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Abstract

Solving the consensus problem requires in one way or antithethe underlying system satisfies some
synchrony assumption. Considering an asynchronous megsssing system of processes where (a)
up tot < n/3 may commit Byzantine failures, and (b) each pair of processeonnected by two uni-
directional channels (with possibly different timing pespes), this paper investigates the synchrony as-
sumption required to solve consensus, and presents awgigifeee consensus algorithm whose synchrony
requirement is the existence of a process that isvamtual(¢ + 1)bisource Such a processis a correct
process that eventually has (a) timely input channels fra@orrect processes and (b) timely output chan-
nels tot correct processes (these input and output channels cardgrto different subsets of processes).
As this synchrony condition was shown to be necessary affidisut in the stronger asynchronous system
model (a) enriched with message authentication, and (bjenthe channels are bidirectional and have the
same timing properties in both directions, it follows thaisialso necessary and sufficient in the weaker
system model considered in the paper. In addition to thetfiatit closes a long-lasting problem related to
Byzantine agreement, a noteworthy feature of the propdgeditam lies in its design simplicity, which is
a first-class property.

Keywords: Adopt-commit, Asynchronous message-passing, Byzaptioeess, Consensus, Distributed al-
gorithm, Eventual timely channel, Feasibility conditidmower bound, Optimal resilience, Reliable broad-
cast, Signature-free algorithm, Synchrony assumption.



1 Introduction

Byzantine consensus A process has Byzantinebehavior when it behaves arbitrarily [26]. This bad func-
tioning can be intentional (malicious behavior, e.g., due to intrusion) or simplyethét of a transient fault
that altered the local state of a process, thereby modifying its executioruimpgadictable way.

We are interested here in thensensuproblem in message-passing distributed systems prone to Byzantine
process failures whatever their origin. Consensus is an agreemetemrim which each process first proposes
a value and then decides on a value [26]. In a Byzantine failure contextptisensus problem is defined by
the following properties: every non-faulty process decides (terminatian)wo non-faulty processes decide
differently (agreement), and the decided value is not arbitrary, i.e., ilatekin one way or another to values
proposed by non-faulty processes (validity).

Context of the paper A synchronous distributed system is characterized by the fact that bmtkgses and
communication channels are synchronous (or timely) [3, 21, 28]. This srteahthere are known bounds on
process speed and message transfer delayg.degtote the maximum number of processes that can be faulty
in a system made up of processes. In a synchronous system, consensus can be solf@dafa) value of

t (i.e.,t < n)in the crash failure model, (b) far < n/2 in the general omission failure model, and (c) for

t < n/3in the Byzantine failure model [20, 26]. Moreover, these bounds are tight.

Differently, when all channels are asynchronous (i.e., when therebsmad on message transfer delays),
it is impossible to solve consensus even if we consider the weakest failutel fmamely, the process crash
failure model) and assume that at most one process may be faulty éel) [15]. It trivially follows that
Byzantine consensus is impossible to solve in a failure-prone asyncalwadigiributed system.

As Byzantine consensus can be solved in a synchronous systemrarat caan asynchronous system,
a natural question that comes to mind is the followilgHen considering the synchrony-to-asynchrony axis,
which is the weakest synchrony assumption that allows Byzantine susderbe solved in a message-passing
system? This long-lasting question is the issue addressed in this paper. To thathengdaper considers a
synchrony assumption capturing both the structure and the number ofi@algsynchronous channels among
correct processes.

Related work Several approaches to solve Byzantine consensus have beesquojée consider here only
deterministic approachksOne consists in enriching the asynchronous system (hence the systetoigjer
fully asynchronous) with a failure detector, namely, a device that preyadecesses with (possibly unreliable)
hints on failures [10]. Basically, in one way or another, a failure detemtoapsulates synchrony assumptions.
Failure detectors suited to Byzantine behavior have been proposedsaddaisolved Byzantine consensus
(e.g., [13, 16, 19)).

Another approach proposed to solve Byzantine consensus consisecifydcassuming that some channels
satisfy a synchrony property (“directly” means that the synchronpgnty is not hidden inside a higher level
abstraction such as a failure detector). This approach, which relieg otion of an®(z + 1)bisource(read
“O” as “eventual”), was introduced in [1]. Intuitively, this notion states thar¢his a correct process that
hasz input channels from correct processes andutput channels to correct processes that are eventually
timely [12, 14] (the 4+-1” comes from the fact that it is assumed that each process has a “virtpat/autput
channel from itself to itself, which is always timely).

Considering asynchronous systems with Byzantine processes withosaigeesuthentication, it is shown
in [1] that Byzantine consensus can be solved if the system hé&s.an- ¢)bisource (all other channels being
possibly fully asynchronous). Moreover, the process that iSthe— ¢)bisource can never be explicitly known
by the whole set of processes. Considering systems with message aatimmtie Byzantine consensus algo-
rithm is presented in [25] that requires @it + 1)bisource only. As for Byzantine consensus in synchronous
systems, all these algorithms assume n/3. Finally, it has been shown in [4] that th&{t + 1)bisource”
synchrony assumption is a necessary and sufficient condition to sokenBiye consensus in asynchronous
bi-directionnal message-passing systems, enriched with message aati@ntic

Content of the paper This paper presents a signature-free Byzantine consensus algasitlsyhchronous
message-passing systems, which requires only the two assumgtiansy3 and the existence of ati(t +
1)bisource. As these assumptions are necessary and sufficient to saaatiBe consensus in the asyn-
chronous model enriched with message authentication [4], it follows thahéaexistence of ard>(t +

'Enriching the system with random numbers allows for the design of raizednByzantine consensus algorithms. These algo-
rithms are characterized by a probabilistic termination property (e.®, &, 27]).



1)bisource is necessary and sufficient to solve Byzantine consensuasasyachronous signature-free sys-
tem, and (b) the proposed algorithm is optimal with respect to underlyindhsymg assumptions.

The proposed algorithm, which is round-based, assumes that amngs[%J different values can
be proposed by the correct processes (see also the paragraiphtia the conclusion). To attain its goal, it
relies on a modular construction involving two communication abstractions andistvibuted objects. More

precisely, we have the following.

e The communication abstractions are the one-toetible broadcas{RB) abstraction introduced in [7],
and a very simple new communication abstraction that wecoalberative broadcagCB). As suggested
by its name, it is an all-to-all broadcast abstraction. This abstraction, wisies RB as an underlying
subroutine, is particularly simple. It actually captures important cooperatioperties, which make
easier the design of upper layer distributed agreement algorithms.

e The two distributed objects are the following ones (the implementation of eackrofuke the underly-
ing CB broadcast abstraction).

— The first object is a message-passing version oattapt-commi{AC) object (introduced in [17])
appropriately modified to cope with up to< n/3 Byzantine processes. Each round of the con-
sensus algorithm uses a specific AC object. The aim of these objects is/emptiee consensus
safety property from being violated.

— The second object is a round-based object calezhtual agreemerfEA) object. Its aim is to en-
sure the consensus termination property. Hence, its implementation relies®(y thd ) bisource
assumption.

It is important to emphasize that, when designing the algorithm presented implee, pnodularity and sim-
plicity were considered as first class design criteria. The algorithm miexbés only the last step of a long
quest: “Simplicity does not precede complexity, but follows it” (Alan Perlisst-Tiuring Award).

Road map The paper is made up of 7 sections. Section 2 presents the basic undadyimghronous
Byzantine computation model, the RB broadcast abstraction and the newo@échst abstraction. Section 3
presents an AC object suited to message-passing systems prone to Byfaihties. Then, Section 4 presents
the &(t + 1)bisource behavioral assumption. Section 5 presents the round-hesedad agreement object.
Section 6 pieces together the previous abstractions to obtain the synaptimal Byzantine consensus al-
gorithm. Finally, Section 7 concludes the paper. Due to page limitation, the missingsran be found
in [6].

2 Basic Model, Reliable Broadcast, and Cooperative Broadcast
2.1 Processes, communication network, and failure model

Asynchronous processes The system is made up of a finite détof n > 1 sequential processes, namely
IT = {p1,...,pn}. As local processing times are negligible with respect to message traetdgsdthey are
considered as being equal to zero. Both notatioasy” andp; € Y are used to say that belongs to the set
Y.

Communication network The processes communicate by exchanging messages through anmasyosh
reliable point-to-point network. “Asynchronous” means that there is mad on message transfer delays.
“Reliable” means that the network does not lose, duplicate, modify, otecreassages. “Point-to-point”
means that any pair of processes is connected by two uni-directiomalelsgone in each direction). Hence,
when a process receives a message, it can identify its sender. Mgrasthere is no message loss, all message
transfer delays are finite.

A procesg; sends a message to a procgsby invoking the primitive $end TAG(m) to p;”, where TAG
is the type of the message amdits content. To simplify the presentation, it is assumed that a process can send
messages to itself. A procegsreceives a message by executing the primitieeédive()”. Then say that the
message igeceivedoy p;.

Failure model Up tot processes can exhibitByzantinebehavior. A Byzantine process is a process that
behaves arbitrarily: it can crash, fail to send or receive messagyes asbitrary messages, start in an arbitrary
state, perform arbitrary state transitions, etc. Moreover, Byzantineepses can collude to “pollute” the
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computation (e.g., by sending messages with the same content, while they salildessages with distinct
content if they were non-faulty).

A process that exhibits a Byzantine behavior is cafdty. Otherwise, it iscorrector non-faulty Given
an execution¢ denotes the set of processes that are correct in this execution.

Let us notice that, as each pair of processes is connected by a chamBglzantine process can imper-
sonate another process. Moreover, it is assumed that the Byzantoesges do not control the network (they
can neither corrupt the messages sent by non-faulty processesodify the message reception schedule).

Discarding messages from Byzantine processesf, according to its algorithm, a proceps is assumed to
send a single messagec() to a procesg;, thenp; processes only the first messages (v) it receives from

p;. This means that, if; is Byzantine and sends several messagegv), TAG(v') wherev’ # v, etc., all of

them except the first one are discarded.

Unreliable (best effort) broadcast This simple broadcast is defined by a pair of operations detetaedcast()
andreceive(), wherebroadcast TAG(m) is used as a shortcut for

foreachj € {1,...,n} send TAG(m) to p; end for.
This means that a messafymadcastby a correct process i®ceivedat least by all the correct processes.
Differently, while it is assumed to send the same message to all the proceagaalty process can actually
send different messages to distinct processes and no message to others

Notation The notation3Z_AS,, ;[0] is used to denote the previous basic Byzantine asynchronous message-
passing computation model.

2.2 Reliable broadcast abstraction

This broadcast abstraction (in short, RB-broadcast) was propgs€&d Bracha [7]. It is a one-shot one-to-
all communication abstraction, which provides processes with two operatemstedRB_broadcast() and
RB_deliver(). Whenp; invokes the operatiofRB_broadcast() (resp., RB_deliver()), we say that it “RB-
broadcasts” a message (resp., "RB-delivers” a message). An &Rltmst instance where processis the
sender is defined by the following properties.
e RB-Validity. If a non-faulty process RB-delivers a messagéfrom p,.), then, ifp,. is correct, it RB-
broadcastn.

e RB-Unicity. A correct process RB-delivers at most one messagefrom

e RB-Termination-1. Ifp, is non-faulty and RB-broadcasts a messageall the non-faulty processes
eventually RB-delivern from p,..

e RB-Termination-2. If a non-faulty process RB-delivers a messadmm p, (possibly faulty) then all
the non-faulty processes eventually RB-deliver the same messdgen p,..

The RB-Validity property relates the output to the input, while RB-Unicity statasttiere is no message
duplication. The termination properties state the cases where processe® iRB-deliver messages. The
second of them is what makes the broadcast reliable. It is shown in [8% than/3 is an upper bound on
t when one has to implement such an abstraction. An algorithm implementing RBearst is described
in[6, 7]).

Notation The basic computing model strengthened with the additional constraintn/3 is denoted
BZ_AS, +[t < n/3]. RB-broadcast can consequently be implemented in this model.

2.3 Cooperative broadcast abstraction

Definition This new communication abstraction (in short CB-broadcast) is a oneafitotall broadcast
defined by an operation, denot€® broadcast(), plus a read-only set at every processdenoted:b_valid;.
“All-to-all” means that it is assumed that all correct processes indBebroadcast(). When a process;
invokesCB_broadcast(v), we say that “it cb-broadcasts.

An invocation ofCB_broadcast() by a procesg; has an input parameter, namely the value thatants
to broadcast, and returns a value, which is a value CB-broadcast byrecicprocess. The CB-broadcast
abstraction is formally defined by the following properties.

e CB-Operation Termination. The invocation of the operati@broadcast() by a correct process termi-

nates.

e CB-Operation Validity. If the invocation o€B_broadcast() returnsv to a correct procesg;, v €
cb_valid;.



e CB-Set Termination. The seb_valid; of a correct procesgs; is eventually non-empty.

e CB-Set Validity. The setb_valid; of any correct procegs contains only values cb-broadcast by correct
processes.

e CB-Set Agreement. The sét valid; andcb_valid; of any two correct processpsandyp; are eventually
equal.

Feasibility condition in the presence of up tot Byzantine processes Let m be the number of different
values that can be ch-broadcast by correct processes. It folfowsthe previous specification that, even
when the (at most) Byzantine processes propose a same vaiueot proposed by a correct processcan
neither be returned, nor belong to the &etalid; of a correct procesg;. This can be ensured if and only if
there is a value cb-broadcast by at le@st 1) correct processes. This feasibility condition is captured by the
predicaten — ¢t > mt. (A proof of this feasibility condition can be found in [18]).

operation CB_broadcast(v;) is

(1) RB-_broadcast CB_VAL (v;);

(2) wait (cbvalid; # 0);

(3) return (any value incb_valid;).

when cB_vAL (v) is RB_delivered from p; do
(4) if (v RB_delivered from(¢ + 1) diff. processes)
then addv to cb_valid,; end if.

Figure 1: An algorithm implementing:-valued CB-broadcast iBZ_AS,, [t < n/3]

Hence, we assume in the following that at most< L%j different values can be cb-broadcast by
the set of correct processes, and the corresponding abstractallete-valuedCB-broadcast.

operation AC_propose(v;) IS

(1) est; < CB_broadcast AC_.PRORv;);

(2) RB_broadcast AC_EST(est;);

(3) wait (AC_EST(est) messages have been RB-delivered fiom- ¢)
different processes, and theist values belong teb_valid;);

(4) MFA; < most frequent value in the previols — t) AC_EST() messages

(5) if (each of the previoug&: — t) AC_EST() messages carrigdFA;)

(6) then return ({(commit, MFA;))

() else return ((adopt, MFA;))

(8) endif.

Figure 2: An algorithm implementing an-valued adopt-commit object IBZ_AS,, ;[t < n/3]

An algorithm implementing CB-broadcast A simple algorithm implementing CB-broadcast is described
in Figure 1. Wherp; invokesCB_broadcast(v;), it first invokes the underlyindRB_broadcast CB_VAL (v;)

for all correct processes to be eventually aware;afine 1). Then, it waits until its setb_valid; becomes
non-empty (line 2). When this occurg; takes any value fromb_valid; and returns it (line 3). Finallyp;
adds tocb_valid; all the values it RB-delivers fronx + 1) different processes (i.ev,was RB-broadcast by
at least one correct process). It is important to notice that, after tlécptecb_valid; # () became satisfied,
new values can still be addeddb valid;.

Theorem 1. The algorithm described in Figuré implements then-valued CB-broadcast abstraction in
BZ_AS,,+[t < n/3].

Proof Proof of the CB-Termination properties.

It follows from the feasibility condition, that there is a valu¢hat is proposed by at leagt+ 1) correct pro-
cesses. Hence, these processes RB-broadeagiL (v). It then follows from line 4 and the RB-termination
property thatv will be added to the setb_valid; of each correct procegs. Hence, the CB-Set Termina-
tion property is satisfied, and no correct process can be blockedefoae line 2, from which follows the
CB-Operation Termination property.

Proof of the CB-Validity properties.

To prove the CB-Set Validity property, let us consider a valugb-broadcast only by Byzantine processes.
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It follows that a correct procegs can RB-deliverv from at mostt different processes. Hencg; cannot
addv to cb_valid; at line 4, which proves the property. The CB-Operation Validity properthés a trivial
consequence of the CB-Set Validity property.

Proof of the CB-Set Agreement property.

Let us consider a value € cb_valid;. This means that; RB-delivered the messags_vAL (v) from (¢ + 1)
different processes (line 4). It then follows from the RB-terminatiompprty of RB-broadcast that each correct
procesy; RB-delivers thesét + 1) messagesB_VAL (v). Consequently, any correct procggsadds to its
local setcb_valid;, which concludes the proof. O heorem 1

3 Adopt-Commit in the Presence of Byzantine Processes

This object was introduced in [17] in the context of read/write communicatitere we slightly modify its
definition to cope with Byzantine processes (which by definition can decigthiag).

Definition  An adopt-commit (AC) is a one-shot object which encapsulates the sadetyoppagreement
problems. It provides processes with a single operation derddigstopose(). This operation takes a value as
input parameter (we say that the invoking process proposes this vahe)eturns a paifd, v) (we say that
the invoking process decidéd, v)), whered is a control tag and a value. An AC object is defined by the
following properties.

e AC-Termination. An invocation oAC _propose() by a correct process terminates.
e AC-Validity. This property is made up of two parts.

— AC-Output domain. If a correct process decidésv), d € {commit,adopt}, andv is a value
that was proposed by a correct process.

— AC-Obligation. If all the correct processes propose the same valoaly (commit,v), can be
decided.

e AC-Quasi-agreement. If a correct process decigesmit, v), no other correct process can decide
(—,v") wherev' # v.

Implementations of an AC object in the presence of process crash faglanelse found in [17, 23, 29, 30].
The implementations of [17, 30] are for asynchronous systems wherawanier of processes may crash
and communication is by atomic read/write registers. The implementations of [R&8r&8r asynchronous
message-passing systems where a minority of processes may crash.

It follows from the AC-Output domain property, that a value proposdd oy Byzantine processes cannot
be decided by a correct process. This means that an AC object haantigefsasibility condition as CB-
broadcast (let us also notice that this is independent from the factrti#€ abject can be built on top of CB-

broadcast). Hence, we assume that at most L%j values can be proposed by the correct processes,
and the corresponding object is calledrarvaluedadopt-commit object.
Implementation of an m-valued adopt-commit object A distributed algorithm implementing an AC object
in the presence of up to< n/3 Byzantine processes is described in Figure 2, for a correct prpgce$sis
algorithm is based on an underlying CB-broadcast, which means thapeawadss has a read-only local set
cb_val; (initially empty).

When a procesp; invokesAC_propose(v;), it first issues the operatioBB_broadcast AC_PRORv;) from
which it obtains a value that it savesdst; (line 1). It then RB-broadcasts the messageesT(est;) (line 2),
and waits until (a) it has RB-delivered messagesesT() from (n — t) different processes, and (b) the values
carried by these messages belong to thetsetlid; supplied by CB-broadcast (line 3). Let us remember that,
after the predicateb_valid; # () became satisfied, new values can still be added ta:lid;.

When this predicate becomes satisfigd;omputes the most frequent valli&’A; carried by the previous
(n —t) AC_EST() messages (line 4). If there are several “most frequent” vapjeakes any of them. Finally,
if all the messages who made satisfied the predicate of line 3 carried the daméné;, p; returns the pair
(commit, MFA;)) (line 6); otherwise it returns the pajadopt, MFA;)) (line 7).

Theorem 2. Assuming that each correct process invokes the operaiipropose(), the algorithm of Figure
implements amr-valued adopt-commitbject inBZ_AS,, [t < n/3].



Proof Proof of the AC-termination property.

Due to the CB-Operation termination property, no correct process bfookger at line 1. So, we have only
to show that no correct process can block forever at line 3. It follrarsy CB-Set Termination and CB-
Set Validity that the setgb_valid; of the correct processes are eventually not empty and contain onlysvalue
proposed by correct processes. As (i) the value RB-broadcastdiycorrect process at line 2 is a value of its
setcb_valid;, (i) there are at least — ¢) correct processes, and (jii) the sefisvalid; of the correct processes
are eventually equal (CB-Set Agreement property), it follows that tadipate of line 3 is eventually satisfied
at each correct process, which concludes the proof of AC-terminattagrerty. Proof of the AC-Output domain
property.

Let us first observe that a correct process can decide only thégpaitiit, v) or the pair(adopt, v) (lines 6-
7). Hence, we have only to show thatis a value proposed by a correct process. A valuwecided by a
correct procesp; was RB-delivered in a message_EsT(v). It follows from the predicate of line 3 that
v € cb_valid;. Finally, if follows from the CB-Set Validity property thatis a value proposed by a correct
process. Proof of the AC-Obligation property.

If all correct processes propose the same valué follows from the CB-Set (Termination, Validity, and
Agreement) properties that the gétvalid; of each correct procegs is eventually equal t§v }. Hence, each
correct process RB-broadcasts the mesgagesT(v) at line 2. It then follows from the predicate of line 3
that no value different frona can be decided. Proof of the AC-Quasi-agreement property.

Letp; andp; be two correct processes such thatlecides the paifcommit, v) while p; decideg—, v"). Asp;
decides(comnit, v}, it follows from line 3 that it RB-delivered the message_esT(v) from (n — t) different
processes. As, due to the RB-Unicity and RB-Termination-2 propertiesyam correct processes RB-deliver
different values from the same process, it follows that, amongithe ¢t) messageac_esT() RB-delivered
by p;, at mostt of them may carry a value different from i.e., at least, — 2t > ¢ + 1 carry the valuev. It
follows thatw is the most frequent value RB-delivered py and consequently’ = v. Orheorem 2

4 The O(t + 1)Bisource Assumption

Eventually timely channel Let us consider the channel connecting a propgssa procesg;. This channel
is eventually timelyf there is a finite timer and a bound, such that any message senghyo p; at time7’ is
received byp; by timemax(7,7") + d. Let us observe that neither norJ, is known by the processes.

As already indicated, there is an input/output channel from each rtacéself.

O(k)sink, <(k)source, and<(k)bisource A correct procesg; is an<(k)sink if it has eventually timely
input channels fronk correct processes (including itself). This set of processes is deigte Similarly, a
correct process is atr(k)source if it hast eventually timely output channels to correct processes (including
itself). This set of processes is denot&gd .

An <(k)bisource is a correct procegs that is both< (k)sink and<(k)source. Let us remark that the
timely input channels and the timely output channels do not necessarily cignn® the same subset of
processes.

Notation for system models The system modeBZ_AS,, [t < n/3] enriched with an>(t + 1)bisource is
denoted3Z_AS,, [t < n/3,O(t + 1)bisourcé.

Discussion The previous notions were introduced in [1, 14]. Our definition ofdn+ 1)bisource is slightly
different from the original definition introduced in [1]. The differeris¢hat it considers only eventually timely
channels connecting correct processes, while [1] considers edlgntimely channels connecting a correct
process to correct or faulty processes. HenceQ&@m+ 1)bisource is an®> (2t + 1)bisource in the parlance
of [1]. We consider only eventually timely channels connecting pair ofembrprocesses for the following
reason: an eventually timely channel connecting a correct processBymhntine process can always appear
to the correct process as being an asynchronous channel.

5 Eventual Agreement Object

5.1 Motivation and definition

This object, which is round-based, will be used to ensure the terminatioe abtisensus algorithm, namely,
its aim is to allow the correct processes to eventually converge on a sirlgke v&o this end, it provides
the processes with a single operation den@a&dpbropose(r, v) wherer is a round number andis the value
proposed at this round by the invoking process. Each invocati@Aqgsropose() by a correct process returns



a value. It is assumed that each correct process invokes this opesatienper round, and its successive
invocations are done according to consecutive round numbers. Wrecess invokeBA _propose(r, v), we
say that it “ea-proposesat roundr”.

Definition An eventual agreement (EA) object is defined by the following properties

e EA-Termination. For any, if all correct processes invokeA _propose(r, —), each of these invocations
terminates.

e EA-Validity. For anyr, if all correct processes invoke the operatioh_propose(r, v) No correct process
returns a value different from.

e EA-Eventual agreement. If the correct processes execute an infimiteer of rounds, there is an infinite
number of rounds at which all the correct processes return the same valweherev is such that a
correct process invoked the operatief_propose(r, v).

It is important to notice that the EA-Validity property is particularly weak. Mprecisely, if, during a round
r, two correct processes invol propose(r, v1) andEA _propose(r, v2), with v1 # v2, the invocation of
EA_propose(r, —) by any correct process is allowed to return an arbitrary value (i.e., @watue proposed
neither by a correct nor by a Byzantine process).

As the implementation that follows uses at every round an instance of Giéltmet, we assume that at

mostm < L%J different values are ea-proposed by correct processes.

5.2 Implementation of anm-valued eventual agreement object
Definitions The algorithm presented below uses the following sets and functions.

e There arex = (,",) possible combinations df: — t) processes among theprocessesp:, ..., p,. Let
us call themF; ... F,.

e Given any round number > 1:

— coord(r) denotes the functiof\(r — 1) mod n) + 1.
Given a roundr, coord(r) defines its coordinator process. As we can see, if there is an infinite
number of rounds, each process is infinitely often round coordinator.

— F(r) denotes the functiof},ye.(.), Whereindex(r) = (([£] — 1) mod a) + 1.
Hence, each séf(r) returns a set made up @i —t) processes. During each round, its coordinator
strives to decide a value. To this end, it requires the help of the praces$ér) to broadcast
the value it championsF; is used by the coordinators of the roundso n; F; is used by the
coordinators of the rounds: + 1) to 2n; ..., F,, is used by the coordinators of the rour(ds —
1)n + 1) to an; F} is used by the coordinators of the rouri@an + 1) to (a + 1)n; etc.

Considering an infinite sequence of rounds, it is important to notice tha ihan infinite number of rounds
r andr’ such tha{coord(r) = coord(r’')) A F'(r) = F(r’") and an infinite number of roundsandr’ such that
(coord(r) = coord(r')) A (F(r) # F(r')).
Local variables Each procesg; manages the following local variables.

e timer;[1..] is an array of timers, such thatner;[r] is the timer used by; for roundr-.

e CBJ[1..]is an array of CB-broadcast instances shared by all proce€$&s] is the instance associated
with roundr. Hence,CB]r|.cb_valid; is the set of values supplied tg by CB|r].

To distinguish messages which have the same tag but are sent at diftenet$, a message<x () associated
with roundr is denotedkxx [r]().

Algorithm: first part of EA_propose() (Lines 1-5) The algorithm executed by a correct proggss de-

scribed in Figure 3. Let us remind that, it is assumed that each correetgsrvoke&A propose() at every
round.

When a correct procegs invokesEA _propose(r;, val;) (r; is a round number andal; the value it ea-
proposes at this round), it first invoké€&B[r;].CB_broadcast EA_PROFL(val;), and saves the value returned in
auz; (line 1).Then,p; broadcasts the message PROR[r;]|(aux;) (line 1) and waits until (a) it has received
messagesA_PROF2[r;]() from (n—t) different processes, and (b) the values carried by these messdgesg b
to the set denoted'B|r;].cb_valid;, which is locally supplied by the CB-broadcast instagte[r;] (line 3). If



operation EA _propose(r;, val;) is
(1) auz; + CBJr;].CB_broadcast EA_PROPL(val;);
(2) broadcast EA_LPROR[r;](auz;);
(3) wait (EA_PROR2[r;]() messages have been received filom- ¢)
different processes, and theizx values belong t@'B|[r;].cb-valid;);
(4) if (the(n — t) previous messages carry the same valuden return(v) end if;
(5) set timer;[r;] to ri;
(6) wait (EA_RELAY[r;](auz) messages received from — ¢) different processes)
(7) if (EA_RELAY[ri](v) wherev # L received from a process ifi(r;))

]
(8) then return(v)
9) else return(val;)
(10) endif.

when EA_PROR2[r]() is received froma process irF'(r) do
(11) if ((¢ = coord(r) A (EA_cOORDr]() not already broadcagt)

(12) then let w be the value carried by the messagePROR2[r]();
(13) broadcast EA_COORD[r]|(w)
(14) endif.

when EA_COORD[r](v) is received frompeyor() OF (timer;[r] expires)do
(15) if (EA-RELAY|[r]() not already broadcast)

(16) disable timer;[r];

a7) if (timer;[r] expired)then v_coord; < L elsev_coord; + v end if;
(18) broadcast EA_RELAY [r|(v_coord;)

(19) end if.

Figure 3: An algorithm implementing an-valued EA object il3Z_AS,, [t < n/3,<(t + 1)bisourcé

all these messages carry the same valyg returnsv as result of its invocatioBA_propose(r;, val;) (line 4.
Otherwise p; sets the timer associated with the roundo the valuer; (line 5.

Algorithm: message processing and role of the round coordinator (Lines 11-19) Each round uses a
round coordinator, defined byord(r). As we have also seen, the set(of— t) processes denotdd(r) is
associated with round

Whenp; is the coordinator of round and receives for the first time a messagePROR2[r|() from a
process in the set'(r), it champions the value carried by this message to become the value returned by the
invocations ofEA_propose(r, —). To that end, it simply broadcasts the messagecooRDr|(w) (lines 11-
14).

When a procesp; receives a messaga _COORDr|(v) from the coordinator of round, if not yet done,
it broadcasts the message_RELAY [r](v) to inform the other processes that it has received the vatlram-
pioned by the coordinator of round If the local timer associated with this roundrGer;[r]) has already
expired,p; broadcasts the message_RELAY[r](_L), to inform the other processes that it suspects the coor-
dinator of round- not to be an® (¢ + 1)bisource (this suspicion can be due to the asynchrony of the channel
connectingeoord(ry t0 p;, OF the fact that —whil@c,orq(,y is anO(t + 1)bisource— the link fronp.ygrq(,) t0 p;
is not yet synchronous, or the fact that.q(.-) has a Byzantine behavior). In all casest@aser;[r] will no
longer be usefulp; disables it. This behavior ¢f; is captured by the lines 15-19.

Algorithm: second part of EA_propose() (Lines 6-10) After it has setimer;[r;] (line 5), p; waits until it has
received a messaga _RELAY [r;]() from (n — t) different processes (line 6). When this occurs, the invocation
of the operatiorEA_propose(r;, val;) by p; returns a value. This value is # L if p; received a message
EA_RELAY[r;](v) from a process in the séi(r;) (lines 7-8). Otherwise, no process Bfr;) witnesses the
value championed by the coordinator of round In this casep; returns the valueval;, i.e., the value it
ea-proposed (line 9).

2Let us remark that lines 1-3 of Figure 3 and lines 1-3 of Figure 2 diffdy i the fact that an RB-broadcast is used at line 2 for
the AC object, and a simple broadcast is used at line 2 for the EA objecteTimes have not been encapsulated to define a higher
level object because the messagesPROR[r;]() are explicitly used in lines 11-14 of Figure 3, while their counterparts in an AC
object —-messagesc_EST()— are not used by the upper layer.

3The important point here is that the value of the timer increases; m®reases at every round, it is used as a timeout value.
More generally, it is possible to assignttener;[r;] the value returned by an increasing functiGfr;), which can be specific to each
procesy;.



5.3 Proof

Let us remember that, by assumption, all correct processes i&keopose(r, —), wherer = 1. Moreover,
they ea-propose at most different values.

Lemma 1. Whatever the round, if all correct processes invokeA _propose(r, v) N0 correct process returns
a value different from. (Proof in [6].)

Lemma 2. Letr > 1. If all correct processes invoke the operatiBA _propose(r, —), then each of these
invocation terminateg(Proof in [6].)

Lemma 3. If the correct processes execute an infinite number of rounds, ikareinfinite number of rounds
r at which all the correct processes return the same valuerherev is such that a correct process invoked
EA _propose(r, v).

Proof Let us define the following rounds:
e Letry be the first round that is strictly greater thzin

e Letp, be an®(t + 1)bisource. There exists a roungisuch that in every subsequent round:
- Each message sent by gnyc X, to p, is received within an interval of at mo&time units.
- Each message sent pyto anyp, € Xj is received within an interval of at mo&time units.

e Letr > max(ry,r2) be any round coordinated by such thatX,” C F(r) andF(r) C C. Let us notice
that, due to the definition af (), an infinity of such rounds exists.

Claim C. For every process € X, , we havev_coord; # L in roundr (line 18).

Proof of claim C. Leip; be any process iJXZ_. Let T be the time at whiclp; sets the timer at line 5 of round

At this moment, since; finished executing line 4, there are at le@st- ¢) processes from which; received
anEA_PROF2[r]() message. SindeX, | > t + 1, it follows that among thesg: — t) processes, there is at least
one, saypy, that belongs toX, . Observe thap, necessarily broadcast the messagePROR2[r]() beforer.
Sincer > r9, this message is received pybefore timer + 0.

Therefore, ifp, did not broadcast a message_cooRrDr|() before receivingeA_PROR2[r|() from py, as
pr € X, C F(r), the condition of line 11 and the when statement preceding it are both satisfied,
broadcastgA_coorpr|() at line 13. Consequently, in all caseg broadcasts a message cooRD[r]() by
timer + 4. Finally, sincep; € Xj andr > ro, this message is received pybefore timer + 26.

Let us recall that, as > ry, it holds thatr > 24, and consequently, singg settimer;[r] to r (line 8)
at timer, the timeout occurs after time+ 25. Thereforep; receives the messaga_cooRrDr|() from p,
before the timeout. Consequently, when evaluateg;byhe predicate of line 17 is necessarflylse, and
v_coord; # 1. This proves the claim.

We show in the following that all correct processes return the same vatoeilr. Let us first observe
that every correct process broadcastEanPROR2[r]() message that carries a value which was necessarily
ea-proposed by a correct process. Therefore, ginge correct (and is the coordinator ef, the message
EA_COORD[r|() it broadcasts in round contains a value, say, that was sent to it by a correct process.
Therefore, since (due to the definition9f the processes df (r) are correct, th&A_RELAY[r|() messages
broadcast by them carry eitheror 1.. Consequently, every correct processan either returns or val;
after executing the lines 7-10. To finish the proof, it remains to show thabrrect procesg; returnsval; (if
val; # w).

Let us observe that each correct process waits at line 6 until it esd@iv— ¢) EA_RELAY [r|() messages.
Since|Xj| > t, it follows that at least one of these messages was broadcast bym:pinKj. Due to Claim
C, this message cannot carty It then follows from the predicate of line 7 that any correct processes
line 8 and returnsy, which proves the lemma. O Lemma 3

Theorem 3. The algorithm of Figure8 implements amn-valued eventual agreemesttject inBZ_AS,, +[t <
n/3,<(t + 1)bisource. (The proof follows from Lemma 1, Lemma 2, and Lemma 3.)



operation CONS_propose(v;) is
(1) est; + CB[0].CB_broadcast VALID (v;); % safety: validity %
(2) repeat forever

4) v < FA_OBJECT .EA_propose(r;, est;); % liveness %

(5) if (v € CBJ[0].cb_valid;) then est; < v end if; % safety: validity %

(6) (tag, est;) + AC_OBJECT|r;].AC_propose(est;); % safety: agreement %
@) if (tag = commit) then RB_broadcast DECIDE(est;) end if

(8) endrepeat

when DECIDE(v) is RB-delivered do
(9) if (DECIDE(v) RB-delivered from(t 4 1) diff. processesphen return(v) end if.

Figure 4: An algorithm forn-valued Byzantine consensusg_AS,, ;[t < n/3, (t + 1)bisourcé

5.4 Looking for efficiency: Parameterized eventual agreemen

Time complexity of the EA algorithm The aim of the previous algorithm was to attain a roundiring
which all correct processes return the same value (ea-proposetehyf them). Hence its time complexity
can be measured by the value of this round number. As the underlyingrsyrycassumption isventual we
only know that this number is finite.

Hence, to eliminate the noise created by the “eventual” attribute, and camgqbe able to com-
pute a time complexity of the algorithm, let us replace ¢h¢ + 1)bisource synchrony assumption by the
(t + 1)bisource assumption, i.e., we consider that there (is-a 1)bisource from the very beginning. The
corresponding system model is denot&fl_AS,, ;[t < n/3, (t + 1)bisourcé.

The uncertainty created by the “eventual” attribute is consequently eliminatedthe only uncertainty
is the identity of the bisource and its associated input and output timely chamkethere are: processes
anda = (") combinations for the set8(r), it follows that the algorithm, which works iBZ_AS,,;[t <
n/3, <& (t+1)bisourcé, terminates in at mostn rounds when the system behave®as AS,, «[t < n/3, (t+

1)bisource.

Improving the time complexity One way to improve the time complexity of the algorithm (as measured
previously) is to consider a “tuning” parametfer) < k < ¢, and use it in both the synchrony assumption and
the size of the setB'(r), as follows.

e The assumptiorit + 1)bisource is replaced by the stronger assumption 1 + k)bisource.
e Instead of(n — t), the size of the setB(r) is nown — ¢t + k.

An algorithm, parameterized with, extending the basic algorithm of Figure 3 and based on the previous
definition is described in [6]. Designed for the system md8lgl.AS,, ;[t < n/3,<(t + 1 + k)bisourcé,

this algorithm has a time complexity gf» wheres = (,, '} ) when executed i8Z_AS,, ([t < n/3, (t +

1 + k)bisourcé. As simple instances of this parameterized algorithm, let us consider two peartelues

of k. Fork = 0, we obtain the basic algorithm. Fér= t, the time complexity i3, which is the best that
can be obtained with a round coordinator-based algorithm (uprtunds can be needed to benefit from the
(t + 1 + k)bisource).

6 Byzantine Consensus Algorithm

m-Valued Byzantine consensuslin them-valued Byzantine consensus, the correct processes proposs valu
from a set of at most: values. The corresponding object is a one-shot object, that pravidgsocesses with
a single operation denotgtONS _propose(v), wherew is the value proposed by the invoking process. This
operation returns a value to the invoking processp; Ibbtains the value, we say that it “decidesb. The
consensus object is defined by the following properties.

e CONS-Termination. The invocation GONS_propose() by a correct process terminates.

e CONS-Validity. If a correct process decidesa correct process invok&dDNS _propose(v).

e CONS-Agreement. No two correct processes decide different values
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An algorithm solving m-valued Byzantine consensusAssumingm < L%J, the algorithm described
in Figure 4 implements am-valued consensus object®f2_AS,, ;[t < n/3, (t+1)bisourcé. This algorithm,
which —thanks to the previous abstractions— is simple, uses the followinglyindeobjects.

e Each procesg; manages a round number(initialized to0), and a current estimate denoted;.

e FA_OBJECT is a sharedn-valued EA object. Its aim is to allow processes to eventually converge to
the same estimate value. Hence, the associated line 4 is related to CONS-Terminatio

e AC_OBJECTI1..] is an unbounded array of-valued adopt-commit objects, shared by all processes.
AC_OBJECT]r] is the adopt-commit object used at roundThe aim of these objects (line 6) is to
allow correct processes to decide a value proposed by one of thenpreveht them from deciding
different values, i.e., to guarantee consensus safety.

e (CB[0] is a CB-broadcast instance, used at the very beginning to obtain a vaipespd by a correct
process and allow a procegsto use the associated s€f3[0].cb_valid; to check the validity of the
values returned by thEA_OBJECT object (i.e., check if this value is from a correct process).

When a correct procegs invokesCONS _propose(v;), it first invokes CB[0].CB_broadcastVALID (v;) to ob-
tain a value that was proposed by a correct process (Ihe\s)already indicated, this invocation also ensures
that the set<’B[0].cb-valid; of correct processes are eventually equal and contain valuessepaly by
correct processes.

Then procesg; enters an infinite loop (lines 2-8). After it has entered its current rolind 8), pro-
cessp; proposes its current estimate of the decision valete to the to the EA object, namely, it invokes
EA_OBJECT.EA propose(r;, est;) (line 4). If the value returned by this invocation is a value that it knows
as proposed by a correct process, it adopts it as new estimate, othérk@sps its previous estimate (line 5).

Proces; proposes then the current valueest; to the adopt-commit object associated with the current
round, from which it obtains a paiftag, est;) (line 6). If the value of the tag isommit (line 7), p; RB-
broadcasts the messageciDE(est;) to inform the other processes that the valuesef, can be decided.
Then, whatever the value of the tag proceeds to the next round with its (possibly new) estimate vaitje

Finally, as soon as a process, that not yet decided, has RB-ddlitteresame messageCIDE(v) from
(t + 1) different processes, it decidesand stops (line 9). Let us notice that at least one of these messages is
from a correct process.

Theorem 4. The algorithm of Figuretl solves then-valued Byzantine consenspsblem in the system model
BZ_AS,+[t < n/3,<O(t + 1)bisource.

Proof We say that a procegs starts round- when it assigns valueto its local variable; (line 3).

Proof of the CONS-Termination property.

If a process decides at line 9, it previously RB-delivered the messagebe(v) from (¢ + 1) different pro-
cesses. Due to the RB-termination property of the corresporidingl) RB-broadcasts, each correct process
RB-delivers this message from the same sét af 1) processes, and consequently decides. So, let us assume
by contradiction that no correct process decides at line 9.

Let us first observe that, due to the CB-Operation Termination propettyitheorrect process; blocks
forever atline 1. Moreover, it follows from the CB-Operation Validity peoty that that the st B[0].cb-valid;
is not empty when this invocation terminates.

As no correct process decides, and all correct processes iBvakeopose(1, —), it follows from the EA-
Termination and AC-Termination properties that they all terminate the firsdrcamd consequently start the
second. Moreover, if the estimatet; of a correct procesg; is updated at line 5, its new value is a value
proposed by a correct process. It follows that the correct psesestart the second round with estimate values
est; containing values proposed by correct processes. As no comeotgs decides, the same reasoning
applies to all rounds > 1.

Let us observe that the local variabl€®[0].cb_valid; of the correct processes eventually converge to the
same content (CB-Set Agreement and Terminatiod@’B8f0]). Hence, there is a roung such that, for every
correct processg;, the setCB|0].cb_valid; is never updated after it stantg.

It then follows from the EA-Eventual Agreement propertyfd _OBJECT, that there is a round > rg
during which all correct processes obtain the same valaieline 4, where is a value proposed by a correct
process. Hence, singe > rg, they all succeed the test of line 5 and adops their new estimatest;.

“Even if, up to now, a process behaved “correctly”, it may crash in tiheré and become then faulty. Hence, no process can a
priori consider the value it proposes as a value proposed by a tprogess.
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Therefore, all correct processes invaké_OBJECT [r].AC_propose(v) at line 6. Due to the AC-Obligation
property of AC_OBJECT]|r], all correct processes obtajhommit, v) at line 6. Consequently, they all RB-
broadcast the same messdgemnmit, v) atline 7. Ann — ¢t > t 4 1, the decision predicate of line 9 becomes
eventually true at every correct process, which contradicts the inisahastion.

Proof of the CONS-Validity property.

Let us consider the first round. Lgtbe a correct process. It follows from the CB-Operation Validity proper
of CB[0] thatest; is a value proposed by a correct process. Moreover, it follows tferCB-Set Validity
property, thatCB[0].cb_valid; contains only values proposed by correct processes. It follows these
observations that, be or nett; modified at line 5, whemp; invokesAC_OBJECT|1].AC_propose(est;) at
line 6, est; contains a value proposed by a correct process. It then followstliemAC-Validity property of
AC_OBJECT(1] that the value assigned &at; at line 6 is a value proposed by a correct process. The same
reasoning applies iteratively to all rounds, from which it follows that aeahat is RB-broadcast by a correct
process at line 7 is a value proposed by a correct process.

If a correct procesg; decides a value at line 9, it follows from the decision predicate used at this line
thatv was RB-broadcast at line 7 by at least one correct prgegs$he previous paragraph has shown that
such a value» was proposed by a correct process.

Proof of the CONS-Agreement property.

Let us first observe that, if a correct process decides at line 9, ilelea value RB-broadcast by a correct
process at line 7. Hence, the proof consists in showing that no twoct@mecesses RB-broadcast different
values at line 7.

Let r be the first round at which a correct procgsfRkB-broadcast a messageciDg() at line 7. Letv
the value carried by this message. It follows that, at ling;@btained the paifcommit, v) from the object
AC_OBJECT|r]. Let us consider another correct procgssThere are two cases.

e p; RB-broadcasbECIDE(w) at line 9 of roundr. This means that it obtainettommit,w) from
AC_OBJECT|r]. It then follows from the AC-agreement property 4C_OBJECT|r] thatv = w.
Moreover,p; proceeds to the next round witht; = v.

e p; did not RB-broadcast the messapeCcIDE(w) at line 9 of roundr. It then follows from the AC-
agreement property ol C_OBJECT|r] that p; obtained the paifadopt,v). Hence, at line 6p;
assigned the valueto est;.

It follows that the estimate values of all the correct processes thatga®do the next round are equal
to v. Let p, be any correct process executing roymd+ 1). It follows from the EA-Validity property of
FEA_OBJECT, that the invocation by, of EA_OBJECT .EA_propose(r + 1, est;) returnsv, and from the
AC-Obligation property ofAC_OBJECT|[r + 1] that this object returné—, v) to p,. This means that the
estimates of all the correct processes remain forever equal tdence, no value different from can be
RB-broadcast at line 7 by a correct process during a retindr. OTheorem 4

7 Conclusion

A variant To ensure that a value decided by a correct process is always athalueas proposed by

a correct process, the paper considetiedalued consensus, i.e., at maest < L%j different values
can be proposed by the correct processes (i.e., there is a value thap@sed by at least + 1) correct
processes). To ensure that no value proposed only by Byzantioegses is ever decided, some Byzantine
consensus algorithms (e.g., [11, 24]) do not have suchmawdlued” requirement. They instead allow the
correct processes to decide a default valuevhen they do not propose the same value. The algorithms
proposed in the paper can be modified to satisfy this different validity rexeint.

The aim and the content of the paper This paper presented a consensus algorithm for asynchronous-Byza
tine message-passing systems, that is optimal with respect to the underlyicty@yy assumption. This
assumption is the existence of a process that isv@mtual(t + 1)bisource Such a processis a non-faulty
process that eventually has (a) timely input channels froorrect processes and (b) timely output channels to
t correct processes. Moreover these input and output channet®caact to different subsets of processes.
In addition to a reliable broadcast abstraction, the design of the algorithith vghvery modular, is based
on simple abstractions: a new broadcast abstraction catleperative broadcasadopt-commit objects that
cope with Byzantine processes (as far as we know, the paper prefaafe st implementation of such objects
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in the presence of Byzantine processes), and a new round-bajed cdlledeventual agreementvhose
definition involves a pretty weak validity property.

This paper answered a long-lasting problem, namely, solving Byzantirsziosas with the weakest un-
derlying synchrony assumptions. Finally, as claimed in the introduction, aaddition to its optimality with
respect to synchrony requirements, a very important first class qyopfethe proposed algorithm lies in its
design simplicity “Simplicity = easy” is rarely true for non-trivial problems [2].
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