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Abstract

In this paper we address an open question formulated in [17]. That is, we extend the
Itô-Tanaka trick, which links the time-average of a deterministic function f depending
on a stochastic process X and F the solution of the Fokker-Planck equation associated
to X, to random mappings f . To this end we provide new results on a class of adpated
and non-adapted Fokker-Planck SPDEs and BSPDEs.
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1 Introduction

In [17], the authors analyzed the effects of a multiplicative stochastic perturbation on
the well-posedness of a linear transport equation. One of the key tool in their analysis
is the so-called Itô-Tanaka trick which links the time-average of a function f depending
on a stochastic process and F the solution of the Fokker-Planck equation associated to
the stochastic process. More precisely, the formula reads as

∫ T

0
f(t,Xx

t )dt = −F (0, x) −

∫ T

0
∇F (t,Xx

t ) · dWt, P− a.s. (1.1)

where (Xx
t )t≥0 is a solution of the stochastic differential equation

Xx
t = x+

∫ t

0
b(s,Xx

s )ds +Wt, (1.2)

and F is the solution of the backward Fokker-Planck equation

F (t, x) = −

∫ T

t

(
1

2
∆ + b(s, x) · ∇

)

F (s, x)ds −

∫ T

t
f(s, x)ds. (1.3)
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In [24], by means of suitable regularity results for solutions of parabolic equations
in Lq−Lp spaces, the authors showed, assuming f, b ∈ E := Lq([0, T ];Lp(Rd)) with
2/q + d/p < 1, that F ∈ Lq([0, T ];W 2,p(Rd)). Hence, in the weak sense, F has 2
additional degrees of regularity compared to f in E. Thus, formula (1.1) tells us
that the time-average of f with respect to the stochastic process (Xx

t )t≥0 is more
regular than f itself (it has 1 additional degree of regularity). This is what we call a
stochastic regularization effect or regularization by noise. In this paper, we investigate
the following open question stated in [17]:

"The generalization to nonlinear transport equations, where b depends on u itself, would
be a major next step for applications to fluid dynamics but it turns out to be a difficult
problem. Specifically there are already some difficulties in dealing with a vector field b
which depends itself on the random perturbation W . There is no obvious extension of
the Itô-Tanaka trick to integrals of the form

∫ T
0 f(ω, s,Xx

s (ω))ds with random f ."

A major "pathology" in this problem is that there are simple examples of random
functions f for which the Itô-Tanaka trick does not work anymore. As an example,
consider a random function f̃ of the form

f̃(ω, s, x) := f(x−Ws(ω)),

where (Wt)t≥0 is the Brownian motion from (1.2). This gives, for b = 0 in (1.2),

∫ T

0
f̃(ω, t,Wt + x)dt =

∫ T

0
f(t, x)dt,

which does not bring any additional regularity.

It turns out that, when f is a random function, the solution F to (1.3) is not adapted
anymore to

(
FW
t

)

t∈[0,T ]
the filtration of the Brownian motion, making the stochastic

integral on the right-hand side of (1.1) ill-posed.

In this paper we tackle this difficulty by considering another equation which is the
adapted version of the Fokker-Planck equation (1.3). More precisely, we show in Theo-
rem 4.1 that given a random function f which depends on a standard Brownian motion
(Wt)t≥0, the following formula holds

∫ T

0
f(t,Xx

t )dt = −F (0, x)−

∫ T

0
(∇F (s,Xx

s ) + Z(s,Xx
s )) dWs−

∫ T

0
∇Z(s,Xx

s )ds, P−a.s.

(1.4)
where (F,Z) is the predictable solution of the following backward stochastic partial
differential equation (BSPDE)

F (t, x) = −

∫ T

t

(
1

2
∆ + b(s,W(s), x) · ∇

)

F (s, x)ds −

∫ T

t
f(s, x)ds−

∫ T

t
Z(s, x)dWs,

and (Xx
t )t≥0 is a weak solution of the stochastic differential equation

Xx
t = x+

∫ t

0
b(s,W(s),X

x
s )ds +Wt.

We name (1.4) the Itô-Wentzell-Tanaka trick as the derivation of 1.4 call for the use of
the Itô-Wentzell formula in place of the classical Itô formula which allows one to give a
semimartingale type decomposition of F (t,Xx

t ) when F (t, x) is itself a semimartingale
random field. Note that we also allow b to depend on the Brownian motion W . This
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contrasts with the classical Itô-Tanaka trick where both f and b must be deterministic
mappings. The derivation of this formula calls for a study of the Fokker-Planck BSPDE.
In this direction, incidentally we prove new results as Theorem 3.1 on this equation
in particular by allowing only Lq−Lp regularity on its coefficients together with a
representation of its solution in terms of the solution to the non-adapted SPDE and
of its Malliavin derivative by providing a methodology which generalizes: the well-
known linearization technique used for linear BSDEs and deterministic semigroups (see
[13, Proposition 2.2]), and a Feynman-Kac formula for BSPDEs related to Forward-
Backward SDEs as in [25, Corollary 6.2]. We also prove that the solution processes
(Y,Z) to the equation are Malliavin differentiable. The study of the BSPDE relies on
the one of the non-adapted Fokker-Planck equation in Section 3.2.

There are well-known results concerning the regularization effects of stochastic process
on deterministic functions (see the survey of Flandoli [15]) but, to our knowledge, there
exists no similar results in the case of random functions. The phenomenon is widely used
in the recovery of the strong uniqueness of solutions of stochastic differential equations
(SDE) with singular drifts [10, 20, 26, 24, 31, 34]. It has been generalized to SDE in
infinite dimension [8, 9, 27] and the conditions for the existence of a stochastic flow
has also drawn attention [1, 16, 32]. Another direction of interest is the improvement
of the well-posedness of stochastic partial differential equations (SPDE). In particular,
the stochastically perturbed linear transport equation has received a lot of interest
[2, 4, 14, 17]. More recent works provide extensions to nonlinear SPDE, see for instance
[3, 18, 19] for models from fluid mechanics and [6, 7, 11] for dispersive equations. Let
us also mention that the type of processes that yield a regularization effect is not
restricted to semi-martingales. For instance, in [30, 33] where α-stable processes have
been considered and, in [5], where the authors showed a regularization phenomenon
using rough paths (in particular for the fractional Brownian motion).

The paper is organized as follows. In Section 2 we make precise the definitions and the
notations that will be used later on. This includes some material on Malliavin calculus
especially for random fields. Then, in Section 3 we introduce the transport SDE under
interest and we study the adapted and the non-adapted Fokker-Planck equations. The
Itô-Tanaka-Wentzell trick together with some examples and applications are presented
in Section 4.

2 Notations and preliminaries

2.1 Main notations

Throughout this paper T will be a fixed positive real number and d denotes a fixed
positive integer. For any x in Rd, we denote by |x| the Euclidian norm of x. Let
(E, ‖ · ‖E) be a Banach space, we set B(E) the Borelian σ-field on E. For given Banach
spaces E,F and any p ≥ 0, we set Lp(E;F ) the set of B(E)\B(F )-measurable mappings
f : E → F such that

‖f‖p
Lp(E;F )

:=

∫

‖f(x)‖pFµ(dx) < +∞,

where µ is a non-negative measure on (E,B(E)) (the Borelian σ-field on E). Naturally
the norm depends on the choice of µ that will be made explicit in the context. If
F = Rn, n ∈ N, then we simply set Lp(E) := Lp(E;Rn). We also denote by C0(E)
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(resp. C0
b (E)) the set of continuous (resp. bounded continuous) real-valued mappings

f on E.

For any p > 1 we set p̄ the Hölder conjugate of p.

For any mapping ϕ : Rd → R we denote by ∂ϕ
∂xi

the i-th partial derivative of ϕ (i =

1, · · · , n), by ∇ϕ := ( ∂ϕ
∂x1

, . . . , ∂ϕ
∂xd

) the gradient of ϕ (when it is well-defined), and by

∆ϕ its Laplacian. For a multi index k := (k1, · · · , kd) in Nd, we set ∇kϕ := ∂k1+···+kdϕ
∂x1...∂kd

ϕ

and |k| :=
∑d

i=1 ki.

For p,m ∈ R+, we set

Wm,p(Rd) =
{

ϕ ∈ Lp(Rd);F−1
(

([1 + |ξ|2]m/2ϕ̂
)

∈ Lp(Rd))
}

,

the usual Sobolev spaces equipped with its natural norm

‖ϕ‖Wm,p(Rd) :=
∥
∥
∥F−1

(

([1 + |ξ|2]m/2ϕ̂
)∥
∥
∥
Lp(Rd))

,

where ϕ̂(ξ) = F(ϕ)(ξ) and F (resp. F−1) denotes the Fourier transform (resp. the
inverse Fourier transform). Let n, k ∈ N and α ∈ (0, 1). We denote by Ck,α

b (E), the
set of bounded functions having bounded derivatives up to order k and with α-Hölder
continuous kth partial derivatives. It is equipped with the norm

‖ϕ‖
Ck,α
b (E)

:= ‖ϕ‖Ck
b (E) + sup

|ℓ|=k
sup
x 6=y

|∇ℓf(x)−∇ℓf(y)|

|x− y|α
,

where ‖ϕ‖Ck
b (E) :=

∑

|ℓ|≤k supx∈E |∇ℓf(x)|. Finally C∞
0 (Rn), (n ∈ N∗) stands for the

set of infinitely continuously differentiable function with compact support.

Throughout this paper C will denote a non-negative constant which may differ from
line to line.
Unless stated otherwise, we always assume that the real numbers p, q ∈ (2,∞) verify

d

p
+

2

q
< 1.

2.2 Malliavin-Sobolev spaces

In this section we recall the classical definitions of Malliavin-Sobolev spaces presented
in [28] and extended them to functional valued random variables that from now on we
will refer as random fields. We start with some facts about Malliavin’s calculus for
random variables.

2.2.1 Malliavin calculus for random variables

Let (Ω,F ,P) be a probability space and W := (Wt)t∈[0,T ] a Brownian motion on this
space (to the price of heavier notations all the definitions and properties in this section
and of the next one extend to a d-dimensional Brownian motion). We assume that
F = σ (Wt, t ∈ [0, T ]).

Let Srv be the set of cylindrical functionals, that is the set of random variable β of the
form:

β = ϕ(Wt1 , · · · ,Wtn)
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with N∗, ϕ : Rn → R in C∞
0 (Rn) and 0 ≤ t1 < · · · < tn ≤ T . For an element β in Srv,

we set DF the L2([0, T ])-valued random variable as:

Dθβ :=

n∑

i=1

∂ϕ

∂xi
(Wt1 , · · · ,Wtn)1[0,ti](θ), θ ∈ [0, T ].

For a positive integer p ≥ 1, we set D1,p the closure of Srv with respect to the norm:

‖β‖p
D1,p := E[|β|p] + E

[(∫ T

0
|Dθβ|

2dθ

)p/2
]

.

To D is associated a dual operator denoted δ defined through the following integration
by parts formula:

E[βδ(u)] = E

[∫ T

0
Dtβ utdt

]

, (2.1)

for any β in D1,2 and any L2([0, T ])-valued random variable u such that there exists a

positive constant C such that
∣
∣
∣E
[∫ T

0 Dtγutdt
]∣
∣
∣ ≤ C‖γ‖D1,2 , ∀γ ∈ D1,2. In particular if

u := (ut)t∈[0,T ] is a predictable process then δ(u) =
∫ T
0 utdWt. In addition, according

to [28, Proposition 1.3.4], for any β in S and any h in Lp([0, T ]) (with p ≥ 2), δ(hβ) is
well-defined and satisfies

δ(hβ) = βδ(h) −

∫ T

0
htDtβdt. (2.2)

2.2.2 Malliavin calculus for random fields

We now extend these definitions to random fields that is to measurable mappings F :
Ω × Rd → R. More precisely, we consider S be the set of cylindrical fields, that is the
set of random fields F of the form:

F = ϕ(Wt1 , · · · ,Wtn , x)

with ϕ : Rn × Rd → R in C∞
0 (Rn+d). We fix p an integer with p ≥ 2. For an element

F in S, we set DF the Lp([0, T ])-valued random field as:

DθF :=

n∑

i=1

∂ϕ

∂xi
(Wt1 , · · · ,Wtn , x)1[0,ti](θ), θ ∈ [0, T ].

Note that for F in S, D∇kF = ∇kDF for any multi index k. In addition, an integration
by parts formula for the operators D∇k can be derived as follows.

Lemma 2.1. Let F in S, h in Lp([0, T ]) and G in S. Let k be a multi-index in Nd,
then the following integration by parts formula holds true:

E

[∫ T

0

∫

Rd

Dt∇
kF (x)htG(x)dxdt

]

= E

[∫

Rd

F (x) δ((∇k)∗G(x)h)dx

]

, (2.3)

where (∇k)∗ denotes the dual operator of ∇k.
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Proof. By the Malliavin-integration by parts formula (see e.g. [28, Lemma 1.2.1]) and
by the classical integration by parts formula in Rd we have that:

E

[∫ T

0

∫

Rd

Dt∇
kF (x)htG(x)dxdt

]

=

∫

Rd

E

[∫ T

0
Dt∇

kF (x)htG(x)dt

]

dx

=

∫

Rd

E

[

∇kF (x)δ(G(x)h)
]

dx, by (2.1)

=

∫

Rd

E

[

∇kF (x)G(x)δ(h)
]

dx−

∫

Rd

E

[

∇kF (x)

∫ T

0
DtG(x)htdt

]

dx, by (2.2)

= E

[∫

Rd

F (x)(∇k)∗G(x)dxδ(h)

]

− E

[∫

Rd

F (x)(∇k)∗
∫ T

0
DtG(x)htdtdx

]

= E

[∫

Rd

F (x)

(

(∇k)∗G(x)δ(h) −

∫ T

0
Dt(∇

k)∗G(x)htdt

)

dx

]

= E

[∫

Rd

F (x) δ((∇k)∗G(x)h)dx

]

, by (2.2).

This integration by parts formula allows us to prove that the operators D∇k are
closable.

Lemma 2.2. Let p ≥ 2 and k be in Nd. The operators D∇k (and so ∇kD) are closable
from S to Lp(Ω× Rd;Lp([0, T ])).

Proof. Let (Fn) ⊂ S a sequence of random fields which converges in Lp(Ω×Rd;Lp(Rd))
to 0 and such that (D∇kFn)n converges in Lp(Ω × Rd;Lp([0, T ])) to some element η
in Lp(Ω × Rd;Lp([0, T ])). Let h in Lp([0, T ]) and G : Rd → R in S. We recall that
p̄ := p

p−1 . For any n ≥ 1, it holds that

E

[∫

Rd

∫ T

0
η(t, x)htdtG(x)dx

]

= E

[∫

Rd

∫ T

0
(η(t, x) −Dt∇

kFn(x))htdtG(x)dx

]

+ E

[∫

Rd

∫ T

0
Dt∇

kFn(x)htdtG(x)dx

]

= E

[∫

Rd

∫ T

0
(η(t, x) −Dt∇

kFn(x))htdtG(x)dx

]

+ E

[∫

Rd

Fn(x) δ((∇k)∗G(x)h)dx

]

,

where we have used the integration by parts formula (2.3). We estimate the two terms
above separately. For the first one, using successive Hölder’s Inequality, we have that

∣
∣
∣
∣
E

[∫

Rd

∫ T

0
(η(t, x) −Dt∇

kFn(x))htdtG(x)dx

]∣
∣
∣
∣

≤ E

[∫

Rd

∫ T

0
|η(t, x) −Dt∇

kFn(x)|pdtdx

]1/p

E[‖G‖p̄
Lp̄(Rd)

]1/p̄‖h‖Lp̄([0,T ])

−→
n→+∞

0.

The second term can be estimated as follows (using also Hölder’s inequality and (2.2)).
∣
∣
∣
∣
E

[∫

Rd

Fn(x) δ((∇k)∗G(x)h)dx

]∣
∣
∣
∣
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=

∣
∣
∣
∣
E

[∫

Rd

Fn(x)(∇k)∗G(x)δ(h)dx

]

− E

[∫

Rd

Fn(x)

∫ T

0
Dt(∇

k)∗G(x)htdtdx

]∣
∣
∣
∣

≤ CE

[∫

Rd

|Fn(x)|pdx

]1/p (

E
[
δ(h)2p̄

]1/(2p̄)
∨ ‖h‖L2([0,T ])

)

×




E

[

‖(∇k)∗G‖2p̄
L2p̄(Rd)

]1/(2p̄)
+ E





∫

Rd

(∫ T

0
|Dt(∇

k)∗G(x)|2dt

) p̄
2

dx





1/p̄





−→
n→+∞

0.

Combining the previous estimates and relations we conclude that

E

[∫

Rd

∫ T

0
η(t, x)htdtG(x)dx

]

= 0.

The conclusion follows from the fact that the set of elements of the form Gh with h in
Lp([0, T ]) and G in S is dense in Lp(Ω× Rd;Lp([0, T ])).

Remark 2.1. Lemma 2.1 and Lemma 2.2 still holds if we replace the differential op-
erator ∇k with the Bessel potential (1−∆)m/2 for any m ∈ R+.

For a positive integer m, we set D1,m,p the closure of S with respect to the norm:

‖F‖p
D1,m,p := ‖F‖pWm,p +

∫ T

0
E

[

‖DθF‖
p
Wm,p(Rd)

]

dθ, (2.4)

where we denote
‖F‖pWm,p := E

[

‖F‖p
Wm,p(Rd)

]

.

In addition, for F in D1,m,p, we have since p ≥ 2:

‖F‖p
D1,m,p ≥

∫

Rd

‖F‖p
D1,pdx+

∑

|k|≤m

∫

Rd

‖∇kF‖p
D1,pdx,

with equality if p = 2.

Remark 2.2. In particular, if a random field F belongs to D1,m,p, then for a.e. (t, x),
ω 7→ ∇kF (t, x)(ω) belongs to the classical Malliavin space D1,p whose definition has
been recalled in Section 2.2.1 (for any k such that |k| ≤ m) for random variables that
depend only on ω and not on (t, x).

We conclude this section on the Malliavin derivative by introducing the space D
1,m,p
q :=

Lq([0, T ];D1,m,p) (with p, q ≥ 2) which consists of mappings F : [0, T ] × Ω × Rd → R

such that

‖F‖q
D
1,m,p
q

:=

∫ T

0
‖F (t, ·)‖q

D1,m,pdt < +∞.

Furthermore, we extend the definition Wm,p-norm accordingly

‖F‖q
W

m,p
q

=

∫ T

0
‖F (t, ·)‖qWm,pdt.
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3 Fokker-Planck SPDEs and BSPDEs

In this section, we study the transport SDE of interest together with two related Fokker-
Planck equations. The first one which will be considered in Section 3.2 and will be
referred as the non-adapted (or SPDE) Fokker-Planck equation. The second one will
be called the adapted (or BSPDE) Fokker-Planck equation associated to the SDE, and
will be introduced and studied in Section 3.3. This equation will be fundamental to
derive in Section 4 the stochastic counterpart of the Itô-Tanaka trick (that we will name
then Itô-Tanaka-Wentzell trick).

3.1 A SDE with random drift

In analogy to [17, 24, 26], we consider the following SDE:

Xt = X0 +

∫ t

0
b(s,W(s),Xs)ds +Wt, t ∈ [0, T ], (3.1)

where b is assumed to be a B([0, T ]× C([0, T ) × Rd)-measurable map, X0 is in Rd and
W is a d-dimensional Brownian motion. To begin with, let us recall the definition of a
weak solution to Equation (3.1).

Definition 3.1. A weak solution is a triple (X,W ), (Ω,F ,P), (Ft)t∈[0,T ] where

• (Ω,F ,P) is a probability space equipped with some filtration (Ft)t∈[0,T ] that satisfies
the usual conditions,

• X is a continuous, (Ft)t∈[0,T ]-adapted Rd-valued process, W is a d-dimensional
(Ft)t∈[0,T ]-Wiener process on the probability space,

• P(X(0) = X0) = 1 and P(
∫ t
0 |b(s,W(s),Xs)|ds < +∞) = 1, ∀t ∈ [0, T ],

• Equation (3.1) holds for all t in [0, T ] with probability one.

Assumption 3.1. There exists a weak solution to the SDE (3.1).

We now give a simple proof of existence and uniqueness of a weak solution to (3.1)
under some non-optimal assumptions.

Proposition 3.1. Let b ∈ C1
b (R

d;Lq([0, T ];Lp(Rd)). Then there exists a unique weak
solution to the SDE

Xt = X0 +

∫ t

0
b(s,Ws,Xs)ds +Wt, t ∈ [0, T ]. (3.2)

Proof. The proof is based on the Girsanov’s theorem. Let us first remark that L(t, x) :=
supy∈Rd |∇yb(t, y, x)| and b̃(t, x) := supy∈Rd |b(t, y, x)| belong in Lq([0, T ];Lp(Rd)). Thus,
since 2/q + d/p < 1, by [24, Lemma 3.2] we have, ∀κ ∈ R+ and k = 1, 2,

E

[

eκ
∫ T
0

L(s,Ws)kds
]

+ E

[

eκ
∫ T
0

b̃(s,Ws)kds
]

< +∞, (3.3)

where W is a standard Brownian motion.
Let (Xt)t≥0 a standard Brownian motion on a probability space (Ω,F ,P) equipped
with the filtration (Ft)t∈[0,T ]. We consider the following SDE

Yt = Y0 −

∫ t

0
b(s, Yt,Xt)ds+Xt, t ∈ [0, T ]. (3.4)
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In this step, we prove that there exists a unique solution to (3.4). Since b is Lipschitz,
the uniqueness is obtain by a Gronwall lemma. Moreover, by using classical a priori
estimates for Lipschitz SDE, we obtain

E

[

sup
t∈[0,T ]

|Yt|
2

]

≤ C

(

|Y0|
2 + T + E

[∫ T

0

(
|b(s, 0,Xs)|

2 + L(s,Ws)
2
)
ds

])

,

which yields the existence of a strong solution.
By (3.3), we have, ∀κ ∈ R+,

E
[

eκ
∫ T
0 |b(s,Ys,Xs)|2ds

]

≤ E
[

eκ
∫ T
0 b̃(s,Xs)2ds

]

< +∞.

We deduce that
ρ(·) := e

∫
·

0
b(s,Ys,Xs)ds−

1
2

∫
·

0
|b(s,Ys,Xs)|2ds,

is a martingale under P by Novikov’s criterion. Hence, by Girsanov’s theorem, the
process Y is a Brownian motion under the measure Q given by dQ

dP = ρ(T ). Thus, by
rewriting Y as W , the triple (X,W ), (Ω,F ,Q), (Ft)t∈[0,T ] is a weak solution to the SDE
(3.2).

As usual P stands for the predictable filtration on Ω× [0, T ] with respect to (Ft)t∈[0,T ].
We will need below several technical results that we present now. In the following, we
denote by (Pt,s)s≥t≥0 the heat semigroup.

Lemma 3.1. Let 1 < q, p < +∞. Then, there exists a constant C such that, ∀f ∈
D
1,0,p
q ,

∥
∥
∥
∥

∫ T

t
Pt,sf(s, x)ds

∥
∥
∥
∥
D
1,2,p
q

≤ C‖f‖
D
1,0,p
q

, (3.5)

and, another constant CT > 0 such that, ∀ε > 0 and ∀φ ∈ D1,2−2/q+ε,p,

‖Pt,Tφ‖D1,2,p
q

≤ CT ‖φ‖D1,2−2/q+ε,p . (3.6)

Proof. Second estimate: The second estimate is a direct consequence of the a similar
estimate in deterministic spaces. It is based on the following lemma [21, Theorem 7.2].

Lemma 3.2. Let v ∈ Lp(Rd), α ∈ [0, 1], and t > 0. There exists a constant C > 0
such that

‖e−tP0,tv‖W 2α,p(Rd) ≤
C

tα
‖v‖Lp(Rd) and ‖(P0,t − 1)v‖Lp(Rd) ≤ Ct2α‖v‖W 2α,p(Rd).

(3.7)

By setting α = 1/q − ε/2 and v = (1 −∆)m/2φ, with m = 2 − 2/q + ε, in Lemma
3.2, we obtain

‖Pt,Tφ‖D1,2,p ≤
CeT−t

(T − t)1/q−ε/2
‖φ‖D1,2−2/q+ε ,p,

thus, this yields the desired estimate

‖Pt,Tφ‖D1,2,p
q

≤ C

(∫ T

0

eqτ

τ1−qε/2
dτ

)1/q

‖φ‖D1,2−2/q+ε,p. (3.8)

9



First estimate: For the first estimate, the arguments of the proof are similar to
those of [22, Theorem 1.1]. First, let us remark that in the case p = q, Estimate (3.5)
can be deduce directly by using the classical inequality

∥
∥
∥
∥

∫ T

t
Pt,sg(s, x)ds

∥
∥
∥
∥
Lp([0,T ],W 2,p)

≤ C‖g‖Lp([0,T ]×Rd), ∀g ∈ Lp([0, T ]× Rd).

Therefore, it remains to prove estimate (3.5) for q 6= p. To do this, we apply the
Calderón-Zygmund Theorem in Banach spaces (see [22, Theorem 1.4] for a precise
statement). More precisely, we define the operator

Af(t, x) :=

∫

R

Pt,sf(s, x)1t≤s≤Tds,

which is a bounded operator from Lp(R,D1,0,p) to Lp(R,D1,2,p) since Estimate (3.5) is
valid for q = p. Therefore, to apply the Calderón-Zygmund Theorem, we only need to
prove the following estimate, ∀t 6= s,

‖∂ℓsPt,sf‖D1,2,p ≤
C

(s− t)2
‖f‖D1,2,p , (3.9)

for ℓ = 0, 1, which can be deduced from the classical inequality

‖∇kPt,sf‖Lp(Rd) ≤
C

(s− t)|k|/2
‖f‖Lp(Rd), (3.10)

and the fact that ∂sPt,s = 1
2∆Pt,s. This enables us to extend the operator A to a

bounded operator from Lq(R,D1,0,p) to Lq(R,D1,2,p), ∀q ∈ (1, p]. Finally, we remark
that the adjoint operator of A is given by

A∗f(t, x) =

∫ t

0
Ps,tf(s, x)ds.

Thus, we are able to apply the same results to A∗ and conclude that A is also a bounded
operator from Lq̄(R,D1,0,p̄) to Lq̄(R,D1,2,p̄), ∀q ∈ (1, p]. This extends the range of q to
(1,∞) for A.

The next result gives a Schauder estimate on the solution of a backward heat equa-
tion with a source term in D

1,0,p
q . Its proof is similar to the one from [21, Theorem 7.2]

and the arguments can be directly extended to the norms D
1,m,p
q .

Proposition 3.2. Let 1 < q, p < +∞, 2/q < β ≤ 2 and f ∈ D
1,0,p
q . Denote, for

(t, x) ∈ [0, T ]× Rd,

u(t, x) := −

∫ T

t
Pt,sf(s, x)ds.

Then, there exists a constant C > 0 independent of T such that, for any 0 ≤ s ≤ t ≤ T ,

‖u(t)− u(s)‖D1,2−β,p ≤ C(t− s)β/2−1/q‖f‖
D
1,0,p
q

, (3.11)

and, thus,
‖u‖

C
0,β/2−1/q
b ([0,T ];D1,2−β,p)

≤ C‖f‖
D
1,0,p
q

. (3.12)

A direct consequence of the previous result is the following

10



Corollary 3.1. Let f ∈ D
1,0,p
q . Denote, for (t, x) ∈ [0, T ] ×Rd,

u(t, x) := −

∫ T

t
Pt,sf(s, x)ds.

Then, for any ε ∈ (0, 1) satisfying

ε+
d

p
+

2

q
< 1,

there exists a constant C > 0 and ε̃ > 0 such that, ∀t ∈ [0, T ],

(

E

[

‖u(t, ·)‖p
C1,ε

b (Rd)

]

+ E

[∫ T

0
‖Dθu(t, ·)‖

p

C1,ε
b (Rd)

dθ

])1/p

≤ C(T − t)ε̃/2‖f‖
D
1,0,p
q

.

(3.13)

Proof. Let β = ε̃ + 2/q where 0 < ε̃ < 1 − (ε + d/p + 2/q). The result follows by the
Sobolev embedding C1,α

b ⊂W 2−β,p, with α = 1− β − d/p = 1− ε̃− q/2− d/p > ε, and
Proposition 3.2.

3.2 The non-adapted Fokker-Planck equation

We set the linear operator LX
t on C∞

0 (Rd):

LX
t ϕ(x) :=

1

2
∆ϕ(x) + b(t, x) · ∇ϕ(x),

and consider here the non-adapted Fokker-Planck equation

F (t, x) = φ(x)−

∫ T

t
LX
r F (r, x)dr −

∫ T

t
f(r, x)dr. (3.14)

Definition 3.2. A strong solution to Equation (3.14) is a function F in D
1,2,p
q such

that, for all t ∈ [0, T ], we have

F (t, x) = φ(x)−

∫ T

t
LX
r F (r, x)dr −

∫ T

t
f(r, x)dr. (3.15)

Remark 3.1. Note that each random variable F (t, ·) solution to the previous SPDE is
FT -measurable, and hence it is not adapted (compare with Remark 3.2 below).

We provide a Malliavin differentiability analysis for the solution the Fokker-Planck
equation (3.14). We define, ∀m ≥ 0,

G1,m,p
q :=

{
F ∈ D1,m,p

q ; ∂tF ∈ D1,0,p
q

}
,

and the associated norm

‖F‖
G

1,m,p
q

:= ‖F‖
D
1,m,p
q

+ ‖∂tF‖D1,0,p
q

.

We begin with a result concerning the existence and uniqueness of a solution to the
non-adapted Fokker-Planck equations.

Assumption 3.2. We assume that there exists a function b̃ ∈ Lq([0, T ]) such that,
∀(t, w) ∈ [0, T ]× C([0, T ]),

‖b(t, w, ·)‖Lp(Rd) +

(∫ T

0
‖Dθb(t, w, ·)‖

p
Lp(Rd)

dθ

)1/p

≤ b̃(t).
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Lemma 3.3. Assume that 3.2 is in force. Let u ∈ G
1,2,p
q and denote

‖u(t, ·)‖p
H1,p := E

[

sup
x∈Rd

|∇u(t, x)|p

]

+ E

[
∫ T

0
sup
x∈Rd

|∇Dθu(t, x)|
pdθ

]

.

The followings estimates hold

sup
t∈[0,T ]

‖u(t, ·)‖H1,p ≤ CT ‖u‖G1,2,p
q

, (3.16)

where CT is uniformly bounded with respect to T in compact sets of R+, and, ∀t ∈ [0, T ],

‖b(t, ·) · ∇u(t, ·)‖D1,0,p ≤ Cb̃(t)‖u(t, ·)‖H1,p . (3.17)

Proof. Firstly, let us remark that we have, ∀u ∈ G
1,2,p
q ,

u(t, x) = −

∫ T

t
Pt,r

[

∂tu(r, x) −
1

2
∆u(r, x)

]

dr,

and then, by using Corollary 3.1, we obtain the estimate

sup
t∈[0,T ]

‖u(t, ·)‖H1,p ≤ CT ‖u‖G1,2,p
q

.

Secondly, we compute

‖b(t, ·) · ∇u(t, ·)‖p
D1,0,p = E

[

‖b(t, ·) · ∇u(t, ·)‖p
Lp(Rd)

]

+

∫ T

0
E

[

‖Dθb(t, ·) · ∇u(t, ·) + b(t, ·) ·Dθ∇u(t, ·)‖
p
Lp(Rd)

]

dθ

≤ E

[

‖b(t, ·) · ∇u(t, ·)‖p
Lp(Rd)

]

+ CE

[∫ T

0
‖Dθb(t, ·) · ∇u(t, ·)‖

p
Lp(Rd)

dθ

]

+ CE

[∫ T

0
‖b(t, ·) ·Dθ∇u(t, ·)‖

p
Lp(Rd)

dθ

]

.

Since the Malliavin derivative commutes with the spatial derivative in Lp, we obtain

‖b(t, ·) · ∇u(t, ·)‖p
D1,0,p ≤ E

[

‖b(t, ·)‖p
Lp(Rd)

sup
x∈Rd

|∇u(t, x)|p

]

+ CE

[
∫ T

0
‖Dθb(t, ·)‖

p
Lp(Rd)

dθ sup
x∈Rd

|∇u(t, x)|p

]

+ CE

[

‖b(t, ·)‖p
Lp(Rd)

∫ T

0
sup
x∈Rd

|∇Dθu(t, x)|
pdθ

]

.

Thus, by Assumption 3.2, we have (3.17) as

‖b(t, ·) · ∇u(t, ·)‖D1,0,p ≤

Cb̃(t)

(

E

[

sup
x∈Rd

|∇u(t, x)|p

]

+ E

[
∫ T

0
sup
x∈Rd

|∇Dθu(t, x)|
pdθ

])1/p

.
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Proposition 3.3. Let f ∈ D
1,0,p
q and φ ∈ D1,2−2/q+ε,p, with ε > 0. Under Assumption

3.2, there exists a unique solution F in G
1,2,p
q to the equation

F (t, x) = Pt,Tφ(x)−

∫ T

t
Pt,sf(s, x)ds−

∫ T

t
Pt,s [b(s, x) · ∇F (s, x)] ds. (3.18)

Moreover, the following estimate on the solution holds

‖F‖
G

1,2,p
q

≤ CT

(

‖φ‖D1,2−2/q+ε,p + ‖f‖
D
1,0,p
q

)

, (3.19)

where CT > 0 depends on ‖b̃‖Lq([0,T ]) and is uniformly bounded with respect to T on
compact sets of R+.

Proof. Step 1: By using Corollary 3.1 and (3.17), we have

‖F (t, ·)‖q
H1,p ≤C‖Pt,Tφ‖

q
H1,p + CT ‖f‖

q

D
1,0,p
q

+ CT ‖b · ∇F‖
q

D
1,0,p
q

≤C‖φ‖q
H1,p + CT ‖f‖

q

D
1,0,p
q

+ CT

∫ T

t
|b̃(s)|q‖F (s, ·)‖q

H1,pds.

Thanks to a Gronwall lemma and the Sobolev embedding C1,ε
b ⊂W 2−2/q+ε,p, we deduce

sup
t∈[0,T ]

‖F (t, ·)‖H1,p ≤
(

CT ‖f‖D1,0,p
q

+ C‖φ‖D1,2−2/q+ε,p

)

e
CT T

q
‖b̃‖q

Lq([0,T ]) . (3.20)

We now turn to Estimate (3.19). We can apply the D
1,2,p
q -norm to (3.18) and obtain,

by using lemma 3.1,

‖F‖q
D
1,2,p
q

≤CT ‖φ‖
q

D1,2−2/q+ε,p + C‖f‖q
D
1,0,p
q

+ C

∫ T

t
‖b(s, ·) · ∇F (s, ·)‖q

D1,0,pds

≤CT ‖φ‖
q

D1,2−2/q+ε,p + C‖f‖q
D
1,0,p
q

+ C

∫ T

t
|b̃(s)|q‖F (s, ·)‖q

H1,pds

which yields, thanks to (3.20),

‖F‖q
D
1,2,p
q

≤ CT (1 + ‖b̃‖qLq([0,T ])e
CT T‖b̃‖q

Lq([0,T ]))

(

‖φ‖q
D1,2−2/q+ε,p + ‖f‖q

D
1,0,p
q

)

, (3.21)

Then, we differentiate (3.18) with respect to the time variable and deduce the equation
{
∂tF (t, x) = LX

t F (t, x) + f(t, x),
F (T, x) = φ(x).

(3.22)

By applying the D
1,0,p
q -norm to (3.22) and by using the estimate (3.20), we obtain

‖∂tF‖D1,0,p
q

≤
1

2
‖∆F‖

D
1,0,p
q

+ ‖f‖
D
1,0,p
q

+ ‖b · ∇F‖
D
1,0,p
q

≤ CT

(

‖φ‖D1,2−2/q+ε,p + ‖f‖
D
1,0,p
q

)

,

which, together with (3.21), gives Estimate (3.19).
Step 2: The last argument of the proof consists in using the so-called continuity

method. For µ ∈ [0, 1], we consider the equation

Fµ(t, x) = Pt,Tφ(x)−

∫ T

t
Pt,sf(s, x)ds−

∫ T

t
Pt,s [µb(s, x) · ∇Fµ(s, x)] ds. (3.23)
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We wish to prove that the set ν ⊂ [0, 1] of elements µ for which (3.23) admits a unique
solution is [0, 1] (with µ = 1 corresponding to the equation (3.18)). In the case where
µ = 0, the existence and uniqueness of a solution of (3.18) is straightforward and,
thus, ν is not empty. Fix µ0 ∈ ν and denote Rµ0 the mapping from D

1,0,p
q to G

1,2,p
q

which maps f to the solution Fµ0 of (3.23) for φ = 0. Let µ ∈ [0, 1] to be fix later.
The existence and uniqueness of the solution of equation (3.23) relies on a fixed point
argument. We consider the mapping Γµ given by

Γµ(F ) = P·,Tφ+Rµ0f + (µ − µ0)R
µ0 (b · ∇F ) ,

and aim to prove that it is a contraction mapping from G
1,2,p
q to itself. It follows from

the estimates (3.19) and (3.16) that, ∀F1, F2 ∈ G
1,2,p
q ,

‖Γµ(F1)− Γµ(F2)‖G1,2,p
q

≤C|µ− µ0|‖b · ∇(F1 − F2)‖D1,0,p
q

≤C|µ− µ0|

(∫ T

0
|b̃(s)|q‖F1(s, ·)− F2(s, ·)‖

q
C1,pds

)1/q

≤C|µ− µ0|‖b̃‖Lq([0,T ])‖F1 − F2‖G1,2,p
q

.

Hence, by choosing µ such that |µ−µ0| < 1
C‖b̃‖Lq([0,T ])

, we can conclude that there exists

a unique solution to (3.23). Therefore, by repeating the argument a finite number of
times, we prove that ν = [0, 1] and that (3.18) admits a unique solution in G

1,2,p
q .

Corollary 3.2. Let f ∈ D
1,0,p
q and φ ∈ D1,2−2/q+ε,p, with ε > 0. Under Assumption

3.2, there exists a unique solution F in D
1,2,p
q to the equation (3.14).

Proof. The existence of the solution follows directly from Proposition 3.3 since one can
check that a solution of (3.18) is a solution to (3.14). To prove the uniqueness, we
consider a solution F of (3.14) with φ = 0 and f = 0. Let Fn be a sequence of smooth
functions in (t, x) of G1,2,p

q such that

‖F − Fn‖
D
1,2,p
q

+ ‖∂tF − ∂tF
n‖

D
1,0,p
q

−→
n→∞

0.

Therefore, we have that

∂tF
n(t, x)− LX

t F
n(t, x) −→

n→∞
∂tF (t, x) + LX

t F (t, x) = 0,

in D
1,0,p
q . By denoting R the linear bounded operator from D

1,0,p
q to G

1,2,p
q which

associates f with the solution F of (3.18) and since Rf solves (3.14), we have a repre-
sentation of Fn as

Fn = R
(
∂tF

n − LXFn
)
. (3.24)

It follows from (3.24) and (3.19) that

‖Fn‖
G

1,2,p
q

≤ C‖∂tF
n − LXFn‖

D
1,0,p
q

−→
n→∞

0,

which implies that ‖F‖
G

1,2,p
q

= 0.

From now on, we denote (PX
s,t)0≤s≤t≤T the family of linear operators associated to

the solution of the Fokker-Planck equation determined by LX , that is, PX
s,tφ(x) is the

solution to the SPDE

PX
s,tφ(x) = φ(x)−

∫ t

s
LX
r P

X
r,tφ(x)dr, 0 ≤ s ≤ t, (3.25)

with φ a Ft-measurable mapping in D1,2−2/q+ε,p. We end this section by the following
Lemma which gives some estimates on PX .
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Lemma 3.4. Let f ∈ D
1,0,p
q and φ ∈ D1,2−2/q+ε,p, with ε > 0. Under Assumption 3.2,

the following estimates hold

‖PX
·,Tφ‖G1,2,p

q
≤ C1,T ‖φ‖D1,2−2/q+ε,p , (3.26)

∥
∥
∥
∥

∫ T

·
PX
·,rf(r, ·)dr

∥
∥
∥
∥
G

1,2,p
q

≤ C2,T ‖f‖D1,0,p
q

, (3.27)

and ∫ T

0
‖LX

· P
X
·,rf(r, ·)‖

q

D
1,0,p
q

dr ≤ C‖f‖q
D
1,2−2/q+ε,p
q

. (3.28)

Proof. The estimates (3.26) and (3.27) are direct consequences of Proposition 3.3. For
the last estimate, thanks to (3.16), (3.17), and (3.26), there exists a constant Cr > 0
uniformly bounded in r ∈ [0, T ] such that

‖b · ∇PX
·,rf(r, ·)‖D1,0,p

q
≤ Cr‖f(r, ·)‖D1,2−2/q+ε,p .

Therefore, the estimate follows from (3.26) since

∫ T

0
‖LX

· P
X
·,rf(r, ·)‖

q

D
1,0,p
q

dr ≤

∫ T

0
Cq
r‖f(r, ·)‖

q

D1,2−2/q+ε,pdr.

We can also compute the Malliavin derivative of (PX
s,t)0≤s≤t≤T . This is goal of the

next lemma.

Lemma 3.5. We have the following commutation formula between the Malliavin deriva-
tive and the operator PX

DtP
X
t,Tφ(x) = PX

t,TDtφ(x)−

∫ T

t
PX
t,r

(
Dtb(r, x) · ∇P

X
r,Tφ(x)

)
dr. (3.29)

Proof. Let t ≤ r ≤ T . Denote

Φ(r, x) := DtP
X
r,Tφ(x),

then, a direct computation of the Malliavin derivative applied to the representation
formula of PX gives

Φ(r, x) = Φ(T, x)−

∫ T

r
LX
u Φ(u, x)du−

∫ T

r
Dtb(u, x) · ∇P

X
u,Tφ(x)du.

Hence, by the representation formula of PX , we deduce the following mild formulation
of Φ

Φ(r, x) = PX
r,TΦ(T, x)−

∫ T

r
PX
r,u

(
Dtb(u, x) · ∇P

X
u,Tφ(x)

)
du,

and, thus, the desired result.
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3.3 The adapted Fokker-Planck equation

We consider now the following BSPDE:

F (t, x) = −

∫ T

t

(
LX
r F (r, x) + f(r, x)

)
dr −

∫ T

t
Z(r, x)dWr, (3.30)

where f belongs to D
1,0,p
q . To ensure the existence of such representation, we need the

underlying filtration F to be contained in the Brownian one. Hence, from now on, we
make the following assumption.

Assumption 3.3. There exists a weak solution to (3.1) defined on some probability
space (Ω,FT ,P) such that (Ft)t∈[0,T ] ⊂ (FW

t )t∈[0,T ].

Before going further we recall what is a solution to the BSPDE (3.30) in our context.
To this end we say that a random field ϕ : Ω× [0, T ]×Rd → R is predictable if for any
x in Rd, ϕ(·, x) is predictable. We set for m ∈ N:

W
m,p
P,q := {ϕ predictable field , ‖ϕ‖Wm,p

q
< +∞},

Mp :=

{

ϕ predictable field ,
∫

Rd

E

[(∫ T

0
|ϕ(s, x)|2dt

) p
2

]

dx < +∞

}

.

Definition 3.3 (Adapted strong solution to a BSPDE). We say that a pair of pre-
dictable random fields (F,Z) is strong solution to the BSPDE (3.30) if

(F,Z) ∈ W
2,p
P,q ×Mp

with d
p + 2

q < 1 and Relation (3.30) is satisfied for every t in [0, T ], for a.e. x in Rd,
P-a.s..

Remark 3.2. We warn the reader that in the previous definition, the predictable feature
of the fields (F,Z) is crucial. In that sense we will speak of BSPDE. This differs from
the SPDE (3.14) whose solution is not adapted (see Remark 3.1). In that case we will
speak of SPDEs to emphasis that the measurability requirement is not present.

In order to proceed further, we need some additional assumptions on the Malliavin
derivatives of f and b.

Assumption 3.4. Let m ∈ [q,∞] and ℓ ∈ [p,∞] such that

1

m
+

1

m̄
=

1

q
and

1

ℓ
+

1

ℓ̄
=

1

p
.

We assume that there exist a function f ′ ∈ Lm([0, T ];Lℓ(Ω;Lp(Rd))) (resp. b′) and a
function mf ∈ Lm̄([0, T ];Lℓ̄([0, T ] × Ω)) (resp. mb) such that

Dθf(t, x) = f ′(t, x)mf (θ, t)

Moreover, we assume that, for a.e. t ∈ [0, T ], ∂tmf (t, ·) (resp. ∂tmb(t, ·)) is a measure
on [0, T ] and that there exists a constant C > 0 such that

∥
∥
∥
∥

∫ T

·
PX
·,sf

′(s, ·)∂tmf (·, ds)

∥
∥
∥
∥
W

0,p
q

≤ C‖f ′‖
W

0,p
q
.

Finally, we assume that Tr(mf )(t) := mf (t, t) (resp. Tr(mb)) belongs to Lm̄([0, T ];Lℓ̄(Ω)).
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Remark 3.3. We can see that, under the previous assumption, we have, thanks to
Hölder inequality’s,

‖f‖
D
1,0,p
q

≤ ‖f‖
W

0,p
q

+ ‖f ′‖Lm([0,T ];Lℓ(Ω;Lp(Rd)))‖mf‖Lm̄([0,T ];Lℓ̄([0,T ]×Ω)).

Obviously, the same holds for b.

We have the following result concerning the existence and uniqueness of a strong
solution to Equation (3.30).

Theorem 3.1. Let p, q ≥ 2 as in Proposition 3.3 and ε > 0. Assume that f belongs to
D
1,0,p
q . There exists a unique strong (predictable) solution to Equation (3.30)

(F,Z) ∈
(

W
2,p
P,q

)2
.

Futhermore, we have the following representation of F

F (t, x) = E

[

−

∫ T

t
PX
t,rf(r, x)dr

∣
∣
∣Ft

]

. (3.31)

In addition, for a.e. (t, x), F (t, x) is Malliavin differentiable (‖F‖
D
1,2,p
q

< +∞), and

for a.e. x ∈ Rd, a version of the process (Z(t, x))t∈[0,T ] is given by

Z(t, x) = E

[

−

∫ T

t
DtP

X
t,rf(r, x)dr

∣
∣
∣Ft

]

. (3.32)

Finally, F admits the following mild representation

F (t, x) = −

∫ T

t
PX
t,rf(r, x)dr −

∫ T

t
PX
t,rZ(r, x)dWr. (3.33)

Proof. Throughout Step 1 and Step 2, we assume that f and f ′ are smooth with respect
to x. Since the norms of F and Z in W

2,p
q are bounded by the norms of f ∈ W

0,p
q and

f ′ ∈ Lm([0, T ];Lℓ(Ω;Lp(Rd))) (see Step 1 and Step 2), we can consider two sequences
of smooth approximations (fn)n∈N and (f ′n)n∈N such that the limit (Fn, Zn) −→

n→∞
(F,Z)

converges in W
2,p
q . Moreover, thanks to the mild formulation (3.33), we obtain that

(F,Z) is the unique solution of the Equation (3.30).
Step 1: Set

F (t, x) := E

[

−

∫ T

t
PX
t,rf(r, x)dr

∣
∣
∣Ft

]

, (3.34)

We start with proving that F belongs to W
2,p
P,q. Indeed, by using (3.27) and Jensen’s

inequality, it holds that

‖F (t, ·)‖p
D1,2,p =

∥
∥
∥
∥
E

[

−

∫ T

t
PX
t,sf(s, ·)ds

∣
∣
∣Ft

]∥
∥
∥
∥

p

D1,2,p

= E

[∥
∥
∥
∥
E

[

−

∫ T

t
PX
t,sf(s, ·)ds

∣
∣
∣Ft

]∥
∥
∥
∥

p

W 2,p

]

+

∫ T

0
E

[∥
∥
∥
∥
DθE

[

−

∫ T

t
PX
t,sf(s, ·)ds

∣
∣
∣Ft

]∥
∥
∥
∥

p

W 2,p

]

dθ

≤ E

[∥
∥
∥
∥

∫ T

t
PX
t,sf(s, ·)ds

∥
∥
∥
∥

p

W 2,p

]
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+

∫ t

0
E

[∥
∥
∥
∥

∫ T

t
DθP

X
t,sf(s, ·)ds

∥
∥
∥
∥

p

W 2,p

]

dθ

≤

∥
∥
∥
∥

∫ T

t
PX
t,sf(s, ·)ds

∥
∥
∥
∥

p

D1,2,p

< +∞. (3.35)

We now turn to the derivation of Z. We have

−

∫ T

t

(
LX
s F (s, x) + f(x, s)

)
ds =

∫ T

t
E

[∫ T

s
LX
s P

X
s,rf(r, x)dr − f(s, x)

∣
∣
∣Fs

]

ds.

By denoting

m(s, x) :=

∫ T

s
LX
s P

X
s,rf(r, x)dr − f(s, x),

we have that, thanks to the representation (3.25),
∫ T

t
E

[

m(s, x)
∣
∣
∣Ft

]

ds = E

[∫ T

t

∫ T

s
LX
s P

X
s,rf(r, x)drds −

∫ T

t
f(s, x)ds

∣
∣
∣Ft

]

= E

[∫ T

t

∫ r

t
LX
s P

X
s,rf(r, x)dsdr −

∫ T

t
f(s, x)ds

∣
∣
∣Ft

]

= E

[∫ T

t

(
−PX

t,rf(r, x) + f(r, x)
)
dr −

∫ T

t
f(s, x)ds

∣
∣
∣Ft

]

= F (t, x).

In the previous computations, we have used Fubini’s theorem, which can be applied
since, thanks to Lemma 3.4,

∫ T

t

∫ r

t
‖LX

s P
X
s,rf(r, ·)‖D1,0,pdsdr ≤

(∫ T

0

∫ T

0
‖LX

s P
X
s,rf(r, ·)‖

q
D1,0,pdsdr

)1/q

≤ C‖f‖
D
1,2−2/q+ε,p
q

. (3.36)

This enables us to conveniently express the martingale that we are looking for being
able to define the field Z. That is, we have

F (t, x) = −

∫ T

t

(
LX
s F (s, x) + f(x, s)

)
ds−M(T, x) +M(t, x),

where

M(t, x) :=

∫ t

0
E

[

m(s, x)
∣
∣
∣Fs

]

ds+

∫ T

t
E

[

m(s, x)
∣
∣
∣Ft

]

ds.

Let us now check that M is indeed a Lp(Rd)-valued martingale. Note first that by
Estimate (3.36) M(T, ·) is integrable as

E

[

‖M(T, ·)‖p
Lp(Rd)

]

= E

[∥
∥
∥
∥

∫ T

0
E

[

m(s, ·)
∣
∣
∣Fs

]

ds

∥
∥
∥
∥

p

Lp(Rd)

]

≤ C

∫ T

0
E

[

‖m(s, ·)‖p
Lp(Rd)

]

ds < +∞,

since m belongs to D
1,0,p
q (by (3.36) and by our assumption on f). In addition, ∀u ∈

[0, t], we have

E

[

M(t, ·)−M(u, ·)
∣
∣
∣Fu

]

=

∫ t

u
E

[

m(s, ·)
∣
∣
∣Fu

]

+

∫ T

t
E

[

m(s, ·)
∣
∣
∣Fu

]

ds−

∫ T

u
E

[

m(s, ·)
∣
∣
∣Fu

]
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= 0,

therefore, M is indeed a martingale. It remains to represent M as a stochastic integral
against the Brownian motion W . For any fixed x in Rd, martingale representation
theorem (for real-valued martingales) gives that there exists Z(·, x) := (Z(t, x))t∈[0,T ]

such that

E

[∫ T

0
|Z(t, x)|2dt

]

< +∞,

and M(t, x) = M(0, x) +
∫ t
0 Z(s, x)dWs, ∀t ∈ [0, T ], P − a.s.. Note however, that

the subset of Ω where the equality may fail depends a priori on x. To obtain, a
representation for Lp(Rd)-valued martingales (that is for every t, and a.e. x, P-a.s.) we
need some extra regularity on Z that we provide here. Set:

M̃(t, x) :=M(0, x) +

∫ t

0
Z(s, x)dWs, ∀(t, x).

We claim that M̃ is a Lp(Rd)-valued martingale. Indeed using the Burkholder-Davis-
Gundy inequality for real-valued martingales,

E
[

‖M̃(T, ·) −M(0, x)‖p
Lp(Rd)

]

=

∫

Rd

E

[∣
∣
∣
∣

∫ T

0
Z(t, x)dWt

∣
∣
∣
∣

p
]

dx

≤ CBDG

∫

Rd

E

[(∫ T

0
|Z(t, x)|2dt

)p/2
]

dx

≤ C

∫

Rd

E [|M(T, x)−M(0, x)|p] dx

= CE

[

‖M(T, x)‖p
Lp(Rd)

]

< +∞.

In particular, Z belongs to Mp. Note that once this integrability property is proved for
M̃ , its martingale feature is straightforward. Using Doob’s inequality for Lp(Rd)-valued
martingales, we get that:

E

[

sup
t∈[0,T ]

‖M(t, ·) − M̃(t, ·)‖p
Lp(Rd)

]

≤ C sup
t∈[0,T ]

E

[

‖M(t, ·) − M̃(t, ·)‖p
Lp(Rd)

]

≤ CE

[

‖M(T, ·) − M̃(T, ·)‖p
Lp(Rd)

]

= 0,

by definition of M̃ . This proves that

M(t, x) =M(0, x) +

∫ t

0
Z(s, x)dWs, ∀t, for a.e. x, P− a.s..

Thus, we obtain that (F,Z) ∈ W
2,p
P,q ×Mp solves Equation (3.30).

Step 2: Proof of (3.32).

Recall that by (3.35), ‖F (t, ·)‖D1,2,p < +∞. In addition, following the same lines as in
the computation of (3.35), we have that:

∥
∥
∥
∥

∫ T

t
LX
r F (r, ·)dr

∥
∥
∥
∥

q

D
1,0,p
q

=

∫ T

0

∥
∥
∥
∥

∫ T

t
LX
r F (r, ·)dr

∥
∥
∥
∥

q

D1,0,p

dt
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≤ T

∫ T

0

∥
∥
∥
∥
LX
r

∫ T

r
PX
r,sf(s, ·)ds

∥
∥
∥
∥

q

D1,0,p

dr

≤ T

∫ T

0

∫ s

0

∥
∥LX

r P
X
r,sf(r, ·)

∥
∥
q

D1,2,p drds, by Lemma 3.4

≤ CT

∫ T

0
‖f(r, ·)‖q

D1,2−2/q+ε,p dr = CT‖f‖q
D
1,2−2/q+ε,p
q

.

Combining this result with Relation (3.30), we obtain that for a.e. (t, x),
∫ T
t Z(s, x)dWs

belongs to D1,p (see Remark 2.2). Since D1,p ⊂ D1,2, by [29, Lemma 2.3], this is
equivalent to for a.e. (t, x), Z(·, x) ∈ L2([t, T ],D1,2). As a consequence, for a.e. (t, x)
and for any 0 ≤ s ≤ t,

DsF (t, x) =

∫ t

s
DsL

X
r F (r, x) +Dsf(r, x)dr + Z(s, x) +

∫ t

s
Z(r, x)dWr, P− a.s..

Hence taking s = t, in the previous relation, we have that for a.e. x, a version of
the process (Z(t, x))t∈[0,T ] is given by Z(t, x) = DtF (t, x). Representation (3.32) can
then be deduced using [28, Proposition 1.2.8]. We are now in position to prove that Z
belongs to W

2,p
q . By using Lemma 3.5 and Assumption 3.4, we have

DtF (t, x) = E

[

−

∫ T

t
DtP

X
t,rf(r, x)dr

∣
∣
∣Ft

]

= E

[

−

∫ T

t
mf (t, r)P

X
t,rf

′(r, x)dr
∣
∣
∣Ft

]

+ E

[∫ T

t

∫ r

t
mb(t, u)P

X
t,u

(
b′(u, x) · ∇PX

u,rf(r, x)
)
dudr

∣
∣
∣Ft

]

.

(3.37)

By differentiating with respect to the time variable, it follows that

−

∫ T

t
mf (t, r)P

X
t,rf

′(r, x)dr =−

∫ T

t
PX
t,r(mf (r, r)f

′(r, x))dr

+

∫ T

t
PX
t,r

(∫ T

r
PX
r,sf

′(s, x)∂rmf (r, ds)

)

dr.

Hence, by Assumption 3.4 and Lemma 3.4, we estimate the first term on the rhs of
(3.37)

∥
∥
∥
∥
E

[

−

∫ T

·
mf (·, r)P

X
·,rf

′(r, ·)dr
∣
∣
∣F·

]∥
∥
∥
∥
W

2,p
q

≤

∥
∥
∥
∥

∫ T

·
mf (·, r)P

X
·,rf

′(r, ·)dr

∥
∥
∥
∥
W

2,p
q

≤C ‖Tr(mf )f
′‖

W
0,p
q

+ C

∥
∥
∥
∥

∫ T

·
PX
·,sf

′(s, ·)∂rmf (·, ds)

∥
∥
∥
∥
W

0,p
q

≤ ‖f ′‖Lm([0,T ];Lℓ(Ω;Lp(Rd)))

× C(‖Tr(mf )‖Lm̄([0,T ];Lℓ̄(Ω)) + 1)
∥
∥f ′
∥
∥
W

0,p
q
.

For the second term of (3.37), we remark that, thanks to Fubini’s theorem,

∫ T

t

∫ r

t
mb(t, u)P

X
t,u

(
b′(u, x) · ∇PX

u,rf(r, x)
)
dudr =

∫ T

t
PX
t,umb(t, u)G(u, x)du,
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where we denoted G(u, x) := b′(u, x) · ∇
[∫ T

u PX
u,rf(r, x)dr

]

. Hence, we can proceed by

similar arguments as for the first term of the rhs of (3.37) since, by (3.17), (3.16) and
Lemma 3.4,

‖G‖
W

0,p
q

≤ C

∥
∥
∥
∥

∫ T

u
PX
u,rf(r, x)dr

∥
∥
∥
∥
G

0,2,p
q

≤ C‖f‖
W

0,p
q
<∞.

Therefore, we conclude that DtF (t, x) belongs to W
2,p
q and, thus, Z itself belongs to

W
2,p
q .

Step 3: Uniqueness of the solution.

Assume that there exist two solutions in W
2,p
P,q to the BSPDE (3.30). Then by linearity,

the difference of these solutions is itself solution to the BSPDE with f ≡ 0. Let (F̂ , Ẑ)
be any solution of (3.30) with f ≡ 0. We will prove that F̂ ≡ Ẑ ≡ 0 in (W2,p

P,q)
2 which

will prove the claim. To this end, let θ : Rd → R be a non-negative smooth bump
function such that θ(x) = 1 if |x| ≤ 1 and θ(x) = 0 if |x| ≥ 2. For any positive integer
n we set θn(x) := θ(x/n), Fn(t, x) := F̂ (t, x)θn(x), and Zn(t, x) := Ẑ(t, x)θn(x). By
definition, we have that

E

[∫ T

0
‖Fn(t, ·)‖2W 2,pdt+

∫ T

0
‖Zn(t, ·)‖2W 2,pdt

]

≤ C

∫ T

0
E
[
‖Fn(t, ·)‖p

W 2,p

]2/p
dt+

∫ T

0
E
[
‖Zn(t, ·)‖p

W 2,p

]2/p
dt

≤ C(‖Fn‖2
W

2,p
q

+ ‖Zn‖2
W

2,p
q

) < +∞,

by Jensen’s inequality. In addition,

sup
x

|∇θn(x)| ≤ n−1‖θ‖∞, sup
x

|∆θn(x)| ≤ n−2‖θ‖∞.

In addition, since θn is a smooth function it follows that (Fn, Zn) is solution to the
BSPDE:

Fn(t, x) = 0−

∫ T

t
LX
r (Fn(r, x)) + ψn(r, x)dr −

∫ T

t
Zn(r, x)dWr ,

where ψn(r, x) := −(∇F · ∇θn + 1
2F∆θ

n +Fb · ∇θn)(r, x). Recall that p, q ≥ 2 so that
we can make use of a priori estimates in L2 as [12, Theorem 2.2] to obtain that there
exists a universal constant C > 0 such that:

E

[∫ T

0
‖Fn(t, ·)‖2W 2,p + ‖Zn(r, ·)‖2W 1,pdt

]

≤ CE

[∫ T

0
‖ψn(t, ·)‖L2

x
dt

]

. (3.38)

We estimate the right-hand side of the previous estimate. For the first term, we have:

E

[∫ T

0

∫

Rd

|∇F (t, x) · ∇θn(x)|2dxdt

]

≤ ‖θ‖∞n
−2E

[
∫ T

0

∫

B(0,n)
|∇F (t, x)|2dxdt

]

≤ Cn−(p+2)/pE

[
∫ T

0

(∫

Rd

|∇F (t, x)|pdx

)2/p

dt

]
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≤ Cn−(p+2)/p

∫ T

0
E
[
‖F (t, x)‖p

W 2,p

]2/p
dt

≤ Cn−(p+2)/p

(∫ T

0
E
[
‖F (t, x)‖p

W 2,p

]q
dt

)2/(qp)

= Cn−(p+2)/p,

where we have used Hölder inequality several times, the fact that q, p ≥ 2. Similar
calculations for the two other terms involved in the definition of ψn lead to:

lim
n→+∞

E

[∫ T

0
‖ψn(t, ·)‖L2

x
dt

]

= 0,

which implies that:

lim
n→+∞

E

[∫ T

0
‖Fn(t, ·)‖2W 2,p + ‖Zn(t, ·)‖2W 1,pdt

]

= 0,

in view of the Estimate (3.38). As a consequence, we can deduce that:

lim
n→+∞

E

[∫ T

0
‖F̂ (t, ·)1B(0,n)‖

2
W 2,p + ‖Ẑ(t, ·)1B(0,n)‖

2
W 1,pdt

]

= 0,

which implies that:

E

[∫ T

0
‖F̂ (t, ·)‖2W 2,p + ‖Ẑ(t, ·)‖2W 1,pdt

]

= 0.

Hence (F̂ , Ẑ) ≡ (0, 0) in W
2,p
P,q.

Step 4: Proof of the mild representation (3.33).

Set:

F̃ (t, x) = −

∫ T

t
PX
t,rf(r, x)dr −

∫ T

t
PX
t,rZ(r, x)dWr, t ∈ [0, T ],

where Z is the second component of the solution to Equation (3.30). We wish to prove
that F̃ ∈ W

2,p
q is the first component of the solution to Equation (3.30) (i.e. F̃ = F ).

Here we stress that we do not impose F̃ to be predictable. We have, by Burkholder-
Davis-Gundy’s inequality for real-valued martingales and Lemma 3.4,

∥
∥
∥
∥

∫ T

·
PX
·,rZ(r, ·)dWr

∥
∥
∥
∥

q

W
2,p
q

≤ C

∫ T

0

(∥
∥
∥
∥

∫ T

t

∣
∣PX

t,rZ(r, ·)
∣
∣
2
dr

∥
∥
∥
∥

1/2

W2,p/2

)q

dt

≤ C

∫ T

0

(∫ T

t

∥
∥PX

t,rZ(r, ·)
∥
∥
2

W2,p dr

)q/2

dt

≤ C

∫ T

0

∫ r

0

∥
∥PX

t,rZ(r, ·)
∥
∥
q

W2,p dtdr

≤ C‖Z‖q
W

2,p
q
< +∞,

which yields that the stochastic integral is well-defined and F̃ belongs to W
2,p
q . With

the definition of PX (see (3.25)), we decompose F̃ as follows:

F̃ (t, x) =

∫ T

t

∫ r

t
LX
u P

X
u,rf(r, x)dudr −

∫ T

t
f(r, x)dr
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+

∫ T

t

∫ r

t
LX
u P

X
u,rZ(r, x)dudWr −

∫ T

t
Z(r, x)dWr

Using Stochastic Fubini’s Theorem (that we justify below), we have that:

F̃ (t, x) =

∫ T

t
LX
u

∫ T

u
PX
u,rf(·, r)drdu−

∫ T

t
f(r, x)dr

+

∫ T

t
LX
u

∫ T

u
PX
u,rZ(r, x)dWrdu−

∫ T

t
Z(r, x)dWr

= −

∫ T

t
LX
u

[

−

∫ T

u
PX
u,rf(x, r)dr −

∫ T

u
PX
u,rZ(r, x)dWr

]

︸ ︷︷ ︸

F̃ (u,x)

du

−

∫ T

t
f(r, x)dr −

∫ T

t
Z(r, x)dWr.

This computation proves that F̃ is solution to the (non-adapted) SPDE:

F̃ (t, x) = −

∫ T

t
LX
u F̃ (u, x) + f(u, x)du−

∫ T

t
Z(r, x)dWr ,

where −
∫ T
t Z(r, x)dWr is seen as a source term. By definition, F is also a solution to

this equation. As a consequence F̂ (t, x) := F (t, x)− F̃ (t, x) is solution (in W
2,p
q ) to the

SPDE

F̂ (t, x) = −

∫ T

t
LX
u F̂ (u, x)du,

which admits 0 as unique solution in W
2,p
q (by Proposition 3.3), which proves that

F = F̃ in W
2,p
q . We finally justify the use of stochastic’s Fubini theorem. More

precisely, we have that:

∥
∥
∥
∥

∫ T

0

∫ T

r
|LX

u P
X
u,rZ(r, ·)|

2dudr

∥
∥
∥
∥
W0,p/2

≤

∫ T

0

∫ T

r

∥
∥LX

u P
X
u,rZ(r, ·)

∥
∥
2

W0,p dudr

≤ C

(∫ T

0

∫ T

r

∥
∥LX

u P
X
u,rZ(r, ·)

∥
∥
q

W0,p dudr

)2/q

≤ C‖Z‖2
W

2,p
q
.

4 The Itô-Tanaka-Wentzell trick and some appli-

cations

4.1 Main result

Let us recall the Itô-Wentzell formula in the context of processes with values in Sobolev
spaces [23].
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Proposition 4.1 (Itô-Wentzell formula). Let F in W
2,p
P,q be such that for any ϕ ∈

Lp̄(Rd):

〈F (t, ·), ϕ〉 = 〈F (0, ·), ϕ〉 +

∫ t

0
〈Γ(s, ·), ϕ〉dWs +

∫ t

0
〈A(s, ·), ϕ〉ds (4.1)

with F (0, ·) ∈ Lp(Rd), A in W
0,p
P,q and Γ in W

1,p
P,q. Then, ∀t ∈ [0, T ], ∀ϕ ∈ Lp̄(Rd),

〈F (t, · +Xt), ϕ〉 =〈F (0, · +X0), ϕ〉 +

∫ t

0
[〈Γ(s, · +Xs), ϕ〉+ 〈∇F (s, ·+Xs), ϕ〉]dWs

+

∫ t

0
[〈∇Γ(s, ·+Xs), ϕ〉 + 〈A(s, ·+Xs), ϕ〉]ds

+

∫ t

0
+〈LX

s F (s, ·+Xs), ϕ〉ds, P− a.s.. (4.2)

Remark 4.1. Note that for any ϕ in Lp̄(Rd), the stochastic process s 7→ 〈Γ(s, ·+Xs), ϕ〉
is square integrable so that the stochastic integral of this process against the Brownian
motion is well-defined. The same comment implies that all the integrals involved in
Relations (4.1)-(4.2) are well-defined. We also would like to point out that contrary
to the original formula in [23] where the test functions ϕ are assumed to be infinitely
differentiable, the regularity assumption on our processes allows us to consider only Lp̄

test functions.

With the previous results at hand we can now state and prove our main result,
namely a Itô-Wentzell-Tanaka trick.

Theorem 4.1. Assume that f ∈ D
1,0,p
q . Let (F,Z) be the unique strong solution to

(3.30). Then we have,

∫ T

0
f(s,Xs)ds =− F (0,X0)−

∫ T

0
(∇F (s,Xs) + Z(s,Xs)) dWs

−

∫ T

0
∇Z(s,Xs)ds, P− a.s.. (4.3)

Proof. It follows from the Itô-Wentzell formula from Proposition 4.1 that, ∀ϕ ∈ Lp̄(Rd),

∫ T

0
〈f(s, ·+Xs), ϕ〉ds

=− 〈F (0, · +X0), ϕ〉 −

∫ T

0
(〈∇F (s, ·+Xs), ϕ〉 + 〈Z(s, ·+Xs), ϕ〉) dWs

−

∫ T

0
〈∇Z(s, ·+Xs), ϕ〉ds, P− a.s.. (4.4)

Let us remark that by Theorem 3.1 and a Sobolev embedding, F,Z ∈ Lq
P([0, T ];L

p(Ω; C1,α(Rd)))
for a certain α > 0. We choose ϕ = θε, ε > 0 a mollifier in Equation (4.4). For any
positive ε we have

∫ T

0
f ε(s,Xs)ds = −F ε(0,X0)−

∫ T

0
∇F ε(s,Xs)dWs −

∫ T

0
∇Zε(s,Xs)ds, P− a.s.,

(4.5)
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where we denote Gε(t, x) = 〈G(t, ·), θε(x− ·)〉 for G = f, F,∇F,∇Z. We remark that,
given a function G ∈ Lq

P([0, T ];L
p(Ω; C0,α

b (Rd))) it holds that

E

[∫ T

0
|Gε(s,Xs)−G(s,Xs)| ds

]

≤

(∫ T

0

(

E

[∫

Rd

|G(s, x +Xs)−G(s,Xs)|θ
ε(x)dx

])q

ds

)1/q

≤

(
∫ T

0
E

[

‖G(s, ·)‖p
C0,α
b (Rd)

]q/p

ds

)1/q (∫

Rd

|x|αθε(x)dx

)

≤C‖G‖Lq([0,T ];Lp(Ω;C0,α
b (Rd)))ε

α −→
ε→0

0.

Thus, each term from the right-hand side of (4.5) converges to the corresponding value.
In order to handle with the term in the left-hand side, we have to prove that the integral
I defined by

I(x) :=

∫ T

0
f(s, x+Xs)ds,

is continuous, P−a.s.. This comes from the fact that I belongs to W1,p. Indeed, thanks
to (4.4), Itô’s isometry, a change of variable and Jensen’s inequality, we have that

‖I‖W1,p ≤‖F (0, · +X0)‖W1,p

+ 2

(∫ T

0
‖∇F (s, ·+Xs)‖

2
W1,p + ‖Z(s, ·+Xs)‖

2
W1,pds

)1/2

+

∫ T

0
‖∇Z(s, ·+Xs)‖W1,pds

≤‖F (0, ·)‖W1,p + C

(∫ T

0
‖F (s, ·)‖q

W2,p + ‖Z(s, ·)‖q
W1,pds

)1/q

+

(∫ T

0
‖Z(s, ·)‖q

W2,p

)1/q

ds.

Since F,Z ∈ W
1,2,p
q , we deduce that I ∈ W1,p. By the Sobolev embedding C0,α(Rd) ⊂

W 1,p(Rd), we deduce that I is P-a.s. continuous. Thus, we have, by using Fubini’s
theorem,

∣
∣
∣
∣

∫ T

0
[f ε(s,Xs)− f(s,Xs)]ds

∣
∣
∣
∣
= |〈[I(·) − I(0)], θε〉| −→

ε→0
0, P− a.s.,

which concludes the proof.

Remark 4.2. If f and b are deterministics, then, the BSPDE (3.30) reduces to a PDE
that is Z ≡ 0. Hence, ∇Z ≡ 0 and we recover the formula of [24]. In particular, if
b does not depend on ω and if f is random then the gain/loss of regularity than one
could obtain by using the Itô-Tanaka-Wentzell trick compared to the Itô-Tanaka trick is
completely contained in the regularity of Z and its gradient.

4.2 Example: Smooth perturbations of a Brownian motion

Let us consider the following functional

I(x) :=

∫ T

0
f(t, x+Wt + Yt)dt, x ∈ Rd, (4.6)
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where f ∈ Lq([0, T ];Lp(Rd)), W is a standard brownian motion and Y is a stochas-
tic process adapted to the filtration

(
FW
t

)

t∈[0,T ]
such that, almost surely, DtYs ∈

C1
t ([0, T ]; Cs([0, T ]) and DtYt = 0, ∀t ∈ [0, T ]. We remark that when Y is of the

form

Yt =

∫ t

0
hsds

where h is a stochastic process adapted to
(
FW
t

)

t∈[0,T ]
, one can apply Girsanov’s theo-

rem and remove Y from (4.6). This means that Y can not pertubate the regularization
effect of W . That is, one could apply the Itô-Tanaka trick (i.e. the deterministic version
as provided in [17]) to I under a probability measure Q and obtain

I = −F (0, x) −

∫ T

0
∇F (t, x+Wt)dWt, Q− a.s.

without having to consider the extra terms involving Malliavin derivatives. Here, our
objective is to show that Theorem 4.1 is consistent with those arguments and that we
recover the same type of result.

By considering the random function f̃ := f(t, ·+ Yt), the Itô-Tanaka-Wentzell trick
gives is the following expression of I

I = −F̃ (0, x+ Y0)−

∫ T

0

(

∇F̃ (t, x+Wt) + Z̃(t, x+Wt)
)

dWt −

∫ T

0
∇Z̃(t, x+Wt)dt,

with

F̃ (t, x) = E

[

−

∫ T

t
Pt,sf̃(s, x)ds

∣
∣
∣Ft

]

,

and

Z̃(t, x) = E

[

−

∫ T

t
Pt,sDtf̃(s, x)ds

∣
∣
∣Ft

]

.

We notice that the Malliavin derivative of f implies, a priori, a loss of regularity
compared to the case where f is deterministic since

Dtf̃(s, x) = ∇f(s, x) ·DtYs. (4.7)

However, this is not the case as proved in the following Lemma.

Lemma 4.1. Let g ∈ Lq([0, T ];Lp(Rd)) and denote

G(t, x) = −

∫ T

t
∇Pt,sg(s, x) ·DtYsds.

Then we have

G(t, x) = −

∫ T

t
Pt,s

(

−

∫ T

s
∇Ps,τg(τ, x)∂τDτYsdτ

)

ds, (4.8)

which verifies the estimate

E
[

‖G‖
Lq([0,T ];W 3,p

x )

]

≤ CE

[

sup
(t,s)∈[0,T ]

|∂tDtYs|

]

‖g‖Lq([0,T ];Lp(Rd)). (4.9)
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Proof. By differentiating G with respect to the time-variable, we notice that G is the
unique strong solution of the following backward PDE

{

∂tG(t, x) +
1
2∆G(t, x) = −

∫ T
t ∇Pt,sg(s, x) · ∂tDtYsds,

G(T, x) = 0.

Thus, we deduce Expression (4.8) and Estimate (4.9) by a direct application of the
smoothing property of the heat semi-group.

It follows from the previous Lemma that, in fact, the additional terms coming from
the Itô-Tanaka-Wentzell trick are at least as smooth as the ones from the Itô-Tanaka
trick. Thus, in this example which can be considered at the interface between the case
where f is deterministic and the case where it is random, our formula recovers the
regularization effect.

Remark 4.3. In the case where Yt = −Wt, we should not expect any regularization
from the brownian motion (as mentioned in the introduction). We observe that, in this
context, DtYs = −1[0,s](t). Thus, we are not able to apply Lemma 4.1 and equation
(4.7) shows that we lose one degree of regularity. Then the Itô-Tanaka-Wentzell trick
does not bring any regularization effect.

The classical Itô-Tanaka trick find several applications as stated in the introduction
including the strong uniqueness of solution to SDEs. These applications will be studied
by the authors in a separated work.
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