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ABSTRACT

Distributed Adaptive Metaheuristics Selection (DAMS) is a
framework dedicated to adaptive optimization in distributed
environments. We investigate the design of adaptive strate-
gies allowing to control the local selection of metaheuris-
tics and to coordinate their local executions with the aim of
maximizing the performance of the whole distributed sys-
tem. Inspired by the multi-armed bandit framework, we
propose two distributed strategies. Our experimental anal-
ysis is performed on the simple oneMax problem for which
the best metaheuristics that should be executed is known.

Categories and Subject Descriptors

1.2.8 [Computing Methodologies]: Artificial Intelligence—
Problem Solving, Control Methods, and Search

1. INTRODUCTION

Metaheuristics such as evolutionary algorithms are power-
ful methods for solving optimization problems in a black-box
context when no information on the optimization function
is neither available nor required. Since the early ages of evo-
lutionary algorithms, a wide range of algorithms have been
proposed, and one of the main difficult question is the choice
of the "best” algorithm for a given problem to solve. Obvi-
ously, this choice should be guided by the particular features
of the problem. Unfortunately, in a black-box context, the
features of the problem could be hard to extract, and the
choice of a relevant algorithm becomes even more difficulty.

The algorithm selection consists in selecting the best al-
gorithm to solve a given problem. The original framework
of algorithm selection has been proposed by Rice [4].

Nowadays, the off-line tuning methods can benefit from
the parallel computation systems to perform a large bench
of experiments in order to learn the correct parameters. In
on-line control methods, the algorithm is selected along the
optimization process. At each round, an algorithm is se-
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lected from a portfolio of algorithms according to their per-
formance in previous rounds. This on-line selection problem
can be model by the (dynamic) multi-arm bandit problem:
each arm is an optimization algorithm, the reward is based
on the quality of produced solutions by the algorithm, and
the objective is to select the arms during the optimization
process in order to maximize the quality of the final solution.

In this work, following the work on Distributed Adap-
tive Metaheuristic Selection (DAMS) [2], we investigate on-
line portfolio methods in distributed environment where a
number of computation nodes are available. The goal of
this paper is to propose and analyze new adaptive selection
strategies in the DAMS framework.

2. NEW ADAPTIVE SELECTION STRATE-
GIES FOR DAMS

We distinguish two extreme types of selection strategies
according to the information sharing between computation
nodes. In independent selection strategies, the metaheuristic
selection depends only on the reward information produced
by the node. In collective selection strategies, the selection
also takes into account the reward information given by the
neighboring nodes.

2.1 Independent selection strategies

The Select-Best-and-Mutate (SBM) have been proposed
in [2]. The SBM strategy selects the best rewarded meta-
heuristics from neighboring nodes (including the node it-
self) encountered at last round with rate 1 — p.,, and select
one random metaheuristic with rate p,,. From this original
strategy, an independent selection strategy can be designed.
Instead of selecting the best rewarded metaheuristic, we can
select the best rewarded metaheuristic encountered over the
last W rounds by this node. In that way, no reward informa-
tion from the neighbor is used. The collective original SBM
strategy will be denoted as SBMc, and the new independent
SBM as SBMi. The SBMi is defined with two parameters,
the mutation rate pmq:, and the windows size W.

The Adaptive Pursuit (AP) belongs to the class of proba-
bility matching algorithms. AP is a classical adaptive selec-
tion strategy used in optimization [5], and can be used as an
independent selection strategy. Several Upper Confidence
Bound (UCB) algorithms have been used in the context of
adaptive metaheuristic selection, see [3] for a review. The
UCB strategy is an optimal strategy for stationary problem
with independent arms which is not the case for adaptive



metaheuristic selection. The average empirical reward could
be far from the current new reward. To overcome this draw-
back, the average empirical reward can be computed over
a slicing windows with the last W rounds. This variant of
UCB strategy is denoted UCB-Wi. At last, a dynamic ver-
sion of UCB has been used in [3] that uses the Page-Hinkley
test to detect whether the empirical rewards collected for the
best metaheuristic has changed significantly. For the details
of the test computation, please refer to page 6 of [3]. This
selection strategy is denoted by UCBP-PHi, and required
two parameters: the restart threshold v and the robustness
threshold §.

2.2 Collective selection strategies

Every independent selection strategies can be used to de-
fine a collective selection strategy that takes into account
the reward information sharing by the neighboring compu-
tation nodes. For instance, the empirical average of reward
is estimated using the information given by the neighbor-
ing nodes. Those collective strategies versions are denoted
respectively SBMc, APc, UCBc, UCB-Wc¢, UCB-PHe.

3. EXPERIMENTAL ANALYSIS

Following previous works [6] [2] [3] [1] on adaptive portfo-
lio selection, we also use the well known oneMax problem,
which counts the number of 1 in a bit string. In a simi-
lar scenario, we use a portfolio of four (1 + A)-ES. The four
ES only differs by the stochastic operator used: from one
parent solution, the algorithm produces A solutions accord-
ing to a stochastic operator and selects the best one for the
next iteration. Four operators are used: three respectively
flip exactly at random 1, 3 and 5 bits, and one uniformly
flips each bit with rate 1/N where N is the bit strings size
set to N = 1000. We study four topologies of network:
the complete topology, a random topology, the grid topol-
ogy and the circle topology. The size of the networks is
n € {4,16,32,64}. In order to have the same number of
fitness evaluations in one round whatever the network size
n, the A parameter is set to 64/n.

Overall Performance. From a purely distributed perspec-
tive, the first interesting measure is the number of rounds
it takes for an algorithm to find the global maximum. The
number of rounds provides an idea about the degree of par-
allelism in an ideal scenario where the communication cost
is assumed to be negligible compared to the cost of func-
tion evaluation. The best performing parameters are set
for each strategies. First, the performance of the different
strategies are consistent with the considered configurations
in the sense that they can overall be ranked similarly inde-
pendently of the topology type or graph size. Interestingly,
this impact of exchanging the reward information between
nodes is positive in the case of SBM and AP, whereas it is
not when considering UCB. In fact, SBMc appears to over-
all outperform all the other strategies and APc appears to
performing best when both considering the circle, grid and
random topologies with large number of nodes.

Adaptive Behavior. In order to better understand the prop-
erties of the different methods. The SBMc strategy, the
nodes have a tendency to cluster around the best perform-
ing operator (which is the 5-bits). This is because as soon as
one node has detected that this operator is actually having
a good reward, the information is spread among the other
nodes and the selection mechanism forces all nodes to choose

this operator. In contrast, we can observe that for the APc
and UCB-HP1, this is not the case since the selection mecha-
nism at each node is less elitist compared to SBMc. Overall,
the three strategies are able to deal with a reasonable trade-
off between exploitation and exploration when selecting the
metaheuristic — with UCB-HP1i being the strategy where the
exploration is the more pronounced.

Parallelism. In the previous discussions, we were only inter-
ested in analyzing the relative behavior of the strategies for
a fixed topology. It is important to recall that the number
of function evaluations at every single round and for all the
considered configurations is the same which means that the
number of function evaluations needed overall in any of the
considered configuration is by the same multiplicative factor
similar to the number of rounds. This observation has an
important impact, since then, we are able to obtain different
trade-offs when considering the number of exchanged mes-
sages as an important indicator of parallel speed-ups that
one could obtain when effectively deploying our strategies
in a real distributed setting. In fact, the number of mes-
sages needed to exchange information is exactly the number
of rounds times the number of edges used in the considered
topology. In the case of the complete (resp, circle, grid, ran-
dom) topology, the number of edges is n(n—1)/2 (resp. n—1,
O(n), O(p.n?)) where n is the number of nodes. This is to
contrast with the complete topology where the increase in
the number of messages is polynomial. Hence, in a practical
setting where the cost of message-passing is non-negligible,
we claim that the best choice would be the random topology
which exhibits the most appealing tradeoffs in terms of the
number of rounds v.s. the number of messages exchanged
overall.

4. CONCLUSION

In this work, we investigate new adaptive strategies for
distributed metaheuristic selection. Accordingly, we explored
the applicability of adaptive pursuit and upper bound con-
fidence based algorithms in the distributed setting where
several heterogeneous islands have to cooperate in order to
select the most accurate metaheuristic dynamically at run-
time. In particular, we consider the possibility of incorpo-
rating the distributed information coming from the neigh-
boring islands and study its impact on the search behavior
by considering independent and collective schemes. We find
that special care must be taken when attempting to use the
rewards observed distributively at different islands in order
to obtain accurate exploration-exploitation trade-offs.
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