4) is of the

form K
−(s+7/2)
24 P`(ez · K24/K24)χ(

√
2k24/K24) (P` is a

Legendre polynomial), which is apparent if one turns
back to Eq. (13) and realizes that its last contribution
conserves the total wave vector K24 (up to a sign).

[61] In reality, the physical solution for the tensor Φ
(`)
mz (x, u)

must correspond to a zero-eigenvalue of the matrix
M (`)(s). In this respect, k = 0 is acceptable only for
` even. Furthermore, as we shall see in Appendix B
[see the footnote called above Eq. (B36)], when Ω = 0,
φ(t) actually scales linearly in t for t → −∞, so that
D(k2,k4) actually diverges as ln(|k2 + k4|/k24)/(|k2 +

k4|/k24)s+3/2 when k2 + k4 → 0. This would result
in a ln(r24/|R24 − R13|)/r24 divergence of the function
A13(r2 −R13, r4 −R13) at r24 = 0, which is physically
opaque. Let us keep in mind however that, according to
section V there is no four-body Efimov effect in the 2 + 2
problem, so that Eq. (68) does not actually support any

non-identically zero solution Φ(`) if s ∈ iR.
[62] For ` > 0, one can use the identity:

∑`
mz=−`[Y

mz
` (e ·

ez, e4⊥2 · ez, e24 · ez)]∗eimz(γ24+θ24/2)〈`,mz|`,mx = 0〉 =

s+Y
0
` (K̂24) where K̂24 = (k2 + k4)/|k2 + k4|, we recall

that γ24 = τ24 − θ24/2 and τ24 is the angle between k2

and k2 + k4, the spherical harmonics notation is as in
footnote [51] and the sign s+ is defined in footnote [54].
This identity is also useful for footnote [60].

[63] If k24 → +∞, |x| necessarily tends to +∞ since |u| ≤ 1,

in which case K24 and k24 both diverge as e|x| and have
a non-vanishing ratio.

[64] We used
∫ +∞

0
dy sin(ay) sin(by)/ys+1/2 = 1

2
Γ( 1

2
− s)

sin[π
4

(1− 2s)][|a− b|s−
1
2 − |a+ b|s−

1
2 ], for s ∈ iR, a and

b real numbers that differ in absolute value.
[65] The integrand in Eq. (97) is O(1/q2) when q → +∞, so

that the integral converges when r24 → 0 at fixed non-
zero R24 −R13. Furthermore it converges to a non-zero
value (e.g. to π for s = 0).

[66] If one takes a function D(k2,k4) with no singularity in

k2 + k4 = 0, for example Φ
(0)
0 (x, u) = exp(−κ|x|) in the

ansatz (20) as in footnote [59] for ` = L = 0, one finds
by an explicit calculation that A(r2 −R13, r4 −R13) is
finite for r2 = r4 = R24.

[67] There is a paradox here. As shown by Eq. (3), the ac-
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tion of the Hamiltonian H on ψ24(r1, r2, r3, r4) leads to
a δ(r1− r3) distribution, not to a δ(r2− r4) distribution.
This shows that ψ24 is the so-called 1−3 Faddeev compo-
nent, and it cannot have any 1/r24 singularity. How can
A13 then have such a singularity? The answer as usual
lies in the order of the limits. At fixed non-zero r13, it
is apparent that the function u(r13) in Eq. (10), through
its dependence on q13 given by Eq. (11), provides an ul-
traviolet cut-off of order 1/r13 in the (k2,k4) wavevector
space, so that ψ24 cannot diverge when r24 → 0. But if
one first takes the r13 → 0 limit, the function u(r13) is
replaced by its equivalent 1/(4πr13) which has no mo-
mentum dependence: The wavevector cut-off is set to
infinity and a 1/r24 divergence in limr13→0(r13ψ24) can
now take place at r24 = 0.

[68] This reasoning can be transposed to the case of four iden-
tical bosons, when three of them converge to the same
location in the relative three-body channel where the Efi-
mov effect takes place. As this channel has a zero angular
momentum and an even parity, this implies that, in such
a configuration, the total internal angular momentum `
of the four-body system is carried by the relative motion
of the fourth boson with respect to the center of mass of
the first three bosons, leading to a global parity (−1)`.
This indicates that, for ` 6= 0, the four-boson unitary sys-
tem in an isotropic harmonic trap should have interact-
ing states in the (−1)`+1 parity sector that are immune
to the three-body Efimov effect. Such “universal” states
have indeed been observed numerically in reference [43],
but for a total internal angular momentum ` = 0: this
observation cannot be explained by our reasoning.

[69] If for simplicity one omits to write the other variables,
the integral over θ′, of the form

∫ π
0
dθ′Ǩ(θ, θ′)Φ̌(θ′),

is approximated by
∑nθ
j=1 w(θj)Ǩ(θi, θj)Φ̌(θj), where

(θi)1≤i≤nθ is the set of (non-equispaced) discrete values
of θ proposed by the nθ-points Gauss-Legendre method
and w(θi) the corresponding weights. To render the re-
sulting discretised form of M̌(s = 0) hermitian, it suffices

to take as unknowns w(θj)
1/2Φ̌(θj) and to multiply the

eigenvalue equation by w(θi)
1/2, which leads to the ker-

nel [w(θi)w(θj)]
1/2Ǩ(θi, θj) without modifying the spec-

trum.
[70] With the notations of the previous footnote, one takes

[dxwx(θi)]
1/2Φ̌

(`)
mz (x, θi) as unknowns in the zone ρ > ρ0,

and [dtw(ψi)]
1/2ρ0e

tΦ̌
(`)
mz (x(t, ψi), θ(t, ψi)) as unknowns

in the zone ρ < ρ0. In this way, after multiplication of the
eigenvalue equation by [dxwx(θi)]

1/2 or [dtw(ψi)]
1/2ρ0e

t,
one obtains an hermitian matrix. The x-dependence of
the weight wx(θi) results from the x-dependence of θmax.

[71] The triangle corresponds to the zone 1/
√

2 ≤ Ω ≤
ΛL=1(0, α).

[72] The same conclusion must hold for the eigenvalues Ω in
Fig. 3 [parity (−1)`+1] that are above the upper external
border of the continuum, as well as for those below the
lower external border of the continuum (there are some
for α close to unity).

[73] It is explicitly supposed here that a potential purely
imaginary root s4 of Eq. (22) would exist above some
threshold value αc(2; 2) of the mass ratio α, with s4 = 0
at threshold. One can however imagine another scenario,
with s4 still a continuous function of α: s4 would exist for
all mass ratio α ∈ [1, αc(2; 1)], with αc(2, 1) = 13.6069 . . .
the three-body Efimov effect threshold, in which case s4

would not need to cross zero for some α. This scenario
is however excluded (i) by the experimental results for
the spin 1/2 unitary Fermi gas, which has a mass ratio
α = 1 (no significant four-body losses are observed) and
(ii) by the numerical calculations in the conjecture on the
fourth cluster coefficient b4 of that unitary Fermi gas in
Appendix B [it is found for α = 1 that the operator M(s)
is positive for all purely imaginary s, which excludes the
existence of a root s4].

[74] Note that ∆Bn↑,n↓ is actually equal to Bn↑,n↓ as soon as
the two indices differ from zero, since the ideal gas grand
potential is the sum of the grand potential of each spin
component, and no ↑-↓ crossed term can appear in the
resulting cluster expansion.

[75] It can be deduced from Eq. (7) of reference [29] by inte-
gration by parts.

[76] For ` = 1 within the even parity sector, the minimal value
of A given by Eq. (B19) corresponds to x = x′ → +∞,
u = u′ = 0 in Eq. (B14). Let us use the notation

O = 〈` = 1,mz = 0|D−1/2K(`=1)D−1/2|` = 1,m′z = 0〉
and introduce the operator T in the space of functions
of the single variable x such that, in Dirac’s notation,
〈x|T |x′〉 = A/ ch(x − x′). Then Eq. (B14) can be
rewritten as |〈x, u|O|x′, u′〉| ≤ 〈x|T |x′〉. For any integer
n greater than 1, we inject n − 1 closure relations and
use the triangular inequality to obtain |〈x, u|On|x′, u′〉| ≤∫
R dx1 . . . dxn−1

∫ 1

−1
du1 . . . dun−1〈x|T |x1〉 . . . 〈xn−1|T |x′〉

= 2n−1〈x|Tn|x′〉. Then |〈x, u|[(11 + O)−1 − 11]|x′, u′〉| ≤
〈x| T

11−2T
|x′〉 =

∫
R
dk
2π
eik(x−x′) tk

1−2tk
, where we have

used a series expansion in powers of O and where
tk =

∫
R dy

A
ch y

eiky = πA/ ch(kπ/2) is the eigenspectrum
of T . Calculating the integral over k and combining

the result with the identity 〈` = 1,mz = 0|K(`=1)
inv |` =

1,m′z = 0〉 = D−1/2[(11 + O)−1 − 11]D−1/2 leads to
Eq. (B20).

[77] To finish the calculation, one can use the mild hy-
pothesis that the matrix elements of Kinv are uni-

formly bounded, that |d1(x) − d1(x′)|
(

ex+x
′

4 ch x ch x′

)1/4

≤

|d1(x)|
(

ex

2 ch x

)1/4

+ |d1(x′)|
(

ex
′

2 ch x′

)1/4

, due to exp(x′) ≤
2 chx′ or exp(x) ≤ 2 chx and to the triangular inequal-
ity |d1(x) − d1(x′)| ≤ |d1(x)| + |d1(x′)|. Then one can
integrate over x′ or over x (depending on the term), us-

ing
∫
R

dx′

ch(x−x′) = π, and one finally faces the integral∫
R dx|d1(x)|

(
ex

2 ch x

)1/4

< +∞.

[78] The value k = 0, that is n = 0, should not be included. If
one directly takes the limit k → 0 in Eq. (B30) one gets
the absurd result φk=0(t) = 0. The correct way of taking
the limit is to first divide Eq. (B30) by ik. One then finds
that φk=0(t) diverges as 2t − b(S) when t → −∞, so it
does not satisfy the boundary condition (B35).

[79] In the numerics, we extrapolate to 1/tmin = 0 using
a cubic fit in 1/tmin, with data down to minimal val-
ues 1/|tmin| = 1/200 for ` = 0 and 1/|tmin| = 1/30 for
` > 0. For ` = 0, as a test of the finite-tmin formalism,
we have used Eq. (B48) to predict the leading numerical

error on ∆B
conj(`=0)
2,2 (0+) due to the tmin truncation, that

is (8π|tmin|)−1
∫
R dS[b(∞) − b(S)] = 2.3(1)/(8π|tmin|),

which agrees with the direct numerical calculation. To
obtain b(S) at any given S, and hence the integral of
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b(∞) − b(S), we calculated numerically the eigenvectors
corresponding to the first few eigenvalues Ωn (n ≥ 1)

of M (`=0)(s = iS), and we fitted the corresponding func-
tions φn(t) [defined as in Eq. (91)] with a three-parameter
sine function t 7→ An sin(knt − θn/2) as suggested by
Eq. (B30), where An is a complex amplitude, kn an ef-
fective wavenumber and θn a phase shift. The fits are very
good, the obtained values of kn agree very well with the
dispersion relation (84); setting θ(kn, S) = θn, we also
find that the quantization condition (B36) is well obeyed;
finally, extrapolating θn/kn to n = 0 linearly in k2

n gives
b(S). To be complete, we note that b(S) looks like a nega-
tive amplitude Gaussian on a non-zero background b(∞),
that is b(∞)− b(S) ' 1.05× exp(−0.668S2). As the vari-
able t in Eq. (91) depends on ρ0, so does b(∞). In our
numerics, ρ0 = 2/5 and we find b(∞) = 3.84(1). More
analytically, one expects at large S that the phase shift
θ(k, S) is imposed by the third contribution in Eq. (69),
the first two ones becoming rapidly oscillating and neg-
ligible. Then one can use the analytical results of foot-
note [60]: introducing the phase shift θψ(k) such that
ψ(t) = sin[kt− θψ(k)/2] + o(1) for t→ −∞, one expects
that θ(k, S)→ θψ(k)− 2k ln(ρ0/

√
2) for S →∞, so that

b(∞) = bψ − 2 ln(ρ0/
√

2) with bψ ' 1.33. Our numerics
fulfill these expectations, which constitutes a good test.

[80] In practice, we used a Gauss-Legendre scheme with up
to 59 points, using θ rather than u = cos θ as the inte-
gration variable, with the change of function (A3) and

the inclusion of the extra Jacobian (sin θ sin θ′)1/2 in the
matrix kernel.

[81] The integration over S ∈ R of Λ`(iS)/ cos ν−1 using the

first line of Eq. (78) leads to
∫ 1

−1
duP`(u)/(1 + u sin ν).

The large ` limit of that integral reproduces exactly
Eq. (42) of reference [28], as we have checked using

P`(u) = (2``!)−1 d`

du`
[(u2 − 1)`], then integrating ` times

by parts then using Laplace’s method.
[82] The product of the four unitary operators under the trace

represents in the single-particle Hilbert space a rotation
of angle δ around some axis. It is easy to explicitly eval-

uate this trace as a function of the angles θ, θ′, φ, φ′ in
the case ` = 1, where each operator can be replaced by
a well-known 3 × 3 rotation matrix in the usual, three-
dimensional space. This leads to the expression (B57).

[83] Furthermore the Hilbert space was limited in reference
[13] to the kets |x, u, `,mz〉 with x > 0, as the sym-
metry condition (B58) allows, which amounts to adding
an extra projector Px>0. This complicates things be-
cause Px>0 and U do not commute. Fortunately, in
calculating operator traces, one can use the properties
UP = PU = P , Px<0 = UPx>0U and Px<0 +Px>0 = 11,
as well as the invariance of the trace under a cyclic
permutation of the operators, so that Tr(Px<0PAP ) =
Tr(UPx>0UPAP ) = Tr(Px>0PAP ) = 1

2
Tr(PAP ) =

1
2

Tr(AP ) and Tr(APPx<0PB) = Tr(APPx>0PB) =
1
2

Tr(APB), where A and B are arbitrary operators.
[84] If one writes the operator M of reference [13] before its

restriction to the subspace of symmetry (B58) as D +
K0 +UK0U then after implementation of the symmetry
and restriction to the Hilbert space of kets |x, u, `,mz〉
with x > 0, it becomes Px>0[D+(1+U)K0(1+U)]Px>0.
The first, second and third contributions in the right-
hand side of Eq. (B60) are respectively given by −(` +

1/2)/(2π) times the integral over S ∈ R of Tr`,ε(K̃0U),
of − 1

2
Tr`,ε[K̃0(UK̃0U)] and of −Tr`,ε(K̃

2
0U), where we

have set K̃0 ≡ D−1K0 and the index `, ε means that the
trace is restricted to the states |`,m〉 with (−1)m = ε.
Note that UDU = D and [Px>0,D] = 0.

[85] The ` independent function in factor of the sine function
in the integrand of Eq. (B62) is a smooth function of δ
over [0, π], with all its even order derivatives (including
the zeroth order) vanishing at δ = 0 and all its odd order
derivatives vanishing at δ = π. Under repeated integra-
tion by parts (always integrating the sine function), the
fully-integrated term vanishes at the boundaries and one
pulls out at each step a factor (`+ 1/2)−1. So Eq. (B62)
is O[(`+ 1/2)−n] when `→ +∞, for all integers n.


