
HAL Id: hal-01178651
https://hal.science/hal-01178651v1

Submitted on 20 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NoDerivatives 4.0 International License

Minimal Synchrony for Byzantine Consensus
Zohir Bouzid, Achour Mostéfaoui, Michel Raynal

To cite this version:
Zohir Bouzid, Achour Mostéfaoui, Michel Raynal. Minimal Synchrony for Byzantine Consensus.
Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing (PODC 2015), Jul
2015, Donostia-San Sebastián, Spain. pp.461-470, �10.1145/2767386.2767418�. �hal-01178651�

https://hal.science/hal-01178651v1
http://creativecommons.org/licenses/by-nd/4.0/
http://creativecommons.org/licenses/by-nd/4.0/
https://hal.archives-ouvertes.fr


Minimal Synchrony for Asynchronous Byzantine Consensus

Zohir Bouzid† Achour Most́efaoui‡ Michel Raynal⋆,†

† IRISA, Universit́e de Rennes 35042 Rennes Cedex, France
‡ LINA, Université de Nantes, 44322 Nantes Cedex, France

⋆ Institut Universitaire de France
Zohir.bouzid@gmail.com Achour.Mostefaoui@univ-nantes.fr raynal@irisa.fr

July 20, 2015

Abstract

Solving the consensus problem requires in one way or anotherthat the underlying system satisfies some
synchrony assumption. Considering an asynchronous message-passing system ofn processes where (a)
up to t < n/3 may commit Byzantine failures, and (b) each pair of processes is connected by two uni-
directional channels (with possibly different timing properties), this paper investigates the synchrony as-
sumption required to solve consensus, and presents a signature-free consensus algorithm whose synchrony
requirement is the existence of a process that is aneventual〈t + 1〉bisource. Such a processp is a correct
process that eventually has (a) timely input channels fromt correct processes and (b) timely output chan-
nels tot correct processes (these input and output channels can connectp to different subsets of processes).
As this synchrony condition was shown to be necessary and sufficient in the stronger asynchronous system
model (a) enriched with message authentication, and (b) where the channels are bidirectional and have the
same timing properties in both directions, it follows that it is also necessary and sufficient in the weaker
system model considered in the paper. In addition to the factthat it closes a long-lasting problem related to
Byzantine agreement, a noteworthy feature of the proposed algorithm lies in its design simplicity, which is
a first-class property.

Keywords: Adopt-commit, Asynchronous message-passing, Byzantineprocess, Consensus, Distributed al-
gorithm, Eventual timely channel, Feasibility condition,Lower bound, Optimal resilience, Reliable broad-
cast, Signature-free algorithm, Synchrony assumption.



1 Introduction

Byzantine consensus A process has aByzantinebehavior when it behaves arbitrarily [26]. This bad func-
tioning can be intentional (malicious behavior, e.g., due to intrusion) or simply theresult of a transient fault
that altered the local state of a process, thereby modifying its execution in anunpredictable way.

We are interested here in theconsensusproblem in message-passing distributed systems prone to Byzantine
process failures whatever their origin. Consensus is an agreement problem in which each process first proposes
a value and then decides on a value [26]. In a Byzantine failure context, the consensus problem is defined by
the following properties: every non-faulty process decides (termination), no two non-faulty processes decide
differently (agreement), and the decided value is not arbitrary, i.e., it is related in one way or another to values
proposed by non-faulty processes (validity).

Context of the paper A synchronous distributed system is characterized by the fact that both processes and
communication channels are synchronous (or timely) [3, 21, 28]. This means that there are known bounds on
process speed and message transfer delays. Lett denote the maximum number of processes that can be faulty
in a system made up ofn processes. In a synchronous system, consensus can be solved (a)for any value of
t (i.e., t < n) in the crash failure model, (b) fort < n/2 in the general omission failure model, and (c) for
t < n/3 in the Byzantine failure model [20, 26]. Moreover, these bounds are tight.

Differently, when all channels are asynchronous (i.e., when there is nobound on message transfer delays),
it is impossible to solve consensus even if we consider the weakest failure model (namely, the process crash
failure model) and assume that at most one process may be faulty (i.e.,t = 1) [15]. It trivially follows that
Byzantine consensus is impossible to solve in a failure-prone asynchronous distributed system.

As Byzantine consensus can be solved in a synchronous system and cannot in an asynchronous system,
a natural question that comes to mind is the following “When considering the synchrony-to-asynchrony axis,
which is the weakest synchrony assumption that allows Byzantine consensus to be solved in a message-passing
system?” This long-lasting question is the issue addressed in this paper. To that end, the paper considers a
synchrony assumption capturing both the structure and the number of eventually synchronous channels among
correct processes.

Related work Several approaches to solve Byzantine consensus have been proposed. We consider here only
deterministic approaches1. One consists in enriching the asynchronous system (hence the system isno longer
fully asynchronous) with a failure detector, namely, a device that provides processes with (possibly unreliable)
hints on failures [10]. Basically, in one way or another, a failure detectorencapsulates synchrony assumptions.
Failure detectors suited to Byzantine behavior have been proposed and used to solved Byzantine consensus
(e.g., [13, 16, 19]).

Another approach proposed to solve Byzantine consensus consists in directly assuming that some channels
satisfy a synchrony property (“directly” means that the synchrony property is not hidden inside a higher level
abstraction such as a failure detector). This approach, which relies on the notion of an✸〈x+1〉bisource(read
“✸” as “eventual”), was introduced in [1]. Intuitively, this notion states that there is a correct process that
hasx input channels from correct processes andx output channels to correct processes that are eventually
timely [12, 14] (the “+1” comes from the fact that it is assumed that each process has a “virtual” input/output
channel from itself to itself, which is always timely).

Considering asynchronous systems with Byzantine processes without message authentication, it is shown
in [1] that Byzantine consensus can be solved if the system has an✸〈n− t〉bisource (all other channels being
possibly fully asynchronous). Moreover, the process that is the✸〈n−t〉bisource can never be explicitly known
by the whole set of processes. Considering systems with message authentication, a Byzantine consensus algo-
rithm is presented in [25] that requires an✸〈t+ 1〉bisource only. As for Byzantine consensus in synchronous
systems, all these algorithms assumet < n/3. Finally, it has been shown in [4] that the “✸〈t + 1〉bisource”
synchrony assumption is a necessary and sufficient condition to solve Byzantine consensus in asynchronous
bi-directionnal message-passing systems, enriched with message authentication.

Content of the paper This paper presents a signature-free Byzantine consensus algorithm for asynchronous
message-passing systems, which requires only the two assumptions:t < n/3 and the existence of an✸〈t +
1〉bisource. As these assumptions are necessary and sufficient to solve Byzantine consensus in the asyn-
chronous model enriched with message authentication [4], it follows that (a) the existence of an✸〈t +

1Enriching the system with random numbers allows for the design of randomized Byzantine consensus algorithms. These algo-
rithms are characterized by a probabilistic termination property (e.g., [5, 9, 22, 27]).

1



1〉bisource is necessary and sufficient to solve Byzantine consensus in an asynchronous signature-free sys-
tem, and (b) the proposed algorithm is optimal with respect to underlying synchrony assumptions.

The proposed algorithm, which is round-based, assumes that at mostm ≤ ⌊n−(t+1)
t

⌋ different values can
be proposed by the correct processes (see also the paragraph “variant” in the conclusion). To attain its goal, it
relies on a modular construction involving two communication abstractions and twodistributed objects. More
precisely, we have the following.

• The communication abstractions are the one-to-allreliable broadcast(RB) abstraction introduced in [7],
and a very simple new communication abstraction that we callcooperative broadcast(CB). As suggested
by its name, it is an all-to-all broadcast abstraction. This abstraction, whichuses RB as an underlying
subroutine, is particularly simple. It actually captures important cooperationproperties, which make
easier the design of upper layer distributed agreement algorithms.

• The two distributed objects are the following ones (the implementation of each of them use the underly-
ing CB broadcast abstraction).

– The first object is a message-passing version of theadopt-commit(AC) object (introduced in [17])
appropriately modified to cope with up tot < n/3 Byzantine processes. Each round of the con-
sensus algorithm uses a specific AC object. The aim of these objects is to prevent the consensus
safety property from being violated.

– The second object is a round-based object calledeventual agreement(EA) object. Its aim is to en-
sure the consensus termination property. Hence, its implementation relies on the✸〈t+1〉bisource
assumption.

It is important to emphasize that, when designing the algorithm presented in the paper, modularity and sim-
plicity were considered as first class design criteria. The algorithm presented is only the last step of a long
quest: “Simplicity does not precede complexity, but follows it” (Alan Perlis, First Turing Award).

Road map The paper is made up of 7 sections. Section 2 presents the basic underlyingasynchronous
Byzantine computation model, the RB broadcast abstraction and the new CB broadcast abstraction. Section 3
presents an AC object suited to message-passing systems prone to Byzantine failures. Then, Section 4 presents
the✸〈t + 1〉bisource behavioral assumption. Section 5 presents the round-based eventual agreement object.
Section 6 pieces together the previous abstractions to obtain the synchrony-optimal Byzantine consensus al-
gorithm. Finally, Section 7 concludes the paper. Due to page limitation, the missing proofs can be found
in [6].

2 Basic Model, Reliable Broadcast, and Cooperative Broadcast
2.1 Processes, communication network, and failure model

Asynchronous processes The system is made up of a finite setΠ of n > 1 sequential processes, namely
Π = {p1, . . . , pn}. As local processing times are negligible with respect to message transfer delays, they are
considered as being equal to zero. Both notationsi ∈ Y andpi ∈ Y are used to say thatpi belongs to the set
Y .

Communication network The processes communicate by exchanging messages through an asynchronous
reliable point-to-point network. “Asynchronous” means that there is no bound on message transfer delays.
“Reliable” means that the network does not lose, duplicate, modify, or create messages. “Point-to-point”
means that any pair of processes is connected by two uni-directional channels (one in each direction). Hence,
when a process receives a message, it can identify its sender. Moreover, as there is no message loss, all message
transfer delays are finite.

A processpi sends a message to a processpj by invoking the primitive “send TAG(m) to pj”, whereTAG

is the type of the message andm its content. To simplify the presentation, it is assumed that a process can send
messages to itself. A processpi receives a message by executing the primitive “receive()”. Then say that the
message isreceivedby pi.

Failure model Up to t processes can exhibit aByzantinebehavior. A Byzantine process is a process that
behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary
state, perform arbitrary state transitions, etc. Moreover, Byzantine processes can collude to “pollute” the

2



computation (e.g., by sending messages with the same content, while they should send messages with distinct
content if they were non-faulty).

A process that exhibits a Byzantine behavior is calledfaulty. Otherwise, it iscorrector non-faulty. Given
an execution,C denotes the set of processes that are correct in this execution.

Let us notice that, as each pair of processes is connected by a channel,no Byzantine process can imper-
sonate another process. Moreover, it is assumed that the Byzantine processes do not control the network (they
can neither corrupt the messages sent by non-faulty processes, normodify the message reception schedule).

Discarding messages from Byzantine processesIf, according to its algorithm, a processpj is assumed to
send a single messageTAG() to a processpi, thenpi processes only the first messageTAG(v) it receives from
pj . This means that, ifpj is Byzantine and sends several messagesTAG(v), TAG(v′) wherev′ 6= v, etc., all of
them except the first one are discarded.

Unreliable (best effort) broadcast This simple broadcast is defined by a pair of operations denotedbroadcast()
andreceive(), wherebroadcast TAG(m) is used as a shortcut for

for each j ∈ {1, . . . , n} send TAG(m) to pj end for.
This means that a messagebroadcastby a correct process isreceivedat least by all the correct processes.
Differently, while it is assumed to send the same message to all the processes,a faulty process can actually
send different messages to distinct processes and no message to others.

Notation The notationBZ ASn,t[∅] is used to denote the previous basic Byzantine asynchronous message-
passing computation model.

2.2 Reliable broadcast abstraction
This broadcast abstraction (in short, RB-broadcast) was proposed by G. Bracha [7]. It is a one-shot one-to-
all communication abstraction, which provides processes with two operationsdenotedRB broadcast() and
RB deliver(). When pi invokes the operationRB broadcast() (resp.,RB deliver()), we say that it “RB-
broadcasts” a message (resp., ”RB-delivers” a message). An RB-broadcast instance where processpx is the
sender is defined by the following properties.

• RB-Validity. If a non-faulty process RB-delivers a messagem (from px), then, ifpx is correct, it RB-
broadcastm.

• RB-Unicity. A correct process RB-delivers at most one message frompx.

• RB-Termination-1. Ifpx is non-faulty and RB-broadcasts a messagem, all the non-faulty processes
eventually RB-deliverm from px.

• RB-Termination-2. If a non-faulty process RB-delivers a messagem from px (possibly faulty) then all
the non-faulty processes eventually RB-deliver the same messagem from px.

The RB-Validity property relates the output to the input, while RB-Unicity states that there is no message
duplication. The termination properties state the cases where processes have to RB-deliver messages. The
second of them is what makes the broadcast reliable. It is shown in [8] that t < n/3 is an upper bound on
t when one has to implement such an abstraction. An algorithm implementing RB-broadcast is described
in [6, 7]).

Notation The basic computing model strengthened with the additional constraintt < n/3 is denoted
BZ ASn,t[t < n/3]. RB-broadcast can consequently be implemented in this model.

2.3 Cooperative broadcast abstraction

Definition This new communication abstraction (in short CB-broadcast) is a one-shotall-to-all broadcast
defined by an operation, denotedCB broadcast(), plus a read-only set at every processpi, denotedcb validi.
“All-to-all” means that it is assumed that all correct processes invokeCB broadcast(). When a processpi
invokesCB broadcast(v), we say that “it cb-broadcastsv”.

An invocation ofCB broadcast() by a processpi has an input parameter, namely the value thatpi wants
to broadcast, and returns a value, which is a value CB-broadcast by a correct process. The CB-broadcast
abstraction is formally defined by the following properties.

• CB-Operation Termination. The invocation of the operationCB broadcast() by a correct process termi-
nates.

• CB-Operation Validity. If the invocation ofCB broadcast() returnsv to a correct processpi, v ∈
cb validi.

3



• CB-Set Termination. The setcb validi of a correct processpi is eventually non-empty.

• CB-Set Validity. The setcb validi of any correct processpi contains only values cb-broadcast by correct
processes.

• CB-Set Agreement. The setcb validi andcb validj of any two correct processespi andpj are eventually
equal.

Feasibility condition in the presence of up tot Byzantine processes Let m be the number of different
values that can be cb-broadcast by correct processes. It followsfrom the previous specification that, even
when the (at most)t Byzantine processes propose a same valuew, not proposed by a correct process,w can
neither be returned, nor belong to the setcb validi of a correct processpi. This can be ensured if and only if
there is a value cb-broadcast by at least(t+ 1) correct processes. This feasibility condition is captured by the
predicaten− t > mt. (A proof of this feasibility condition can be found in [18]).

operationCB broadcast(vi) is
(1) RB broadcast CB VAL (vi);
(2) wait (cb validi 6= ∅);
(3) return (any value incb validi).

when CB VAL (v) is RB delivered from pj do
(4) if (v RB delivered from(t+ 1) diff. processes)

then addv to cb validi end if.

Figure 1: An algorithm implementingm-valued CB-broadcast inBZ ASn,t[t < n/3]

Hence, we assume in the following that at mostm ≤ ⌊n−(t+1)
t

⌋ different values can be cb-broadcast by
the set of correct processes, and the corresponding abstraction is calledm-valuedCB-broadcast.

operationAC propose(vi) is
(1) esti ← CB broadcast AC PROP(vi);
(2) RB broadcast AC EST(esti);
(3) wait (AC EST(est) messages have been RB-delivered from(n− t)

different processes, and theirest values belong tocb validi);
(4) MFAi ← most frequent value in the previous(n− t) AC EST() messages;
(5) if (each of the previous(n− t) AC EST() messages carriesMFAi)
(6) then return (〈commit,MFAi〉)
(7) else return (〈adopt,MFAi〉)
(8) end if.

Figure 2: An algorithm implementing anm-valued adopt-commit object inBZ ASn,t[t < n/3]

An algorithm implementing CB-broadcast A simple algorithm implementing CB-broadcast is described
in Figure 1. Whenpi invokesCB broadcast(vi), it first invokes the underlyingRB broadcast CB VAL (vi)
for all correct processes to be eventually aware ofvi (line 1). Then, it waits until its setcb validi becomes
non-empty (line 2). When this occurs,pi takes any value fromcb validi and returns it (line 3). Finally,pi
adds tocb validi all the values it RB-delivers from(t + 1) different processes (i.e.,v was RB-broadcast by
at least one correct process). It is important to notice that, after the predicatecb validi 6= ∅ became satisfied,
new values can still be added tocb validi.

Theorem 1. The algorithm described in Figure1 implements them-valued CB-broadcast abstraction in
BZ ASn,t[t < n/3].

Proof Proof of the CB-Termination properties.
It follows from the feasibility condition, that there is a valuev that is proposed by at least(t+ 1) correct pro-
cesses. Hence, these processes RB-broadcastCB VAL (v). It then follows from line 4 and the RB-termination
property thatv will be added to the setcb validi of each correct processpi. Hence, the CB-Set Termina-
tion property is satisfied, and no correct process can be blocked forever at line 2, from which follows the
CB-Operation Termination property.
Proof of the CB-Validity properties.
To prove the CB-Set Validity property, let us consider a valuev cb-broadcast only by Byzantine processes.

4



It follows that a correct processpi can RB-deliverv from at mostt different processes. Hence,pi cannot
addv to cb validi at line 4, which proves the property. The CB-Operation Validity property isthen a trivial
consequence of the CB-Set Validity property.
Proof of the CB-Set Agreement property.
Let us consider a valuev ∈ cb validi. This means thatpi RB-delivered the messageCB VAL (v) from (t+ 1)
different processes (line 4). It then follows from the RB-termination property of RB-broadcast that each correct
processpj RB-delivers these(t+ 1) messagesCB VAL (v). Consequently, any correct processpj addsv to its
local setcb validj , which concludes the proof. ✷Theorem 1

3 Adopt-Commit in the Presence of Byzantine Processes

This object was introduced in [17] in the context of read/write communication.Here we slightly modify its
definition to cope with Byzantine processes (which by definition can decide anything).

Definition An adopt-commit (AC) is a one-shot object which encapsulates the safety part of agreement
problems. It provides processes with a single operation denotedAC propose(). This operation takes a value as
input parameter (we say that the invoking process proposes this value),and returns a pair〈d, v〉 (we say that
the invoking process decides〈d, v〉), whered is a control tag andv a value. An AC object is defined by the
following properties.

• AC-Termination. An invocation ofAC propose() by a correct process terminates.

• AC-Validity. This property is made up of two parts.

– AC-Output domain. If a correct process decides〈d, v〉, d ∈ {commit, adopt}, andv is a value
that was proposed by a correct process.

– AC-Obligation. If all the correct processes propose the same valuev, only 〈commit, v〉, can be
decided.

• AC-Quasi-agreement. If a correct process decides〈commit, v〉, no other correct process can decide
〈−, v′〉 wherev′ 6= v.

Implementations of an AC object in the presence of process crash failurescan be found in [17, 23, 29, 30].
The implementations of [17, 30] are for asynchronous systems where anynumber of processes may crash
and communication is by atomic read/write registers. The implementations of [23, 29] are for asynchronous
message-passing systems where a minority of processes may crash.

It follows from the AC-Output domain property, that a value proposed only by Byzantine processes cannot
be decided by a correct process. This means that an AC object has the same feasibility condition as CB-
broadcast (let us also notice that this is independent from the fact that an AC object can be built on top of CB-
broadcast). Hence, we assume that at mostm ≤ ⌊n−(t+1)

t
⌋ values can be proposed by the correct processes,

and the corresponding object is called anm-valuedadopt-commit object.
Implementation of anm-valued adopt-commit object A distributed algorithm implementing an AC object
in the presence of up tot < n/3 Byzantine processes is described in Figure 2, for a correct processpi. This
algorithm is based on an underlying CB-broadcast, which means that eachprocess has a read-only local set
cb vali (initially empty).

When a processpi invokesAC propose(vi), it first issues the operationCB broadcast AC PROP(vi) from
which it obtains a value that it saves inesti (line 1). It then RB-broadcasts the messageAC EST(esti) (line 2),
and waits until (a) it has RB-delivered messagesAC EST() from (n− t) different processes, and (b) the values
carried by these messages belong to the setcb validi supplied by CB-broadcast (line 3). Let us remember that,
after the predicatecb validi 6= ∅ became satisfied, new values can still be added tocb validi.

When this predicate becomes satisfied,pi computes the most frequent valueMFAi carried by the previous
(n− t) AC EST() messages (line 4). If there are several “most frequent” values,pi takes any of them. Finally,
if all the messages who made satisfied the predicate of line 3 carried the same valueMFAi, pi returns the pair
〈commit,MFAi〉) (line 6); otherwise it returns the pair〈adopt,MFAi〉) (line 7).

Theorem 2. Assuming that each correct process invokes the operationAC propose(), the algorithm of Figure2
implements anm-valued adopt-commitobject inBZ ASn,t[t < n/3].

5



Proof Proof of the AC-termination property.
Due to the CB-Operation termination property, no correct process blocksforever at line 1. So, we have only
to show that no correct process can block forever at line 3. It followsfrom CB-Set Termination and CB-
Set Validity that the setscb validi of the correct processes are eventually not empty and contain only values
proposed by correct processes. As (i) the value RB-broadcast byeach correct process at line 2 is a value of its
setcb validi, (ii) there are at least(n− t) correct processes, and (iii) the setscb validi of the correct processes
are eventually equal (CB-Set Agreement property), it follows that the predicate of line 3 is eventually satisfied
at each correct process, which concludes the proof of AC-terminationproperty. Proof of the AC-Output domain
property.
Let us first observe that a correct process can decide only the pair〈commit, v〉 or the pair〈adopt, v〉 (lines 6-
7). Hence, we have only to show thatv is a value proposed by a correct process. A valuev decided by a
correct processpi was RB-delivered in a messageAC EST(v). It follows from the predicate of line 3 that
v ∈ cb validi. Finally, if follows from the CB-Set Validity property thatv is a value proposed by a correct
process. Proof of the AC-Obligation property.
If all correct processes propose the same valuev, it follows from the CB-Set (Termination, Validity, and
Agreement) properties that the setcb validi of each correct processpi is eventually equal to{v}. Hence, each
correct process RB-broadcasts the messageAC EST(v) at line 2. It then follows from the predicate of line 3
that no value different fromv can be decided. Proof of the AC-Quasi-agreement property.
Let pi andpj be two correct processes such thatpi decides the pair〈commit, v〉 while pj decides〈−, v′〉. Aspi
decides〈commit, v〉, it follows from line 3 that it RB-delivered the messageAC EST(v) from (n− t) different
processes. As, due to the RB-Unicity and RB-Termination-2 properties, no two correct processes RB-deliver
different values from the same process, it follows that, among the(n − t) messagesAC EST() RB-delivered
by pj , at mostt of them may carry a value different fromv, i.e., at leastn − 2t ≥ t + 1 carry the valuev. It
follows thatv is the most frequent value RB-delivered bypj , and consequentlyv′ = v. ✷Theorem 2

4 The✸〈t+ 1〉Bisource Assumption

Eventually timely channel Let us consider the channel connecting a processpi to a processpj . This channel
is eventually timelyif there is a finite timeτ and a boundδ, such that any message sent bypi to pj at timeτ ′ is
received bypj by timemax(τ, τ ′) + δ. Let us observe that neitherτ , norδ, is known by the processes.

As already indicated, there is an input/output channel from each process to itself.

✸〈k〉sink, ✸〈k〉source, and✸〈k〉bisource A correct processpi is an✸〈k〉sink if it has eventually timely
input channels fromk correct processes (including itself). This set of processes is denoted X−

i . Similarly, a
correct process is an✸〈k〉source if it hask eventually timely output channels to correct processes (including
itself). This set of processes is denotedX+

i .
An ✸〈k〉bisource is a correct processpi that is both✸〈k〉sink and✸〈k〉source. Let us remark that the

timely input channels and the timely output channels do not necessarily connect pi to the same subset of
processes.

Notation for system models The system modelBZ ASn,t[t < n/3] enriched with an✸〈t + 1〉bisource is
denotedBZ ASn,t[t < n/3,✸〈t+ 1〉bisource].

Discussion The previous notions were introduced in [1, 14]. Our definition of an✸〈t+1〉bisource is slightly
different from the original definition introduced in [1]. The differenceis that it considers only eventually timely
channels connecting correct processes, while [1] considers eventually timely channels connecting a correct
process to correct or faulty processes. Hence, an✸〈t + 1〉bisource is an✸〈2t + 1〉bisource in the parlance
of [1]. We consider only eventually timely channels connecting pair of correct processes for the following
reason: an eventually timely channel connecting a correct process anda Byzantine process can always appear
to the correct process as being an asynchronous channel.

5 Eventual Agreement Object
5.1 Motivation and definition
This object, which is round-based, will be used to ensure the termination of the consensus algorithm, namely,
its aim is to allow the correct processes to eventually converge on a single value. To this end, it provides
the processes with a single operation denotedEA propose(r, v) wherer is a round number andv is the value
proposed at this round by the invoking process. Each invocation ofEA propose() by a correct process returns

6



a value. It is assumed that each correct process invokes this operationonce per round, and its successive
invocations are done according to consecutive round numbers. When aprocess invokesEA propose(r, v), we
say that it “ea-proposesv at roundr”.

Definition An eventual agreement (EA) object is defined by the following properties.

• EA-Termination. For anyr, if all correct processes invokeEA propose(r,−), each of these invocations
terminates.

• EA-Validity. For anyr, if all correct processes invoke the operationEA propose(r, v) no correct process
returns a value different fromv.

• EA-Eventual agreement. If the correct processes execute an infinite number of rounds, there is an infinite
number of roundsr at which all the correct processes return the same valuev, wherev is such that a
correct process invoked the operationEA propose(r, v).

It is important to notice that the EA-Validity property is particularly weak. Moreprecisely, if, during a round
r, two correct processes invokeEA propose(r, v1) andEA propose(r, v2), with v1 6= v2, the invocation of
EA propose(r,−) by any correct process is allowed to return an arbitrary value (i.e., evena value proposed
neither by a correct nor by a Byzantine process).

As the implementation that follows uses at every round an instance of CB-broadcast, we assume that at
mostm ≤ ⌊n−(t+1)

t
⌋ different values are ea-proposed by correct processes.

5.2 Implementation of anm-valued eventual agreement object

Definitions The algorithm presented below uses the following sets and functions.

• There areα =
(

n
n−t

)

possible combinations of(n − t) processes among then processesp1, ...,pn. Let
us call themF1 . . . Fα.

• Given any round numberr ≥ 1:
– coord(r) denotes the function

(

(r − 1) mod n
)

+ 1.
Given a roundr, coord(r) defines its coordinator process. As we can see, if there is an infinite
number of rounds, each process is infinitely often round coordinator.

– F (r) denotes the functionFindex(r), whereindex(r) =
(

(⌈ r
n
⌉ − 1) mod α

)

+ 1.
Hence, each setF (r) returns a set made up of(n−t) processes. During each round, its coordinator
strives to decide a value. To this end, it requires the help of the processes in F (r) to broadcast
the value it champions.F1 is used by the coordinators of the rounds1 to n; F2 is used by the
coordinators of the rounds(n + 1) to 2n; ...,Fα is used by the coordinators of the rounds((α −
1)n+ 1) to αn; F1 is used by the coordinators of the rounds((αn+ 1) to (α+ 1)n; etc.

Considering an infinite sequence of rounds, it is important to notice that there is an infinite number of rounds
r andr′ such that(coord(r) = coord(r′))∧ F (r) = F (r′) and an infinite number of roundsr andr′ such that
(

coord(r) = coord(r′)
)

∧
(

F (r) 6= F (r′)
)

.
Local variables Each processpi manages the following local variables.

• timeri[1..] is an array of timers, such thattimeri[r] is the timer used bypi for roundr.

• CB [1..] is an array of CB-broadcast instances shared by all processes.CB [r] is the instance associated
with roundr. Hence,CB [r].cb validi is the set of values supplied topi byCB [r].

To distinguish messages which have the same tag but are sent at differentrounds, a messageXXX () associated
with roundr is denotedXXX [r]().
Algorithm: first part of EA propose() (Lines 1-5) The algorithm executed by a correct processpi is de-
scribed in Figure 3. Let us remind that, it is assumed that each correct process invokesEA propose() at every
round.

When a correct processpi invokesEA propose(ri, vali) (ri is a round number andvali the value it ea-
proposes at this round), it first invokesCB [ri].CB broadcast EA PROP1(vali), and saves the value returned in
auxi (line 1).Then,pi broadcasts the messageEA PROP2[ri](auxi) (line 1) and waits until (a) it has received
messagesEA PROP2[ri]() from (n−t) different processes, and (b) the values carried by these messages belong
to the set denotedCB [ri].cb validi, which is locally supplied by the CB-broadcast instanceCB [ri] (line 3). If

7



operation EA propose(ri, vali) is
(1) auxi ← CB [ri].CB broadcast EA PROP1(vali);
(2) broadcast EA PROP2[ri](auxi);
(3) wait (EA PROP2[ri]() messages have been received from(n− t)

different processes, and theiraux values belong toCB [ri].cb validi);
(4) if (the(n− t) previous messages carry the same valuev) then return(v) end if;
(5) set timeri[ri] to ri;
(6) wait (EA RELAY[ri](aux) messages received from(n− t) different processes);
(7) if

(

EA RELAY[ri](v) wherev 6= ⊥ received from a process inF (ri)
)

(8) then return(v)
(9) else return(vali)
(10) end if.

when EA PROP2[r]() is received froma process inF (r) do
(11) if

(

(i = coord(r) ∧ (EA COORD[r]() not already broadcast)
)

(12) then letw be the value carried by the messageEA PROP2[r]();
(13) broadcast EA COORD[r](w)
(14) end if.

when EA COORD[r](v) is received frompcoord(r) or (timeri[r] expires)do
(15) if (EA RELAY[r]() not already broadcast)
(16) disable timeri[r];
(17) if (timeri[r] expired)then v coordi ← ⊥ elsev coordi ← v end if;
(18) broadcast EA RELAY[r](v coordi)
(19) end if.

Figure 3: An algorithm implementing anm-valued EA object inBZ ASn,t[t < n/3,✸〈t+ 1〉bisource]

all these messages carry the same valuev, pi returnsv as result of its invocationEA propose(ri, vali) (line 4)2.
Otherwise,pi sets the timer associated with the roundri to the valueri (line 5)3.

Algorithm: message processing and role of the round coordinator (Lines 11-19) Each roundr uses a
round coordinator, defined bycoord(r). As we have also seen, the set of(n − t) processes denotedF (r) is
associated with roundr.

Whenpi is the coordinator of roundr and receives for the first time a messageEA PROP2[r]() from a
process in the setF (r), it champions the valuew carried by this message to become the value returned by the
invocations ofEA propose(r,−). To that end, it simply broadcasts the messageEA COORD[r](w) (lines 11-
14).

When a processpi receives a messageEA COORD[r](v) from the coordinator of roundr, if not yet done,
it broadcasts the messageEA RELAY[r](v) to inform the other processes that it has received the valuev cham-
pioned by the coordinator of roundr. If the local timer associated with this round (timeri[r]) has already
expired,pi broadcasts the messageEA RELAY[r](⊥), to inform the other processes that it suspects the coor-
dinator of roundr not to be an✸〈t + 1〉bisource (this suspicion can be due to the asynchrony of the channel
connectingpcoord(r) to pi, or the fact that –whilepcoord(r) is an✸〈t+ 1〉bisource– the link frompcoord(r) to pi
is not yet synchronous, or the fact thatpcoord(r) has a Byzantine behavior). In all cases, astimeri[r] will no
longer be useful,pi disables it. This behavior ofpi is captured by the lines 15-19.

Algorithm: second part of EA propose() (Lines 6-10) After it has settimeri[ri] (line 5),pi waits until it has
received a messageEA RELAY[ri]() from (n− t) different processes (line 6). When this occurs, the invocation
of the operationEA propose(ri, vali) by pi returns a value. This value isv 6= ⊥ if pi received a message
EA RELAY[ri](v) from a process in the setF (ri) (lines 7-8). Otherwise, no process ofF (ri) witnesses the
value championed by the coordinator of roundr. In this case,pi returns the valuevali, i.e., the value it
ea-proposed (line 9).

2Let us remark that lines 1-3 of Figure 3 and lines 1-3 of Figure 2 differ only in the fact that an RB-broadcast is used at line 2 for
the AC object, and a simple broadcast is used at line 2 for the EA object. These lines have not been encapsulated to define a higher
level object because the messagesEA PROP2[ri]() are explicitly used in lines 11-14 of Figure 3, while their counterparts in an AC
object –messagesAC EST()– are not used by the upper layer.

3The important point here is that the value of the timer increases; asri increases at every round, it is used as a timeout value.
More generally, it is possible to assign totimeri[ri] the value returned by an increasing functionfi(ri), which can be specific to each
processpi.

8



5.3 Proof
Let us remember that, by assumption, all correct processes invokeEA propose(r,−), wherer = 1. Moreover,
they ea-propose at mostm different values.

Lemma 1. Whatever the roundr, if all correct processes invokeEA propose(r, v) no correct process returns
a value different fromv. (Proof in [6].)

Lemma 2. Let r ≥ 1. If all correct processes invoke the operationEA propose(r,−), then each of these
invocation terminates.(Proof in [6].)

Lemma 3. If the correct processes execute an infinite number of rounds, thereis an infinite number of rounds
r at which all the correct processes return the same valuev, wherev is such that a correct process invoked
EA propose(r, v).

Proof Let us define the following rounds:

• Let r1 be the first round that is strictly greater than2δ.

• Let pℓ be an✸〈t+ 1〉bisource. There exists a roundr2 such that in every subsequent round:
- Each message sent by anypx ∈ X−

ℓ to pℓ is received within an interval of at mostδ time units.
- Each message sent bypℓ to anypy ∈ X+

ℓ is received within an interval of at mostδ time units.

• Let r > max(r1, r2) be any round coordinated bypℓ such thatX+
ℓ ⊆ F (r) andF (r) ⊆ C. Let us notice

that, due to the definition ofF (r), an infinity of such roundsr exists.

Claim C. For every processpi ∈ X+
ℓ , we havev coordi 6= ⊥ in roundr (line 18).

Proof of claim C. Letpi be any process inX+
ℓ . Let τ be the time at whichpi sets the timer at line 5 of roundr.

At this moment, sincepi finished executing line 4, there are at least(n− t) processes from whichpi received
anEA PROP2[r]() message. Since|X−

ℓ | ≥ t+1, it follows that among these(n− t) processes, there is at least
one, saypk, that belongs toX−

ℓ . Observe thatpk necessarily broadcast the messageEA PROP2[r]() beforeτ .
Sincer > r2, this message is received bypℓ before timeτ + δ.

Therefore, ifpℓ did not broadcast a messageEA COORD[r]() before receivingEA PROP2[r]() from pk, as
pk ∈ X−

ℓ ⊆ F (r), the condition of line 11 and the when statement preceding it are both satisfied, andpℓ
broadcastsEA COORD[r]() at line 13. Consequently, in all cases,pℓ broadcasts a messageEA COORD[r]() by
time τ + δ. Finally, sincepi ∈ X+

ℓ andr > r2, this message is received bypi before timeτ + 2δ.
Let us recall that, asr > r1, it holds thatr > 2δ, and consequently, sincepi settimeri[r] to r (line 8)

at timeτ , the timeout occurs after timeτ + 2δ. Therefore,pi receives the messageEA COORD[r]() from pℓ
before the timeout. Consequently, when evaluated bypi, the predicate of line 17 is necessarilyfalse, and
v coordi 6= ⊥. This proves the claim.

We show in the following that all correct processes return the same value inroundr. Let us first observe
that every correct process broadcasts anEA PROP2[r]() message that carries a value which was necessarily
ea-proposed by a correct process. Therefore, sincepℓ is correct (and is the coordinator ofr), the message
EA COORD[r]() it broadcasts in roundr contains a value, sayw, that was sent to it by a correct process.
Therefore, since (due to the definition ofr), the processes ofF (r) are correct, theEA RELAY[r]() messages
broadcast by them carry eitherw or ⊥. Consequently, every correct processpi can either returnsw or vali
after executing the lines 7-10. To finish the proof, it remains to show that nocorrect processpi returnsvali (if
vali 6= w).

Let us observe that each correct process waits at line 6 until it receives(n − t) EA RELAY[r]() messages.
Since|X+

ℓ | > t, it follows that at least one of these messages was broadcast by a process inX+
ℓ . Due to Claim

C, this message cannot carry⊥. It then follows from the predicate of line 7 that any correct process executes
line 8 and returnsw, which proves the lemma. ✷Lemma 3

Theorem 3. The algorithm of Figure3 implements anm-valued eventual agreementobject inBZ ASn,t[t <
n/3,✸〈t+ 1〉bisource]. (The proof follows from Lemma 1, Lemma 2, and Lemma 3.)

9



operationCONS propose(vi) is
(1) esti ← CB [0].CB broadcast VALID (vi); % safety: validity %
(2) repeat forever
(3) ri ← ri + 1;
(4) v ← EA OBJECT .EA propose(ri, esti); % liveness %
(5) if (v ∈ CB[0].cb validi) then esti ← v end if; % safety: validity %
(6) 〈tag, esti〉 ← AC OBJECT [ri].AC propose(esti); % safety: agreement %
(7) if (tag = commit) thenRB broadcast DECIDE(esti) end if
(8) end repeat.

when DECIDE(v) is RB-delivered do
(9) if (DECIDE(v) RB-delivered from(t+ 1) diff. processes)then return(v) end if.

Figure 4: An algorithm form-valued Byzantine consensus inBZ ASn,t[t < n/3,✸〈t+ 1〉bisource]

5.4 Looking for efficiency: Parameterized eventual agreement
Time complexity of the EA algorithm The aim of the previous algorithm was to attain a roundr during
which all correct processes return the same value (ea-proposed by one of them). Hence its time complexity
can be measured by the value of this round number. As the underlying synchrony assumption iseventual, we
only know that this numberr is finite.

Hence, to eliminate the noise created by the “eventual” attribute, and consequently be able to com-
pute a time complexity of the algorithm, let us replace the✸〈t + 1〉bisource synchrony assumption by the
〈t + 1〉bisource assumption, i.e., we consider that there is a〈t + 1〉bisource from the very beginning. The
corresponding system model is denotedBZ ASn,t[t < n/3, 〈t+ 1〉bisource].

The uncertainty created by the “eventual” attribute is consequently eliminated,and the only uncertainty
is the identity of the bisource and its associated input and output timely channels. As there aren processes
andα =

(

n
n−t

)

combinations for the setsF (r), it follows that the algorithm, which works inBZ ASn,t[t <
n/3,✸〈t+1〉bisource], terminates in at mostαn rounds when the system behaves asBZ ASn,t[t < n/3, 〈t+
1〉bisource].

Improving the time complexity One way to improve the time complexity of the algorithm (as measured
previously) is to consider a “tuning” parameterk, 0 ≤ k ≤ t, and use it in both the synchrony assumption and
the size of the setsF (r), as follows.

• The assumption〈t+ 1〉bisource is replaced by the stronger assumption〈t+ 1 + k〉bisource.

• Instead of(n− t), the size of the setsF (r) is nown− t+ k.

An algorithm, parameterized withk, extending the basic algorithm of Figure 3 and based on the previous
definition is described in [6]. Designed for the system modelBZ ASn,t[t < n/3,✸〈t + 1 + k〉bisource],
this algorithm has a time complexity ofβn whereβ =

(

n
n−t+k

)

when executed inBZ ASn,t[t < n/3, 〈t +
1 + k〉bisource]. As simple instances of this parameterized algorithm, let us consider two particular values
of k. For k = 0, we obtain the basic algorithm. Fork = t, the time complexity isn, which is the best that
can be obtained with a round coordinator-based algorithm (up ton rounds can be needed to benefit from the
〈t+ 1 + k〉bisource).

6 Byzantine Consensus Algorithm

m-Valued Byzantine consensusIn them-valued Byzantine consensus, the correct processes propose values
from a set of at mostm values. The corresponding object is a one-shot object, that providesthe processes with
a single operation denotedCONS propose(v), wherev is the value proposed by the invoking process. This
operation returns a value to the invoking process. Ifpi obtains the valuev, we say that it “decides”v. The
consensus object is defined by the following properties.

• CONS-Termination. The invocation ofCONS propose() by a correct process terminates.

• CONS-Validity. If a correct process decidesv, a correct process invokedCONS propose(v).

• CONS-Agreement. No two correct processes decide different values.

10



An algorithm solving m-valued Byzantine consensusAssumingm ≤ ⌊n−(t+1)
t

⌋, the algorithm described
in Figure 4 implements anm-valued consensus object inBZ ASn,t[t < n/3, 〈t+1〉bisource]. This algorithm,
which –thanks to the previous abstractions– is simple, uses the following underlying objects.

• Each processpi manages a round numberri (initialized to0), and a current estimate denotedesti.

• EA OBJECT is a sharedm-valued EA object. Its aim is to allow processes to eventually converge to
the same estimate value. Hence, the associated line 4 is related to CONS-Termination.

• AC OBJECT [1..] is an unbounded array ofm-valued adopt-commit objects, shared by all processes.
AC OBJECT [r] is the adopt-commit object used at roundr. The aim of these objects (line 6) is to
allow correct processes to decide a value proposed by one of them, andprevent them from deciding
different values, i.e., to guarantee consensus safety.

• CB [0] is a CB-broadcast instance, used at the very beginning to obtain a value proposed by a correct
process and allow a processpi to use the associated setCB [0].cb validi to check the validity of the
values returned by theEA OBJECT object (i.e., check if this value is from a correct process).

When a correct processpi invokesCONS propose(vi), it first invokesCB [0].CB broadcastVALID (vi) to ob-
tain a value that was proposed by a correct process (line 1)4. As already indicated, this invocation also ensures
that the setsCB [0].cb validi of correct processes are eventually equal and contain values proposed only by
correct processes.

Then processpi enters an infinite loop (lines 2-8). After it has entered its current round (line 3), pro-
cesspi proposes its current estimate of the decision valueesti to the to the EA object, namely, it invokes
EA OBJECT .EA propose(ri, esti) (line 4). If the value returned by this invocation is a value that it knows
as proposed by a correct process, it adopts it as new estimate, otherwise it keeps its previous estimate (line 5).

Processpi proposes then the current value ofesti to the adopt-commit object associated with the current
round, from which it obtains a pair〈tag, esti〉 (line 6). If the value of the tag iscommit (line 7), pi RB-
broadcasts the messageDECIDE(esti) to inform the other processes that the value ofesti can be decided.
Then, whatever the value of the tag,pi proceeds to the next round with its (possibly new) estimate valueesti.

Finally, as soon as a process, that not yet decided, has RB-delivered the same messageDECIDE(v) from
(t + 1) different processes, it decidesv and stops (line 9). Let us notice that at least one of these messages is
from a correct process.

Theorem 4. The algorithm of Figure4 solves them-valued Byzantine consensusproblem in the system model
BZ ASn,t[t < n/3,✸〈t+ 1〉bisource].

Proof We say that a processpi starts roundr when it assigns valuer to its local variableri (line 3).
Proof of the CONS-Termination property.
If a process decides at line 9, it previously RB-delivered the messageDECIDE(v) from (t + 1) different pro-
cesses. Due to the RB-termination property of the corresponding(t+ 1) RB-broadcasts, each correct process
RB-delivers this message from the same set of(t+ 1) processes, and consequently decides. So, let us assume
by contradiction that no correct process decides at line 9.

Let us first observe that, due to the CB-Operation Termination property that no correct processpi blocks
forever at line 1. Moreover, it follows from the CB-Operation Validity property that that the setCB [0].cb validi
is not empty when this invocation terminates.

As no correct process decides, and all correct processes invokeEA propose(1,−), it follows from the EA-
Termination and AC-Termination properties that they all terminate the first round, and consequently start the
second. Moreover, if the estimateesti of a correct processpi is updated at line 5, its new value is a value
proposed by a correct process. It follows that the correct processes start the second round with estimate values
esti containing values proposed by correct processes. As no correct process decides, the same reasoning
applies to all roundsr > 1.

Let us observe that the local variablesCB [0].cb validi of the correct processes eventually converge to the
same content (CB-Set Agreement and Termination ofCB [0]). Hence, there is a roundr0 such that, for every
correct processpi, the setCB [0].cb validi is never updated after it startsr0.

It then follows from the EA-Eventual Agreement property ofEA OBJECT , that there is a roundr > r0
during which all correct processes obtain the same valuev at line 4, wherev is a value proposed by a correct
process. Hence, sincer > r0, they all succeed the test of line 5 and adoptv as their new estimateesti.

4Even if, up to now, a process behaved “correctly”, it may crash in the future and become then faulty. Hence, no process can a
priori consider the value it proposes as a value proposed by a correct process.

11



Therefore, all correct processes invokeAC OBJECT [r].AC propose(v) at line 6. Due to the AC-Obligation
property ofAC OBJECT [r], all correct processes obtain〈commit, v〉 at line 6. Consequently, they all RB-
broadcast the same message〈commit, v〉 at line 7. Ann− t ≥ t+ 1, the decision predicate of line 9 becomes
eventually true at every correct process, which contradicts the initial assumption.
Proof of the CONS-Validity property.
Let us consider the first round. Letpi be a correct process. It follows from the CB-Operation Validity property
of CB [0] that esti is a value proposed by a correct process. Moreover, it follows fromthe CB-Set Validity
property, thatCB [0].cb validi contains only values proposed by correct processes. It follows from these
observations that, be or notesti modified at line 5, whenpi invokesAC OBJECT [1].AC propose(esti) at
line 6, esti contains a value proposed by a correct process. It then follows fromthe AC-Validity property of
AC OBJECT [1] that the value assigned toesti at line 6 is a value proposed by a correct process. The same
reasoning applies iteratively to all rounds, from which it follows that a value that is RB-broadcast by a correct
process at line 7 is a value proposed by a correct process.

If a correct processpi decides a valuev at line 9, it follows from the decision predicate used at this line
thatv was RB-broadcast at line 7 by at least one correct processpj . The previous paragraph has shown that
such a valuev was proposed by a correct process.
Proof of the CONS-Agreement property.
Let us first observe that, if a correct process decides at line 9, it decides a value RB-broadcast by a correct
process at line 7. Hence, the proof consists in showing that no two correct processes RB-broadcast different
values at line 7.

Let r be the first round at which a correct processpi RB-broadcast a messageDECIDE() at line 7. Letv
the value carried by this message. It follows that, at line 6,pi obtained the pair〈commit, v〉 from the object
AC OBJECT [r]. Let us consider another correct processpj . There are two cases.

• pj RB-broadcastDECIDE(w) at line 9 of roundr. This means that it obtained〈commit, w〉 from
AC OBJECT [r]. It then follows from the AC-agreement property ofAC OBJECT [r] thatv = w.
Moreover,pj proceeds to the next round withestj = v.

• pj did not RB-broadcast the messageDECIDE(w) at line 9 of roundr. It then follows from the AC-
agreement property ofAC OBJECT [r] that pj obtained the pair〈adopt, v〉. Hence, at line 6,pj
assigned the valuev to estj .

It follows that the estimate values of all the correct processes that progress to the next round are equal
to v. Let px be any correct process executing round(r + 1). It follows from the EA-Validity property of
EA OBJECT , that the invocation bypx of EA OBJECT .EA propose(r + 1, estx) returnsv, and from the
AC-Obligation property ofAC OBJECT [r + 1] that this object returns〈−, v〉 to px. This means that the
estimates of all the correct processes remain forever equal tov. Hence, no value different fromv can be
RB-broadcast at line 7 by a correct process during a roundr′ ≥ r. ✷Theorem 4

7 Conclusion

A variant To ensure that a value decided by a correct process is always a valuethat was proposed by
a correct process, the paper consideredm-valued consensus, i.e., at mostm ≤ ⌊n−(t+1)

t
⌋ different values

can be proposed by the correct processes (i.e., there is a value that is proposed by at least(t + 1) correct
processes). To ensure that no value proposed only by Byzantine processes is ever decided, some Byzantine
consensus algorithms (e.g., [11, 24]) do not have such an “m-valued” requirement. They instead allow the
correct processes to decide a default value⊥ when they do not propose the same value. The algorithms
proposed in the paper can be modified to satisfy this different validity requirement.

The aim and the content of the paper This paper presented a consensus algorithm for asynchronous Byzan-
tine message-passing systems, that is optimal with respect to the underlying synchrony assumption. This
assumption is the existence of a process that is aneventual〈t + 1〉bisource. Such a processp is a non-faulty
process that eventually has (a) timely input channels fromt correct processes and (b) timely output channels to
t correct processes. Moreover these input and output channels canconnectp to different subsets of processes.

In addition to a reliable broadcast abstraction, the design of the algorithm, which is very modular, is based
on simple abstractions: a new broadcast abstraction calledcooperative broadcast, adopt-commit objects that
cope with Byzantine processes (as far as we know, the paper presented the first implementation of such objects

12



in the presence of Byzantine processes), and a new round-based object calledeventual agreement, whose
definition involves a pretty weak validity property.

This paper answered a long-lasting problem, namely, solving Byzantine consensus with the weakest un-
derlying synchrony assumptions. Finally, as claimed in the introduction, and inaddition to its optimality with
respect to synchrony requirements, a very important first class property of the proposed algorithm lies in its
design simplicity. “Simplicity ⇒ easy” is rarely true for non-trivial problems [2].

Acknowledgments

This work has been partially supported by the French ANR project DISPLEXITY, which is devoted to com-
putability and complexity in distributed computing, and the Franco-German ANR project DISCMAT devoted
to connections between mathematics and distributed computing.

References

[1] Aguilera M.K., Delporte-Gallet C., Fauconnier H., and Toueg S.,Consensus with Byzantine failures and little system synchrony.
Proc. 45th IEEE/IFIP Int’l Conference on Dependable Systems and Networks (DSN’06), IEEE Press, pp. 147-155, 2006.

[2] Aigner M. and Ziegler G.,Proofs from THE BOOK(4th edition). Springer, 274 pages, 2010.

[3] Attiya H. and Welch J., Distributed computing: fundamentals, simulationsand advanced topics, (2d Edition),Wiley-Interscience,
414 pages, 2004.

[4] Baldellon O., Most́efaoui A. and Raynal M., A necessary and sufficient synchrony condition for solving Byzantine consensus in
symmetric networks.Proc. 12th Int’l Conference on Distributed Computing and Networks (ICDCN’11), Springer LNCS 6522,
pp. 215-226, 2011.

[5] Ben-Or M., Another advantage of free choice: completely asynchronous agreement protocols.Proc. 2nd Annual ACM Sympo-
sium on Principles of Distributed Computing(PODC’83), ACM Press, pp. 27-30, 1983.

[6] Bouzid Z., Most́eafoui A., and Raynal M., Minimal synchrony for asynchronous Byzantine consensus.Tech Report 2025, 20
pages, IRISA, Univ. Rennes 1 (F), 2015.

[7] Bracha G., Asynchronous Byzantine agreement protocols.Information & Computation, 75(2):130-143, 1987.

[8] Bracha G. and Toueg S., Asynchronous consensus and broadcast protocols.J. of the ACM, 32(4):824-840, 1985.

[9] Cachin Ch., Kursawe K., and Shoup V., Random oracles in Constantinople: practical asynchronous Byzantine agreement using
cryptography.Proc. 19th Annual ACM Symposium on Principles of Distributed Computing (PODC’00), ACM Press, pp. 123-
132, 2000.

[10] Chandra T. and Toueg S., Unreliable failure detectors for reliabledistributed systems.Journal of the ACM, 43(2):225-267, 1996.

[11] Correia M., Ferreira Neves N., and Verissimo P., From consensus to atomic broadcast: time-free Byzantine-resistant protocols
without signatures.The Computer Journal, 49(1):82-96, 2006.

[12] Delporte-Gallet C., Devismes S., Fauconnier H. and Larrea M.,Algorithms for extracting timeliness graphs.17th Int’l Collo-
quium on Structural Inf. and Comm. Complexity (SIROCCO’10), Springer LNCS 6058, pp. 127-141, 2010.

[13] Doudou A., Garbinato B., Guerraoui R. and Schiper A., Muteness failure detectors: specification and implementation.3rd
European Dependable Computing Conf. (EDCC’99), Springer LNCS 1667, pp. 71-87, 1999.

[14] Dwork C., Lynch N., and Stockmeyer L., Consensus in the presence of partial synchrony.Journal of the ACM, 35(2), 288-323,
1988.

[15] Fischer M.J., Lynch N.A., and Paterson M.S., Impossibility of distributed consensus with one faulty process.Journal of the
ACM, 32(2):374-382, 1985.

[16] Friedman R., Most́efaoui A., and Raynal M., Simple and efficient oracle-based consensus protocols for asynchronous Byzantine
systems.IEEE Transactions on Dependable and Secure Computing, 2(1):46-56, 2005.

[17] Gafni E., Round-by-round fault detectors: unifying synchrony and asynchrony.Proc. 17th ACM Symposium on Principles of
Distributed Computing (PODC), ACM Press, pp. 143-152, 1998.

[18] Herlihy M.P., Kozlov D., and Rajsbaum S.,Distributed computing through combinatorial topology, Morgan Kaufmann/Elsevier,
336 pages, 2014.

13



[19] Kihlstrom K.P., Moser L.E. and Melliar-Smith P.M., Byzantine faultdetectors for solving consensus.The Computer Journal,
46(1):16-35, 2003.

[20] Lamport L., Shostack R., and Pease M., The Byzantine generals problem.ACM Transactions on Programming Languages and
Systems, 4(3)-382-401, 1982.

[21] Lynch N.A.,Distributed algorithms. Morgan Kaufmann Pub., San Francisco (CA), 872 pages, 1996 (ISBN 1-55860-384-4).

[22] Most́efaoui A., Moumen H., and Raynal M., Signature-free asynchronous Byzantine consensus witht < n/3 andO(n2)
messages.Proc. 33th ACM Symp. on Principles of Distr. Computing (PODC’14), ACM Press, pp. 2-9, 2014.

[23] Most́efaoui A. and Raynal M., Solving consensus using Chandra-Toueg’s unreliable failure detectors: a general quorum-based
approach.Proc. 13th Int’l Symposium on Dist. Comp. (DISC’99), Springer LNCS 1693, pp. 49-63, 1999.

[24] Most́efaoui A. and Raynal M., Signature-free broadcast based intrusion tolerance: never decide a Byzantine value.Proc. 14th
Int’l Conf. On Princ. Of Distr. Systems (OPODIS’10), Springer LNCS 6490, pp. 144-159, 2010.

[25] Moumen H., Most́efaoui A., and Tŕedan G., Byzantine consensus with few synchronous links.Proc. 11th Int’l Conference On
Principles Of Distributed Systems (OPODIS’07), Springer LNCS 4878, pp. 76-89, 2007.

[26] Pease M., R. Shostak R., and Lamport L., Reaching agreement in the presence of faults.Journal of the ACM, 27:228-234, 1980.

[27] Rabin M., Randomized Byzantine generals.Proc. 24th IEEE Symposium on Foundations of Computer Science (FOCS’83),
IEEE Computer Society Press, pp. 116-124, 1983.

[28] Raynal M.,Fault-tolerant agreement in synchronous message-passing systems. Morgan & Claypool, 165 pages, 2010.

[29] Raynal M.,Communication and agreement abstractions for fault-tolerant asynchronous distributed systems.Morgan & Clay-
pool Publishers, 251 pages, 2010.

[30] Raynal M.,Concurrent programming: algorithms, principles, and foundations.Springer, 530 pages, 2013.

14


