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Solving the consensus problem requires in one way or another that the underlying system satisfies some synchrony assumption. Considering an asynchronous message-passing system of n processes where (a) up to t < n/3 may commit Byzantine failures, and (b) each pair of processes is connected by two unidirectional channels (with possibly different timing properties), this paper investigates the synchrony assumption required to solve consensus, and presents a signature-free consensus algorithm whose synchrony requirement is the existence of a process that is an eventual t + 1 bisource. Such a process p is a correct process that eventually has (a) timely input channels from t correct processes and (b) timely output channels to t correct processes (these input and output channels can connect p to different subsets of processes). As this synchrony condition was shown to be necessary and sufficient in the stronger asynchronous system model (a) enriched with message authentication, and (b) where the channels are bidirectional and have the same timing properties in both directions, it follows that it is also necessary and sufficient in the weaker system model considered in the paper. In addition to the fact that it closes a long-lasting problem related to Byzantine agreement, a noteworthy feature of the proposed algorithm lies in its design simplicity, which is a first-class property.

Introduction

Byzantine consensus A process has a Byzantine behavior when it behaves arbitrarily [START_REF] Pease | Reaching agreement in the presence of faults[END_REF]. This bad functioning can be intentional (malicious behavior, e.g., due to intrusion) or simply the result of a transient fault that altered the local state of a process, thereby modifying its execution in an unpredictable way.

We are interested here in the consensus problem in message-passing distributed systems prone to Byzantine process failures whatever their origin. Consensus is an agreement problem in which each process first proposes a value and then decides on a value [START_REF] Pease | Reaching agreement in the presence of faults[END_REF]. In a Byzantine failure context, the consensus problem is defined by the following properties: every non-faulty process decides (termination), no two non-faulty processes decide differently (agreement), and the decided value is not arbitrary, i.e., it is related in one way or another to values proposed by non-faulty processes (validity).

Context of the paper A synchronous distributed system is characterized by the fact that both processes and communication channels are synchronous (or timely) [START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF][START_REF] Lynch | Distributed algorithms[END_REF][START_REF] Raynal | Fault-tolerant agreement in synchronous message-passing systems[END_REF]. This means that there are known bounds on process speed and message transfer delays. Let t denote the maximum number of processes that can be faulty in a system made up of n processes. In a synchronous system, consensus can be solved (a) for any value of t (i.e., t < n) in the crash failure model, (b) for t < n/2 in the general omission failure model, and (c) for t < n/3 in the Byzantine failure model [START_REF] Lamport | The Byzantine generals problem[END_REF][START_REF] Pease | Reaching agreement in the presence of faults[END_REF]. Moreover, these bounds are tight.

Differently, when all channels are asynchronous (i.e., when there is no bound on message transfer delays), it is impossible to solve consensus even if we consider the weakest failure model (namely, the process crash failure model) and assume that at most one process may be faulty (i.e., t = 1) [START_REF] Fischer | Impossibility of distributed consensus with one faulty process[END_REF]. It trivially follows that Byzantine consensus is impossible to solve in a failure-prone asynchronous distributed system.

As Byzantine consensus can be solved in a synchronous system and cannot in an asynchronous system, a natural question that comes to mind is the following "When considering the synchrony-to-asynchrony axis, which is the weakest synchrony assumption that allows Byzantine consensus to be solved in a message-passing system?" This long-lasting question is the issue addressed in this paper. To that end, the paper considers a synchrony assumption capturing both the structure and the number of eventually synchronous channels among correct processes.

Related work

Several approaches to solve Byzantine consensus have been proposed. We consider here only deterministic approaches 1 . One consists in enriching the asynchronous system (hence the system is no longer fully asynchronous) with a failure detector, namely, a device that provides processes with (possibly unreliable) hints on failures [START_REF] Chandra | Unreliable failure detectors for reliable distributed systems[END_REF]. Basically, in one way or another, a failure detector encapsulates synchrony assumptions. Failure detectors suited to Byzantine behavior have been proposed and used to solved Byzantine consensus (e.g., [START_REF] Doudou | Muteness failure detectors: specification and implementation. 3rd European[END_REF][START_REF] Friedman | Simple and efficient oracle-based consensus protocols for asynchronous Byzantine systems[END_REF][START_REF] Kihlstrom | Byzantine fault detectors for solving consensus[END_REF]).

Another approach proposed to solve Byzantine consensus consists in directly assuming that some channels satisfy a synchrony property ("directly" means that the synchrony property is not hidden inside a higher level abstraction such as a failure detector). This approach, which relies on the notion of an ✸ x + 1 bisource (read "✸" as "eventual"), was introduced in [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF]. Intuitively, this notion states that there is a correct process that has x input channels from correct processes and x output channels to correct processes that are eventually timely [START_REF] Delporte-Gallet | Algorithms for extracting timeliness graphs. 17th[END_REF][START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF] (the "+1" comes from the fact that it is assumed that each process has a "virtual" input/output channel from itself to itself, which is always timely).

Considering asynchronous systems with Byzantine processes without message authentication, it is shown in [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF] that Byzantine consensus can be solved if the system has an ✸ nt bisource (all other channels being possibly fully asynchronous). Moreover, the process that is the ✸ n-t bisource can never be explicitly known by the whole set of processes. Considering systems with message authentication, a Byzantine consensus algorithm is presented in [START_REF] Moumen | Byzantine consensus with few synchronous links[END_REF] that requires an ✸ t + 1 bisource only. As for Byzantine consensus in synchronous systems, all these algorithms assume t < n/3. Finally, it has been shown in [START_REF] Baldellon | A necessary and sufficient synchrony condition for solving Byzantine consensus in symmetric networks[END_REF] that the "✸ t + 1 bisource" synchrony assumption is a necessary and sufficient condition to solve Byzantine consensus in asynchronous bi-directionnal message-passing systems, enriched with message authentication.

Content of the paper

This paper presents a signature-free Byzantine consensus algorithm for asynchronous message-passing systems, which requires only the two assumptions: t < n/3 and the existence of an ✸ t + 1 bisource. As these assumptions are necessary and sufficient to solve Byzantine consensus in the asynchronous model enriched with message authentication [START_REF] Baldellon | A necessary and sufficient synchrony condition for solving Byzantine consensus in symmetric networks[END_REF], it follows that (a) the existence of an ✸ t + 1 bisource is necessary and sufficient to solve Byzantine consensus in an asynchronous signature-free system, and (b) the proposed algorithm is optimal with respect to underlying synchrony assumptions.

The proposed algorithm, which is round-based, assumes that at most m ≤ ⌊ n-(t+1) t ⌋ different values can be proposed by the correct processes (see also the paragraph "variant" in the conclusion). To attain its goal, it relies on a modular construction involving two communication abstractions and two distributed objects. More precisely, we have the following.

• The communication abstractions are the one-to-all reliable broadcast (RB) abstraction introduced in [7],

and a very simple new communication abstraction that we call cooperative broadcast (CB). As suggested by its name, it is an all-to-all broadcast abstraction. This abstraction, which uses RB as an underlying subroutine, is particularly simple. It actually captures important cooperation properties, which make easier the design of upper layer distributed agreement algorithms.

• The two distributed objects are the following ones (the implementation of each of them use the underlying CB broadcast abstraction).

-The first object is a message-passing version of the adopt-commit (AC) object (introduced in [START_REF] Gafni | Round-by-round fault detectors: unifying synchrony and asynchrony[END_REF]) appropriately modified to cope with up to t < n/3 Byzantine processes. Each round of the consensus algorithm uses a specific AC object. The aim of these objects is to prevent the consensus safety property from being violated.

-The second object is a round-based object called eventual agreement (EA) object. Its aim is to ensure the consensus termination property. Hence, its implementation relies on the ✸ t + 1 bisource assumption.

It is important to emphasize that, when designing the algorithm presented in the paper, modularity and simplicity were considered as first class design criteria. The algorithm presented is only the last step of a long quest: "Simplicity does not precede complexity, but follows it" (Alan Perlis, First Turing Award).

Road map

The paper is made up of 7 sections. Section 2 presents the basic underlying asynchronous Byzantine computation model, the RB broadcast abstraction and the new CB broadcast abstraction. Section 3 presents an AC object suited to message-passing systems prone to Byzantine failures. Then, Section 4 presents the ✸ t + 1 bisource behavioral assumption. Section 5 presents the round-based eventual agreement object. Section 6 pieces together the previous abstractions to obtain the synchrony-optimal Byzantine consensus algorithm. Finally, Section 7 concludes the paper. Due to page limitation, the missing proofs can be found in [START_REF] Bouzid | Minimal synchrony for asynchronous Byzantine consensus[END_REF]. 

Communication network

The processes communicate by exchanging messages through an asynchronous reliable point-to-point network. "Asynchronous" means that there is no bound on message transfer delays. "Reliable" means that the network does not lose, duplicate, modify, or create messages. "Point-to-point" means that any pair of processes is connected by two uni-directional channels (one in each direction). Hence, when a process receives a message, it can identify its sender. Moreover, as there is no message loss, all message transfer delays are finite. A process p i sends a message to a process p j by invoking the primitive "send TAG(m) to p j ", where TAG is the type of the message and m its content. To simplify the presentation, it is assumed that a process can send messages to itself. A process p i receives a message by executing the primitive "receive()". Then say that the message is received by p i .

Failure model Up to t processes can exhibit a Byzantine behavior. A Byzantine process is a process that behaves arbitrarily: it can crash, fail to send or receive messages, send arbitrary messages, start in an arbitrary state, perform arbitrary state transitions, etc. Moreover, Byzantine processes can collude to "pollute" the computation (e.g., by sending messages with the same content, while they should send messages with distinct content if they were non-faulty).

A process that exhibits a Byzantine behavior is called faulty. Otherwise, it is correct or non-faulty. Given an execution, C denotes the set of processes that are correct in this execution.

Let us notice that, as each pair of processes is connected by a channel, no Byzantine process can impersonate another process. Moreover, it is assumed that the Byzantine processes do not control the network (they can neither corrupt the messages sent by non-faulty processes, nor modify the message reception schedule).

Discarding messages from Byzantine processes If, according to its algorithm, a process p j is assumed to send a single message TAG() to a process p i , then p i processes only the first message TAG(v) it receives from p j . This means that, if p j is Byzantine and sends several messages TAG(v), TAG(v ′ ) where v ′ = v, etc., all of them except the first one are discarded.

Unreliable (best effort) broadcast

This simple broadcast is defined by a pair of operations denoted broadcast() and receive(), where broadcast TAG(m) is used as a shortcut for for each j ∈ {1, . . . , n} send TAG(m) to p j end for. This means that a message broadcast by a correct process is received at least by all the correct processes. Differently, while it is assumed to send the same message to all the processes, a faulty process can actually send different messages to distinct processes and no message to others.

Notation

The notation BZ AS n,t [∅] is used to denote the previous basic Byzantine asynchronous messagepassing computation model.

Reliable broadcast abstraction

This broadcast abstraction (in short, RB-broadcast) was proposed by G. Bracha [7]. It is a one-shot one-toall communication abstraction, which provides processes with two operations denoted RB broadcast() and RB deliver(). When p i invokes the operation RB broadcast() (resp., RB deliver()), we say that it "RBbroadcasts" a message (resp., "RB-delivers" a message). An RB-broadcast instance where process p x is the sender is defined by the following properties.

• RB-Validity. If a non-faulty process RB-delivers a message m (from p x ), then, if p x is correct, it RBbroadcast m. • RB-Unicity. A correct process RB-delivers at most one message from p x .

• RB-Termination-1. If p x is non-faulty and RB-broadcasts a message m, all the non-faulty processes eventually RB-deliver m from p x . • RB-Termination-2. If a non-faulty process RB-delivers a message m from p x (possibly faulty) then all the non-faulty processes eventually RB-deliver the same message m from p x .

The RB-Validity property relates the output to the input, while RB-Unicity states that there is no message duplication. The termination properties state the cases where processes have to RB-deliver messages. The second of them is what makes the broadcast reliable. It is shown in [START_REF] Bracha | Asynchronous consensus and broadcast protocols[END_REF] that t < n/3 is an upper bound on t when one has to implement such an abstraction. An algorithm implementing RB-broadcast is described in [START_REF] Bouzid | Minimal synchrony for asynchronous Byzantine consensus[END_REF]7]).

Notation The basic computing model strengthened with the additional constraint t < n/3 is denoted BZ AS n,t [t < n/3]. RB-broadcast can consequently be implemented in this model.

Cooperative broadcast abstraction

Definition This new communication abstraction (in short CB-broadcast) is a one-shot all-to-all broadcast defined by an operation, denoted CB broadcast(), plus a read-only set at every process p i , denoted cb valid i . "All-to-all" means that it is assumed that all correct processes invoke CB broadcast(). When a process p i invokes CB broadcast(v), we say that "it cb-broadcasts v".

An invocation of CB broadcast() by a process p i has an input parameter, namely the value that p i wants to broadcast, and returns a value, which is a value CB-broadcast by a correct process. The CB-broadcast abstraction is formally defined by the following properties.

• CB-Operation Termination. The invocation of the operation CB broadcast() by a correct process terminates. • CB-Operation Validity. If the invocation of CB broadcast() returns v to a correct process p i , v ∈ cb valid i .

• CB-Set Termination. The set cb valid i of a correct process p i is eventually non-empty.

• CB-Set Validity. The set cb valid i of any correct process p i contains only values cb-broadcast by correct processes. • CB-Set Agreement. The set cb valid i and cb valid j of any two correct processes p i and p j are eventually equal.

Feasibility condition in the presence of up to t Byzantine processes Let m be the number of different values that can be cb-broadcast by correct processes. It follows from the previous specification that, even when the (at most) t Byzantine processes propose a same value w, not proposed by a correct process, w can neither be returned, nor belong to the set cb valid i of a correct process p i . This can be ensured if and only if there is a value cb-broadcast by at least (t + 1) correct processes. This feasibility condition is captured by the predicate nt > mt. (A proof of this feasibility condition can be found in [START_REF] Herlihy | Distributed computing through combinatorial topology[END_REF]). An algorithm implementing CB-broadcast A simple algorithm implementing CB-broadcast is described in Figure 1. When p i invokes CB broadcast(v i ), it first invokes the underlying RB broadcast CB VAL(v i ) for all correct processes to be eventually aware of v i (line 1). Then, it waits until its set cb valid i becomes non-empty (line 2). When this occurs, p i takes any value from cb valid i and returns it (line 3). Finally, p i adds to cb valid i all the values it RB-delivers from (t + 1) different processes (i.e., v was RB-broadcast by at least one correct process). It is important to notice that, after the predicate cb valid i = ∅ became satisfied, new values can still be added to cb valid i . Theorem 1. The algorithm described in Figure 1 implements the m-valued CB-broadcast abstraction in

BZ AS n,t [t < n/3].
Proof Proof of the CB-Termination properties. It follows from the feasibility condition, that there is a value v that is proposed by at least (t + 1) correct processes. Hence, these processes RB-broadcast CB VAL(v). It then follows from line 4 and the RB-termination property that v will be added to the set cb valid i of each correct process p i . Hence, the CB-Set Termination property is satisfied, and no correct process can be blocked forever at line 2, from which follows the CB-Operation Termination property. Proof of the CB-Validity properties. To prove the CB-Set Validity property, let us consider a value v cb-broadcast only by Byzantine processes.

It follows that a correct process p i can RB-deliver v from at most t different processes. Hence, p i cannot add v to cb valid i at line 4, which proves the property. The CB-Operation Validity property is then a trivial consequence of the CB-Set Validity property. Proof of the CB-Set Agreement property. Let us consider a value v ∈ cb valid i . This means that p i RB-delivered the message CB VAL(v) from (t + 1) different processes (line 4). It then follows from the RB-termination property of RB-broadcast that each correct process p j RB-delivers these (t + 1) messages CB VAL(v). Consequently, any correct process p j adds v to its local set cb valid j , which concludes the proof.

✷ T heorem 1

Adopt-Commit in the Presence of Byzantine Processes

This object was introduced in [START_REF] Gafni | Round-by-round fault detectors: unifying synchrony and asynchrony[END_REF] in the context of read/write communication. Here we slightly modify its definition to cope with Byzantine processes (which by definition can decide anything).

Definition An adopt-commit (AC) is a one-shot object which encapsulates the safety part of agreement problems. It provides processes with a single operation denoted AC propose(). This operation takes a value as input parameter (we say that the invoking process proposes this value), and returns a pair d, v (we say that the invoking process decides d, v ), where d is a control tag and v a value. An AC object is defined by the following properties.

• AC-Termination. An invocation of AC propose() by a correct process terminates.

• AC-Validity. This property is made up of two parts.

-AC-Output domain. If a correct process decides d, v , d ∈ {commit, adopt}, and v is a value that was proposed by a correct process. -AC-Obligation. If all the correct processes propose the same value v, only commit, v , can be decided.

• AC-Quasi-agreement. If a correct process decides commit, v , no other correct process can decide -, v ′ where v ′ = v.

Implementations of an AC object in the presence of process crash failures can be found in [START_REF] Gafni | Round-by-round fault detectors: unifying synchrony and asynchrony[END_REF][START_REF] Mostéfaoui | Solving consensus using Chandra-Toueg's unreliable failure detectors: a general quorum-based approach[END_REF][START_REF] Raynal | Communication and agreement abstractions for fault-tolerant asynchronous distributed systems[END_REF][START_REF] Raynal | Concurrent programming: algorithms, principles, and foundations[END_REF].

The implementations of [START_REF] Gafni | Round-by-round fault detectors: unifying synchrony and asynchrony[END_REF][START_REF] Raynal | Concurrent programming: algorithms, principles, and foundations[END_REF] are for asynchronous systems where any number of processes may crash and communication is by atomic read/write registers. The implementations of [START_REF] Mostéfaoui | Solving consensus using Chandra-Toueg's unreliable failure detectors: a general quorum-based approach[END_REF][START_REF] Raynal | Communication and agreement abstractions for fault-tolerant asynchronous distributed systems[END_REF] are for asynchronous message-passing systems where a minority of processes may crash. It follows from the AC-Output domain property, that a value proposed only by Byzantine processes cannot be decided by a correct process. This means that an AC object has the same feasibility condition as CBbroadcast (let us also notice that this is independent from the fact that an AC object can be built on top of CBbroadcast). Hence, we assume that at most m ≤ ⌊ n-(t+1) t ⌋ values can be proposed by the correct processes, and the corresponding object is called an m-valued adopt-commit object. Implementation of an m-valued adopt-commit object A distributed algorithm implementing an AC object in the presence of up to t < n/3 Byzantine processes is described in Figure 2, for a correct process p i . This algorithm is based on an underlying CB-broadcast, which means that each process has a read-only local set cb val i (initially empty).

When a process p i invokes AC propose(v i ), it first issues the operation CB broadcast AC PROP(v i ) from which it obtains a value that it saves in est i (line 1). It then RB-broadcasts the message AC EST(est i ) (line 2), and waits until (a) it has RB-delivered messages AC EST() from (nt) different processes, and (b) the values carried by these messages belong to the set cb valid i supplied by CB-broadcast (line 3). Let us remember that, after the predicate cb valid i = ∅ became satisfied, new values can still be added to cb valid i .

When this predicate becomes satisfied, p i computes the most frequent value MFA i carried by the previous (nt) AC EST() messages (line 4). If there are several "most frequent" values, p i takes any of them. Finally, if all the messages who made satisfied the predicate of line 3 carried the same value MFA i , p i returns the pair commit, MFA i ) (line 6); otherwise it returns the pair adopt, MFA i ) (line 7).

Theorem 2. Assuming that each correct process invokes the operation AC propose(), the algorithm of Figure 2 implements an m-valued adopt-commit object in BZ AS n,t [t < n/3].

Proof Proof of the AC-termination property. Due to the CB-Operation termination property, no correct process blocks forever at line 1. So, we have only to show that no correct process can block forever at line 3. It follows from CB-Set Termination and CB-Set Validity that the sets cb valid i of the correct processes are eventually not empty and contain only values proposed by correct processes. As (i) the value RB-broadcast by each correct process at line 2 is a value of its set cb valid i , (ii) there are at least (nt) correct processes, and (iii) the sets cb valid i of the correct processes are eventually equal (CB-Set Agreement property), it follows that the predicate of line 3 is eventually satisfied at each correct process, which concludes the proof of AC-termination property. Proof of the AC-Output domain property. Let us first observe that a correct process can decide only the pair commit, v or the pair adopt, v (lines 6-7). Hence, we have only to show that v is a value proposed by a correct process. A value v decided by a correct process p i was RB-delivered in a message AC EST(v). It follows from the predicate of line 3 that v ∈ cb valid i . Finally, if follows from the CB-Set Validity property that v is a value proposed by a correct process. Proof of the AC-Obligation property. If all correct processes propose the same value v, it follows from the CB-Set (Termination, Validity, and Agreement) properties that the set cb valid i of each correct process p i is eventually equal to {v}. Hence, each correct process RB-broadcasts the message AC EST(v) at line 2. It then follows from the predicate of line 3 that no value different from v can be decided. Proof of the AC-Quasi-agreement property. Let p i and p j be two correct processes such that p i decides the pair commit, v while p j decides -, v ′ . As p i decides commit, v , it follows from line 3 that it RB-delivered the message AC EST(v) from (nt) different processes. As, due to the RB-Unicity and RB-Termination-2 properties, no two correct processes RB-deliver different values from the same process, it follows that, among the (nt) messages AC EST() RB-delivered by p j , at most t of them may carry a value different from v, i.e., at least n -2t ≥ t + 1 carry the value v. It follows that v is the most frequent value RB-delivered by p j , and consequently v ′ = v.

✷ T heorem 2

The ✸ t + 1 Bisource Assumption

Eventually timely channel Let us consider the channel connecting a process p i to a process p j . This channel is eventually timely if there is a finite time τ and a bound δ, such that any message sent by p i to p j at time τ ′ is received by p j by time max(τ, τ ′ ) + δ. Let us observe that neither τ , nor δ, is known by the processes. As already indicated, there is an input/output channel from each process to itself. ✸ k sink, ✸ k source, and ✸ k bisource A correct process p i is an ✸ k sink if it has eventually timely input channels from k correct processes (including itself). This set of processes is denoted X - i . Similarly, a correct process is an ✸ k source if it has k eventually timely output channels to correct processes (including itself). This set of processes is denoted X + i . An ✸ k bisource is a correct process p i that is both ✸ k sink and ✸ k source. Let us remark that the timely input channels and the timely output channels do not necessarily connect p i to the same subset of processes.

Notation for system models The system model BZ AS

n,t [t < n/3] enriched with an ✸ t + 1 bisource is denoted BZ AS n,t [t < n/3, ✸ t + 1 bisource].

Discussion

The previous notions were introduced in [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF][START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF]. Our definition of an ✸ t + 1 bisource is slightly different from the original definition introduced in [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF]. The difference is that it considers only eventually timely channels connecting correct processes, while [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF] considers eventually timely channels connecting a correct process to correct or faulty processes. Hence, an ✸ t + 1 bisource is an ✸ 2t + 1 bisource in the parlance of [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF]. We consider only eventually timely channels connecting pair of correct processes for the following reason: an eventually timely channel connecting a correct process and a Byzantine process can always appear to the correct process as being an asynchronous channel.

Eventual Agreement Object

Motivation and definition

This object, which is round-based, will be used to ensure the termination of the consensus algorithm, namely, its aim is to allow the correct processes to eventually converge on a single value. To this end, it provides the processes with a single operation denoted EA propose(r, v) where r is a round number and v is the value proposed at this round by the invoking process. Each invocation of EA propose() by a correct process returns a value. It is assumed that each correct process invokes this operation once per round, and its successive invocations are done according to consecutive round numbers. When a process invokes EA propose(r, v), we say that it "ea-proposes v at round r". Definition An eventual agreement (EA) object is defined by the following properties.

• EA-Termination. For any r, if all correct processes invoke EA propose(r, -), each of these invocations terminates.

• EA-Validity. For any r, if all correct processes invoke the operation EA propose(r, v) no correct process returns a value different from v.

• EA-Eventual agreement. If the correct processes execute an infinite number of rounds, there is an infinite number of rounds r at which all the correct processes return the same value v, where v is such that a correct process invoked the operation EA propose(r, v).

It is important to notice that the EA-Validity property is particularly weak. More precisely, if, during a round r, two correct processes invoke EA propose(r, v1) and EA propose(r, v2), with v1 = v2, the invocation of EA propose(r, -) by any correct process is allowed to return an arbitrary value (i.e., even a value proposed neither by a correct nor by a Byzantine process).

As the implementation that follows uses at every round an instance of CB-broadcast, we assume that at most m ≤ ⌊ n-(t+1) t ⌋ different values are ea-proposed by correct processes.

Implementation of an m-valued eventual agreement object

Definitions The algorithm presented below uses the following sets and functions.

• There are α = n n-t possible combinations of (nt) processes among the n processes p 1 , ..., p n . Let us call them F 1 . . . F α .

• Given any round number r ≥ 1:

coord(r) denotes the function (r -1) mod n + 1.

Given a round r, coord(r) defines its coordinator process. As we can see, if there is an infinite number of rounds, each process is infinitely often round coordinator. -F (r) denotes the function F index(r) , where index(r) = (⌈ r n ⌉ -1) mod α + 1. Hence, each set F (r) returns a set made up of (n-t) processes. During each round, its coordinator strives to decide a value. To this end, it requires the help of the processes in F (r) to broadcast the value it champions. F 1 is used by the coordinators of the rounds 1 to n; F 2 is used by the coordinators of the rounds (n + 1) to 2n; ..., F α is used by the coordinators of the rounds ((α -1)n + 1) to αn; F 1 is used by the coordinators of the rounds ((αn + 1) to (α + 1)n; etc.

Considering an infinite sequence of rounds, it is important to notice that there is an infinite number of rounds r and r ′ such that (coord(r) = coord(r ′ )) ∧ F (r) = F (r ′ ) and an infinite number of rounds r and r ′ such that coord(r) = coord(r ′ ) ∧ F (r) = F (r ′ ) .

Local variables

Each process p i manages the following local variables.

• timer i [1.
.] is an array of timers, such that timer i [r] is the timer used by p i for round r.

• CB [1..] is an array of CB-broadcast instances shared by all processes. CB [r] is the instance associated with round r. Hence, CB [r].cb valid i is the set of values supplied to p i by CB [r].

To distinguish messages which have the same tag but are sent at different rounds, a message XXX() associated with round r is denoted XXX[r]().

Algorithm: first part of EA propose() (Lines 1-5) The algorithm executed by a correct process p i is described in Figure 3. Let us remind that, it is assumed that each correct process invokes EA propose() at every round. When a correct process p i invokes EA propose(r i , val i ) (r i is a round number and val i the value it eaproposes at this round), it first invokes CB [r i ].CB broadcast EA PROP1(val i ), and saves the value returned in aux i (line 1).Then, p i broadcasts the message EA PROP2[r i ](aux i ) (line 1) and waits until (a) it has received messages EA PROP2[r i ]() from (n-t) different processes, and (b) the values carried by these messages belong to the set denoted CB [r i ].cb valid i , which is locally supplied by the CB-broadcast instance CB [r i ] (line 3). If

operation EA propose(ri, vali) is (1) auxi ← CB [ri].CB broadcast EA PROP1(vali); (2) broadcast EA PROP2[ri](auxi);
(3) wait (EA PROP2[ri]() messages have been received from (nt) different processes, and their aux values belong to CB [ri].cb validi); (4) if (the (nt) previous messages carry the same value v) then return(v) end if;

(5) set timeri[ri] to ri; (6) wait (EA RELAY[ri](aux) messages received from (nt) different processes); (7) if EA RELAY[ri](v) where v = ⊥ received from a process in F (ri) [START_REF] Bracha | Asynchronous consensus and broadcast protocols[END_REF] then return(v) [START_REF] Ch | Random oracles in Constantinople: practical asynchronous Byzantine agreement using cryptography[END_REF] else return(vali) (10) end if. when EA PROP2[r]() is received from a process in F (r) do [START_REF] Correia | From consensus to atomic broadcast: time-free Byzantine-resistant protocols without signatures[END_REF] if (i = coord(r) ∧ (EA COORD[r]() not already broadcast) [START_REF] Delporte-Gallet | Algorithms for extracting timeliness graphs. 17th[END_REF] then let w be the value carried by the message EA PROP2[r](); [START_REF] Doudou | Muteness failure detectors: specification and implementation. 3rd European[END_REF] broadcast

EA COORD[r](w) (14) end if. when EA COORD[r](v) is received from p coord(r) or (timeri[r] expires) do (15) if (EA RELAY[r]() not already broadcast) (16) disable timeri[r]; (17) if (timeri[r] expired) then v coordi ← ⊥ else v coordi ← v end if; (18) broadcast EA RELAY[r](v (19) end if. Figure 3: An algorithm implementing an m-valued EA object in BZ AS n,t [t < n/3, ✸ t + 1 bisource]
all these messages carry the same value v, p i returns v as result of its invocation EA propose(r i , val i ) (line 4)2 . Otherwise, p i sets the timer associated with the round r i to the value r i (line 5) 3 .

Algorithm: message processing and role of the round coordinator (Lines 11-19) Each round r uses a round coordinator, defined by coord(r). As we have also seen, the set of (nt) processes denoted F (r) is associated with round r.

When p i is the coordinator of round r and receives for the first time a message EA PROP2[r]() from a process in the set F (r), it champions the value w carried by this message to become the value returned by the invocations of EA propose(r, -). To that end, it simply broadcasts the message EA COORD[r](w) (lines [START_REF] Correia | From consensus to atomic broadcast: time-free Byzantine-resistant protocols without signatures[END_REF][START_REF] Delporte-Gallet | Algorithms for extracting timeliness graphs. 17th[END_REF][START_REF] Doudou | Muteness failure detectors: specification and implementation. 3rd European[END_REF][START_REF] Dwork | Consensus in the presence of partial synchrony[END_REF].

When a process p i receives a message EA COORD[r](v) from the coordinator of round r, if not yet done, it broadcasts the message EA RELAY[r](v) to inform the other processes that it has received the value v championed by the coordinator of round r. If the local timer associated with this round (timer i [r]) has already expired, p i broadcasts the message EA RELAY[r](⊥), to inform the other processes that it suspects the coordinator of round r not to be an ✸ t + 1 bisource (this suspicion can be due to the asynchrony of the channel connecting p coord(r) to p i , or the fact that -while p coord(r) is an ✸ t + 1 bisource-the link from p coord(r) to p i is not yet synchronous, or the fact that p coord(r) has a Byzantine behavior). In all cases, as timer i [r] will no longer be useful, p i disables it. This behavior of p i is captured by the lines 15-19.

Algorithm: second part of EA propose() (Lines 6-10) After it has set timer i [r i ] (line 5), p i waits until it has received a message EA RELAY[r i ]() from (nt) different processes (line 6). When this occurs, the invocation of the operation EA propose(r i , val i ) by p i returns a value. This value is v = ⊥ if p i received a message EA RELAY[r i ](v) from a process in the set F (r i ) (lines 7-8). Otherwise, no process of F (r i ) witnesses the value championed by the coordinator of round r. In this case, p i returns the value val i , i.e., the value it ea-proposed (line 9).

An algorithm solving m-valued Byzantine consensus Assuming m ≤ ⌊ n-(t+1) t ⌋, the algorithm described in Figure 4 implements an m-valued consensus object in BZ AS n,t [t < n/3, t + 1 bisource]. This algorithm, which -thanks to the previous abstractions-is simple, uses the following underlying objects.

• Each process p i manages a round number r i (initialized to 0), and a current estimate denoted est i .

• EA OBJECT is a shared m-valued EA object. Its aim is to allow processes to eventually converge to the same estimate value. Hence, the associated line 4 is related to CONS-Termination. • AC OBJECT [1..] is an unbounded array of m-valued adopt-commit objects, shared by all processes.

AC OBJECT [r] is the adopt-commit object used at round r. The aim of these objects (line 6) is to allow correct processes to decide a value proposed by one of them, and prevent them from deciding different values, i.e., to guarantee consensus safety. Then process p i enters an infinite loop (lines 2-8). After it has entered its current round (line 3), process p i proposes its current estimate of the decision value est i to the to the EA object, namely, it invokes EA OBJECT .EA propose(r i , est i ) (line 4). If the value returned by this invocation is a value that it knows as proposed by a correct process, it adopts it as new estimate, otherwise it keeps its previous estimate (line 5).

Process p i proposes then the current value of est i to the adopt-commit object associated with the current round, from which it obtains a pair tag, est i (line 6). If the value of the tag is commit (line 7), p i RBbroadcasts the message DECIDE(est i ) to inform the other processes that the value of est i can be decided. Then, whatever the value of the tag, p i proceeds to the next round with its (possibly new) estimate value est i .

Finally, as soon as a process, that not yet decided, has RB-delivered the same message DECIDE(v) from (t + 1) different processes, it decides v and stops (line 9). Let us notice that at least one of these messages is from a correct process. Proof We say that a process p i starts round r when it assigns value r to its local variable r i (line 3). Proof of the CONS-Termination property. If a process decides at line 9, it previously RB-delivered the message DECIDE(v) from (t + 1) different processes. Due to the RB-termination property of the corresponding (t + 1) RB-broadcasts, each correct process RB-delivers this message from the same set of (t + 1) processes, and consequently decides. So, let us assume by contradiction that no correct process decides at line 9.

Let us first observe that, due to the CB-Operation Termination property that no correct process p i blocks forever at line 1. Moreover, it follows from the CB-Operation Validity property that that the set CB [0].cb valid i is not empty when this invocation terminates.

As no correct process decides, and all correct processes invoke EA propose(1, -), it follows from the EA-Termination and AC-Termination properties that they all terminate the first round, and consequently start the second. Moreover, if the estimate est i of a correct process p i is updated at line 5, its new value is a value proposed by a correct process. It follows that the correct processes start the second round with estimate values est i containing values proposed by correct processes. As no correct process decides, the same reasoning applies to all rounds r > 1.

Let us observe that the local variables CB [0].cb valid i of the correct processes eventually converge to the same content (CB-Set Agreement and Termination of CB [0]). Hence, there is a round r 0 such that, for every correct process p i , the set CB [0].cb valid i is never updated after it starts r 0 .

It then follows from the EA-Eventual Agreement property of EA OBJECT , that there is a round r > r 0 during which all correct processes obtain the same value v at line 4, where v is a value proposed by a correct process. Hence, since r > r 0 , they all succeed the test of line 5 and adopt v as their new estimate est i .

Therefore, all correct processes invokeAC OBJECT [r].AC propose(v) at line 6. Due to the AC-Obligation property of AC OBJECT [r], all correct processes obtain commit, v at line 6. Consequently, they all RBbroadcast the same message commit, v at line 7. An nt ≥ t + 1, the decision predicate of line 9 becomes eventually true at every correct process, which contradicts the initial assumption. Proof of the CONS-Validity property. Let us consider the first round. Let p i be a correct process. It follows from the CB-Operation Validity property of CB [0] that est i is a value proposed by a correct process. Moreover, it follows from the CB-Set Validity property, that CB [0].cb valid i contains only values proposed by correct processes. It follows from these observations that, be or not est i modified at line 5, when p i invokes AC OBJECT [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF].AC propose(est i ) at line 6, est i contains a value proposed by a correct process. It then follows from the AC-Validity property of AC OBJECT [START_REF] Aguilera | Consensus with Byzantine failures and little system synchrony[END_REF] that the value assigned to est i at line 6 is a value proposed by a correct process. The same reasoning applies iteratively to all rounds, from which it follows that a value that is RB-broadcast by a correct process at line 7 is a value proposed by a correct process.

If a correct process p i decides a value v at line 9, it follows from the decision predicate used at this line that v was RB-broadcast at line 7 by at least one correct process p j . The previous paragraph has shown that such a value v was proposed by a correct process. Proof of the CONS-Agreement property. Let us first observe that, if a correct process decides at line 9, it decides a value RB-broadcast by a correct process at line 7. Hence, the proof consists in showing that no two correct processes RB-broadcast different values at line 7.

Let r be the first round at which a correct process p i RB-broadcast a message DECIDE() at line 7. Let v the value carried by this message. It follows that, at line 6, p i obtained the pair commit, v from the object AC OBJECT [r]. Let us consider another correct process p j . There are two cases.

• p j RB-broadcast DECIDE(w) at line 9 of round r. This means that it obtained commit, w from AC OBJECT [r]. It then follows from the AC-agreement property of AC OBJECT [r] that v = w. Moreover, p j proceeds to the next round with est j = v. • p j did not RB-broadcast the message DECIDE(w) at line 9 of round r. It then follows from the ACagreement property of AC OBJECT [r] that p j obtained the pair adopt, v . Hence, at line 6, p j assigned the value v to est j .

It follows that the estimate values of all the correct processes that progress to the next round are equal to v. Let p x be any correct process executing round (r + 1). It follows from the EA-Validity property of EA OBJECT , that the invocation by p x of EA OBJECT .EA propose(r + 1, est x ) returns v, and from the AC-Obligation property of AC OBJECT [r + 1] that this object returns -, v to p x . This means that the estimates of all the correct processes remain forever equal to v. Hence, no value different from v can be RB-broadcast at line 7 by a correct process during a round r ′ ≥ r.

✷ T heorem 4

Conclusion

A variant To ensure that a value decided by a correct process is always a value that was proposed by a correct process, the paper considered m-valued consensus, i.e., at most m ≤ ⌊ n-(t+1) t ⌋ different values can be proposed by the correct processes (i.e., there is a value that is proposed by at least (t + 1) correct processes). To ensure that no value proposed only by Byzantine processes is ever decided, some Byzantine consensus algorithms (e.g., [START_REF] Correia | From consensus to atomic broadcast: time-free Byzantine-resistant protocols without signatures[END_REF][START_REF] Mostéfaoui | Signature-free broadcast based intrusion tolerance: never decide a Byzantine value[END_REF]) do not have such an "m-valued" requirement. They instead allow the correct processes to decide a default value ⊥ when they do not propose the same value. The algorithms proposed in the paper can be modified to satisfy this different validity requirement. The aim and the content of the paper This paper presented a consensus algorithm for asynchronous Byzantine message-passing systems, that is optimal with respect to the underlying synchrony assumption. This assumption is the existence of a process that is an eventual t + 1 bisource. Such a process p is a non-faulty process that eventually has (a) timely input channels from t correct processes and (b) timely output channels to t correct processes. Moreover these input and output channels can connect p to different subsets of processes.

In addition to a reliable broadcast abstraction, the design of the algorithm, which is very modular, is based on simple abstractions: a new broadcast abstraction called cooperative broadcast, adopt-commit objects that cope with Byzantine processes (as far as we know, the paper presented the first implementation of such objects in the presence of Byzantine processes), and a new round-based object called eventual agreement, whose definition involves a pretty weak validity property.

This paper answered a long-lasting problem, namely, solving Byzantine consensus with the weakest underlying synchrony assumptions. Finally, as claimed in the introduction, and in addition to its optimality with respect to synchrony requirements, a very important first class property of the proposed algorithm lies in its design simplicity. "Simplicity ⇒ easy" is rarely true for non-trivial problems [START_REF] Aigner | Proofs from THE BOOK[END_REF].
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 2 Figure 2: An algorithm implementing an m-valued adopt-commit object in BZ AS n,t [t < n/3]
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 4 The algorithm of Figure4solves the m-valued Byzantine consensus problem in the system model BZ AS n,t [t < n/3, ✸ t + 1 bisource].

2 Basic Model, Reliable Broadcast, and Cooperative Broadcast 2.1 Processes, communication network, and failure model Asynchronous processes The system

  is made up of a finite set Π of n > 1 sequential processes, namely Π = {p 1 , . . . , p n }. As local processing times are negligible with respect to message transfer delays, they are considered as being equal to zero. Both notations i ∈ Y and p i ∈ Y are used to say that p i belongs to the set Y .

  • CB [0] is a CB-broadcast instance, used at the very beginning to obtain a value proposed by a correct process and allow a process p i to use the associated set CB [0].cb valid i to check the validity of the values returned by the EA OBJECT object (i.e., check if this value is from a correct process). When a correct process p i invokes CONS propose(v i ), it first invokes CB [0].CB broadcastVALID(v i ) to obtain a value that was proposed by a correct process (line 1)4 . As already indicated, this invocation also ensures that the sets CB [0].cb valid i of correct processes are eventually equal and contain values proposed only by correct processes.

Enriching the system with random numbers allows for the design of randomized Byzantine consensus algorithms. These algorithms are characterized by a probabilistic termination property (e.g.,[START_REF] Ben-Or | Another advantage of free choice: completely asynchronous agreement protocols[END_REF][START_REF] Ch | Random oracles in Constantinople: practical asynchronous Byzantine agreement using cryptography[END_REF]

, 22, 27]).

Let us remark that lines 1-3 of Figure

and lines 1-3 of Figure2differ only in the fact that an RB-broadcast is used at line 2 for the AC object, and a simple broadcast is used at line 2 for the EA object. These lines have not been encapsulated to define a higher level object because the messages EA PROP2[ri]() are explicitly used in lines 11-14 of Figure3, while their counterparts in an AC object -messages AC EST()-are not used by the upper layer.[START_REF] Attiya | Distributed computing: fundamentals, simulations and advanced topics[END_REF] The important point here is that the value of the timer increases; as ri at every round, it is used as a timeout value. More generally, it is possible to assign to timeri[ri] the value returned by an increasing function fi(ri), which can be specific to each process pi.

Even if, up to now, a process behaved "correctly", it may crash in the future and become then faulty. Hence, no process can a priori consider the value it proposes as a value proposed by a correct process.
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Proof

Let us remember that, by assumption, all correct processes invoke EA propose(r, -), where r = 1. Moreover, they ea-propose at most m different values. Lemma 1. Whatever the round r, if all correct processes invoke EA propose(r, v) no correct process returns a value different from v. (Proof in [START_REF] Bouzid | Minimal synchrony for asynchronous Byzantine consensus[END_REF].) Lemma 2. Let r ≥ 1. If all correct processes invoke the operation EA propose(r, -), then each of these invocation terminates. (Proof in [START_REF] Bouzid | Minimal synchrony for asynchronous Byzantine consensus[END_REF].) Lemma 3. If the correct processes execute an infinite number of rounds, there is an infinite number of rounds r at which all the correct processes return the same value v, where v is such that a correct process invoked EA propose(r, v).

Proof Let us define the following rounds:

• Let r 1 be the first round that is strictly greater than 2δ.

• Let p ℓ be an ✸ t + 1 bisource. There exists a round r 2 such that in every subsequent round:

-Each message sent by any p x ∈ X - ℓ to p ℓ is received within an interval of at most δ time units. -Each message sent by p ℓ to any p y ∈ X + ℓ is received within an interval of at most δ time units. • Let r > max(r 1 , r 2 ) be any round coordinated by p ℓ such that X + ℓ ⊆ F (r) and F (r) ⊆ C. Let us notice that, due to the definition of F (r), an infinity of such rounds r exists.

Claim C. For every process p i ∈ X + ℓ , we have v coord i = ⊥ in round r (line 18). Proof of claim C. Let p i be any process in X + ℓ . Let τ be the time at which p i sets the timer at line 5 of round r. At this moment, since p i finished executing line 4, there are at least (nt) processes from which p i received an EA PROP2[r]() message. Since |X - ℓ | ≥ t + 1, it follows that among these (nt) processes, there is at least one, say p k , that belongs to X - ℓ . Observe that p k necessarily broadcast the message EA PROP2[r]() before τ . Since r > r 2 , this message is received by p ℓ before time τ + δ.

Therefore, if p ℓ did not broadcast a message EA COORD[r]() before receiving EA PROP2[r]() from p k , as p k ∈ X - ℓ ⊆ F (r), the condition of line 11 and the when statement preceding it are both satisfied, and p ℓ broadcasts EA COORD[r]() at line 13. Consequently, in all cases, p ℓ broadcasts a message EA COORD[r]() by time τ + δ. Finally, since p i ∈ X + ℓ and r > r 2 , this message is received by p i before time τ + 2δ. Let us recall that, as r > r 1 , it holds that r > 2δ, and consequently, since p i set timer i [r] to r (line 8) at time τ , the timeout occurs after time τ + 2δ. Therefore, p i receives the message EA COORD[r]() from p ℓ before the timeout. Consequently, when evaluated by p i , the predicate of line 17 is necessarily false, and v coord i = ⊥. This proves the claim.

We show in the following that all correct processes return the same value in round r. Let us first observe that every correct process broadcasts an EA PROP2[r]() message that carries a value which was necessarily ea-proposed by a correct process. Therefore, since p ℓ is correct (and is the coordinator of r), the message EA COORD[r]() it broadcasts in round r contains a value, say w, that was sent to it by a correct process. Therefore, since (due to the definition of r), the processes of F (r) are correct, the EA RELAY[r]() messages broadcast by them carry either w or ⊥. Consequently, every correct process p i can either returns w or val i after executing the lines 7-10. To finish the proof, it remains to show that no correct process p i returns val i (if

Let us observe that each correct process waits at line 6 until it receives (nt) EA RELAY[r]() messages. Since |X + ℓ | > t, it follows that at least one of these messages was broadcast by a process in X + ℓ . Due to Claim C, this message cannot carry ⊥. It then follows from the predicate of line 7 that any correct process executes line 8 and returns w, which proves the lemma.

✷ Lemma 3

Theorem 3. The algorithm of Figure 3 

Looking for efficiency: Parameterized eventual agreement

Time complexity of the EA algorithm The aim of the previous algorithm was to attain a round r during which all correct processes return the same value (ea-proposed by one of them). Hence its time complexity can be measured by the value of this round number. As the underlying synchrony assumption is eventual, we only know that this number r is finite.

Hence, to eliminate the noise created by the "eventual" attribute, and consequently be able to compute a time complexity of the algorithm, let us replace the ✸ t + 1 bisource synchrony assumption by the t + 1 bisource assumption, i.e., we consider that there is a t + 1 bisource from the very beginning. The corresponding system model is denoted

The uncertainty created by the "eventual" attribute is consequently eliminated, and the only uncertainty is the identity of the bisource and its associated input and output timely channels. As there are n processes and α = n n-t combinations for the sets F (r), it follows that the algorithm, which works in BZ AS n,t [t < n/3, ✸ t + 1 bisource], terminates in at most αn rounds when the system behaves as BZ AS n,t [t < n/3, t + 1 bisource].

Improving the time complexity One way to improve the time complexity of the algorithm (as measured previously) is to consider a "tuning" parameter k, 0 ≤ k ≤ t, and use it in both the synchrony assumption and the size of the sets F (r), as follows.

• The assumption t + 1 bisource is replaced by the stronger assumption t + 1 + k bisource.

• Instead of (nt), the size of the sets F (r) is now nt + k.

An algorithm, parameterized with k, extending the basic algorithm of Figure 3 and based on the previous definition is described in [START_REF] Bouzid | Minimal synchrony for asynchronous Byzantine consensus[END_REF]. Designed for the system model BZ AS n,t [t < n/3, ✸ t + 1 + k bisource], this algorithm has a time complexity of βn where β = n n-t+k when executed in BZ AS n,t [t < n/3, t + 1 + k bisource]. As simple instances of this parameterized algorithm, let us consider two particular values of k. For k = 0, we obtain the basic algorithm. For k = t, the time complexity is n, which is the best that can be obtained with a round coordinator-based algorithm (up to n rounds can be needed to benefit from the t + 1 + k bisource).

Byzantine Consensus Algorithm

m-Valued Byzantine consensus In the m-valued Byzantine consensus, the correct processes propose values from a set of at most m values. The corresponding object is a one-shot object, that provides the processes with a single operation denoted CONS propose(v), where v is the value proposed by the invoking process. This operation returns a value to the invoking process. If p i obtains the value v, we say that it "decides" v. The consensus object is defined by the following properties.

• CONS-Termination. The invocation of CONS propose() by a correct process terminates.

• CONS-Validity. If a correct process decides v, a correct process invoked CONS propose(v).

• CONS-Agreement. No two correct processes decide different values.