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Abstract. In Distributed Adaptive Metaheuristics Selection (DAMS)
methods, each computation node can select, at run-time during the op-
timization process, one metaheuristic to be executed from a portfolio of
available metaheuristics. Within the DAMS framework, we investigate
different metaheuristic selection strategies which enable to choose locally
at each time step a metaheuristic to execute. We conduct a throughout
experimental analysis in order to better understand the accuracy and
the behavior of the proposed strategies, as well as their relative perfor-
mance. In particular, we analyze the impact of sharing metaheuristic
performance information between compute nodes and the relative effect
on each of the considered distributed selection strategies depending on
communication topology. Our experimental analysis is performed on the
simple one Max problem, for which the best metaheuristics that should
be executed at run-time are known, as well as on the more sophisticated
NK-landscapes for which non-linearity can be tuned.

1 Introduction

1.1 Motives

A challenging question accruing in practice when solving an optimization prob-
lem using evolution algorithms or metaheuristics is the choice of the relevant
algorithm, or at least the choice of the parameters of a given algorithm. This
choice should typically be guided by the specific features of the tackled problem,
even if in a black-box context, those features could be hard to extract.

In this context, a technique for algorithm selection consists in selecting the
‘best’ algorithm to solve a given problem. The original framework of algorithm
selection has been proposed by Rice [12]: First some problem features are ex-
tracted. According to those features, one algorithm is selected from a set of
available algorithms. Then the performance of the selected algorithm is mea-
sured on the problem. With the increasing number of available algorithms, and
the number of components that can take part in good algorithms, this framework
has become more and more popular. Instead of developing a new optimization
algorithm, the ”design” of relevant algorithm turns out to the identification of
the most suitable one or the most suitable components (See [10] for a recent
review on algorithm selection).



Similarly, the performance of metaheuristics heavily depends on the correct
choice of their parameters. Indeed, algorithm selection is related to parameter
setting, in the sense that parameters setting can be associated to a specific
algorithm, and vice-versa. Eiben et al. [4] propose to classify parameter setting
methods into two classes. In off-line tuning methods, an algorithm is selected
before applying it effectively. Some tuning methods use performance prediction
methods based on problem features such as in SATzilla [17], and some others are
based on searching in the set of possible algorithm or configurations such as in
racing technics [11]. In on-line control methods, the algorithm is selected during
the optimization process. At each round, an algorithm is selected from a portfolio
of algorithms according to the performance observed in previous rounds. On-line
algorithm selection can be modeled as a (dynamic) multi-armed bandit problem:
each arm is an optimization algorithm, the reward reflects the quality of solutions
produced by the algorithm, and the objective is to select the arms during the
optimization process in order to maximize the quality of the final solution. In this
context, the so-called Adaptive Operator Selection methods aims at selecting
sequentially an operator at each time step. To cite a few, Thierens [14] uses
probability matching and adaptive pursuit technics to perform the selection,
and Fialho et al. [6] propose different selection strategies based on the Upper
Confidence Bounds strategy with dynamics restart techniques. For continuous
optimization, on-line portfolio techniques have also been recently investigated
in [1] using specific reward functions specific to the continuous case.

In this paper, we extend the so-called Distributed Adaptive Metaheuristic
Selection (DAMS) framework [3] by investigating on-line portfolio methods in
a distributed environment. The DAMS framework is basically motivated by the
increasing number of parallel computing facilities (multi-cores, clusters, etc) and
the compute power that can offer when tackling hard optimization problems.
DAMS is also tightly related to Evolutionary Algorithms (EAs) based on the
Island model [15]. parallelize EAs. In such a model, the population is divided into
several subpopulations. Each compute node (an Island) applies an EA on those
subpopulations, and the subpopulations can interact within a migration phase
where solutions can be exchanged. In the context of on-line portfolio methods,
we are interested in a heterogeneous island model where each island applies its
own and possibly different EA. More precisely, the DAMS framework focuses
on setting up adaptive strategies to select at each round a relevant EA which is
applied to the local sub-population in order to maximize the performance of the
whole distributed system. The goal of this paper is to integrate new distributed
adaptive strategies and to study their impact within the DAMS framework. In
the rest of this paper, we first review some works related to DAMS. Then, we
propose a classification of distributed selection strategies into independent and
collective ones according to the information exchange. An experimental analysis
is then provided and the impact of the considered strategies is reported.



1.2 Related work

Two classes of parameters can be controlled in an island model: the parameters
related to the migration policy, and the parameters that define the algorithm at
each node.

Control of the migration policy: Candan et al. [2] propose to control the
migration policy on-line in an heterogeneous island model where each island can
apply its own EA. A parameter pij is used to define the migration rate between
islands i and j. According to the island performance in producing promising
solutions, the rates are updated using a reinforcement learning principle. Fer-
dandez et al. [5] propose a control method of the EA migration policy when the
population is 2d-spatially structured following a 2d-grid. The migration, and
thus the EA matting, is controlled by moving the solutions on the grid either
randomly, or towards a cell surrounded by similar solutions.

Control of the EA parameters: Instead of using the same parameters set-
ting in every island, in a heterogeneous island model, each island applies its own
algorithm. In order to demonstrate the usefulness of such heterogeneous model,
Tanabe et al. [8, 13] show that a collection of random parameters provides bet-
ter performance than a uniform static setting. The study focuses on continuous
optimization and differential evolution algorithms, and also on two classes of
combinatorial problems (QAP, TSP) using a simple genetic algorithm. Follow-
ing similar ideas, Garcia-Valdez et al. [7] showed that for distributed pool-based
EA which is another model of heterogeneous islands, a random set of parameters
used by a simple GA on the P-Peaks problems outperforms a static setting.

However, in a heterogeneous island model, random parameter setting is not
the only possibility. In fact, each EA associated to each island can be controlled
during the optimization process according to state of the search in past iterations.
For instance, Tongchim et al. [16] proposed to select the parameters (cross-over
and mutation) of a simple EA adaptively. Two set of parameters are compared
on the same compute node, and the best setting with the best solution is sent to
other islands. The authors showed that this kind of on-line mechanism improves
over static or random settings.

The DAMS framework [3] proposes to locally select at each round and for
each node a metaheuristic from a portfolio of metaheuristics in order to maximize
the performance of the whole distributed system. For each compute node using a
selection strategy, a metaheuristic is selected not only according to the previous
performance of the node, but also according to the performance observed and
communicated by neighboring nodes. In their paper [3], Derbel et al. propose a
simple but yet effective strategy called Select-Best-and-Mutate. In this paper,
we propose to analyze other alternative selection strategies taking inspiration
from existing multi-arm bandit strategies, but in a distributed (island) model.



2 Adaptive selection strategies for DAMS

We first recall the DAMS framework and the original Select-Best-and-Mutate se-
lection strategy. Alternative independent and collective selection strategies based
on classical multi-arms bandit strategies are then proposed.

2.1 DAMS and Select-and-Best-Mutate strategy

The Distributed Adaptive Metaheuristic Selection (DAMS) framework has been
introduced in [3]. Algo. 1 gives the original algorithm using a generic metaheuris-
tic selection strategy. DAMS is a heterogeneous island-like model algorithm. In
each compute node, a metaheuristic from a portfolio is applied on the local
subpopulation, and the metaheuristic could be different from one node to an-
other. The authors distinguish three basic levels that can be controlled during
one round of a DAMS algorithm: the distributed, the metaheuristic selection
and the atomic levels. At the distributed level, information between neighboring
nodes are shared, migration of solutions is achieved, and the reward of the meta-
heuristic that has been executed on the node is communicated to neighbors, and
vice-versa. At the metaheuristics selection level, one metaheuristic is selected
from the portfolio according to previously collected rewards. At the last level of
the algorithm, called ’the atomic low level’ in the original paper, the selected
metaheuristic is applied and the corresponding reward is computed.

The authors also proposed the so-called Select-Best-and-Mutate (SBM) to
be used at the selection level. SBM strategy is simply based on a metaheuristic
mutation rate pmut. With probability 1 − pmut, SBM selects the metaheuristic
having the best reward in the last round among all neighbors (including the cur-
rent node), and with rate pmut, SBM selects one random metaheuristic from the
portfolio M different from the best one. In others words, SBM has an intensifi-
cation component that selects the best rewarded metaheuristic at the previous
round from the neighboring metaheuristics, and a diversification component that
allows to explore new randomly selected metaheuristic. This strategy is related to
the well-known ε-greedy strategy in multi-armed bandit problem, which selects
the arm with the highest estimated expectation with rate 1 − ε, and uniformly
random arm with rate ε. In SBM, the reward of metaheuristic is the maximum
reward observed in the last round in the node and the neighboring nodes. There
is no long-term memory mechanism which computes an estimated average re-
ward from the previous rounds, and the maximum reward is estimated using the
neighboring nodes.

2.2 Independent vs. collective selection strategies

Similar to the distributed multi-arm bandit problem, in the distributed adap-
tive portfolio methods, the collaboration of the k compute nodes can contribute
to improve the estimation of the quality of metaheuristics, but with an addi-
tional communication cost due to information sharing between nodes. Hence,
a distributed metaheuristic selection strategy has to take care of this classical



Algorithm 1: DAMS algorithm for each computation node

Inputs: A portfolio of metaheuristics M
r ← Init Reward()
M ← Init Meta(M)
P ← Init Pop()
repeat

/∗ Distributed Level:

migration and information sharing ∗/

Send Msg(r,M,P ) to each neighbor
P ← {} ; S ← {}
for each neighbor w do

Receive Msg(r′,M ′, P ′) from w
P ← P ∪ {P ′}
S ← S ∪ {(r′,M ′)}

P ← Update Population(P,P)
/∗ Metaheuristic Selection Strategy Level ∗/

M ← Select Meta(M, (r,M),S)
/∗ Atomic Low Level:

apply metaheuristic and compute reward ∗/

Pnew ← Apply(M,P )
r ← Reward(P, Pnew)
P ← Pnew

until Stopping condition is satisfied ;

trade-offs in distributed systems. Moreover, multi-arm bandit strategies are of-
ten a combination of two parts, one exploitation part which promotes the best
estimated arm, and one exploration part which looks at new random arms. The
exploration part is particularly important when facing a non-stationary problem.
The strategy should be able to explore arms for which the reward could have
changed. Therefore, when several computation nodes collaborate to improve the
metaheuristic quality estimation, the exploitation part could be reinforced too
much forcing the strategy to converge too quickly in a non-stationary scenario.

We distinguish two extreme types of selection strategies according to the in-
formation sharing between nodes. In independent selection strategies, the meta-
heuristic selection depends solely on the reward information produced locally by
the node. In collective selection strategies, the selection takes into account the
reward information communicated by the neighboring nodes. For example, the
SBM strategy is a collective strategy, and a baseline strategy which selects a
metaheuristic uniformly at random is an independent strategy.

2.3 Independent selection strategies

First, we can derive a simple independent selection strategy from the original
SBM strategy. In fact, instead of selecting the best rewarded metaheuristic from
neighboring nodes, we can select the best rewarded metaheuristic in the last W
rounds and executed locally by a node – no reward information from neighbors is



used. Accordingly, the original collective SBM strategy will be denoted as SBMc,
and the newly designed independent SBM by SBMi. Notice that SBMi comes
with two parameters, the original mutation rate pmut, and the windows size W .

The so-called Adaptive Pursuit (AP) belongs to the class of probability
matching algorithms. AP is a classical adaptive selection strategy used in opti-
mization [14], and can be used as an independent selection strategy. In adaptive
pursuit algorithm, a metaheuristic i is applied at time step t in proportion to
a probability pi,t, and those probabilities are updated according to the rewards
of metaheuristics. This technique is then divided into three parts: the update
of the reward estimation q̂i,t of the metaheuristics, the update of the proba-
bilities pi,t, and the selection of the metaheuristic. Eq. 1 defines the update of
estimated reward of the metaheuristic i. Variable ri,t is the reward at round t of
the metaheuristic i, and parameter α ∈ (0, 1] is the adaptation rate.

q̂i,t+1 = q̂i,t + α . (ri,t − q̂i,t) (1)

The update of the probabilities pi,t is given by Eq. 2 where i∗t denotes the
metaheuristic with the best q̂i,t:

pi,t+1 =

{
pi,t + β . (pmax − pi,t), if i = i∗t
pi,t + β . (pmin − pi,t), otherwise.

(2)

For the best estimated metaheuristic, the probability converges to pmax with
the learning rate β, for the other metaheuristics, the probability converges to
pmin. At round t, the AP selects the metaheuristic at random in proportion of
probability pi,t. This independent strategy is denoted by APi.

Several Upper Confidence Bound (UCB) algorithms are used in the context
of adaptive metaheuristic selection (see [6] for a review). Let ni,t denotes the
number of times the ith metaheuristic is applied up to round t, and let q̂i,t
denotes the average empirical reward of metaheuristic i. At each round t, UCB
selects the metaheuristic that maximizes the following quantity:

q̂i,t + C .

√
2 log(

∑
j nj,t)

ni,t

Parameters C enable to control the exploitation / exploration trade-off. This
independent selection strategy is denoted by UCBi.

The UCB strategy is an optimal strategy for stationary problems with inde-
pendent arms which is actually not the case metaheuristics control. The average
empirical reward could be far from the current new reward. To overcome this
drawback, the average empirical reward can be computed over a slicing windows
by considering the last W rounds. This variant is denoted by UCB-Wi.

Finally, a dynamic version of UCB is introduced in [6] and uses the Page-
Hinkley test to detect whether the empirical rewards collected for the best meta-
heuristic have changed significantly. For more details, the reader is referred to
page 6 in [6]. This selection strategy will be denoted by UCBP-PHi, and it
requires two parameters: a restart threshold γ and a robustness threshold δ.



2.4 Collective selection strategies

Each of the above-mentioned independent selection strategies can be used to de-
fine a collective selection strategy that takes into account the reward information
exchanged with neighboring nodes. In collective SBM which is the original one,
the best rewarded metaheuristic is selected from the set of neighboring nodes. In
collective AP, the rewards of all neighbors are iteratively used to update the es-
timation of reward q̂i. Notice that the order of the update could have an impact
on the estimation. So, at the initialization phase, a pre-established order be-
tween neighboring nodes is randomly chosen. Then, after the updates of reward
q̂i, the probability pi is updated once for all neighbors. In the collective versions
of UCB strategies, the empirical average r̂i is also updated using the rewards of
neighboring nodes. The numbers of times ni,t that each metaheuristic is applied
is also update according to the information given by each nodes. Notice that in
that case, the order of the update does not matter. The selected metaheuristic
is the metaheuristic selected after taking into account all neighbors information.
Those collective strategies versions are denoted respectively SBMc, APc, UCBc,
UCB-Wc, UCB-PHc.

3 Experimental Analysis

3.1 Experimental Setup

Following previous works [16, 3, 6, 2] on adaptive portfolio selection, we also use
the well known one-Max problem, which counts the number of 1 in a bit string.
In a similar scenario, we use a portfolio of four (1 + λ)-ES: from one parent
solution, the algorithm produces λ solutions according to a stochastic operator
and selects the best one for the next iteration. Four operators are used: three
operators respectively flip exactly 1, 3 and 5 bits, and the last one uniformly
flips each bit with rate 1/N where N is the bit strings size set to N = 1000.

We use an elitism migration mechanism. Each node (island) sends their cur-
rent solution to their neighboring nodes. Then, each node receives all solutions
from the neighboring nodes. The best solution from the set containing the re-
ceived solutions and the current solution of the node replace the current solu-
tion of the each node. The DAMS algorithm stops when the global maximum is
found by one node of the distributed system, when the number of rounds exceeds
Tlimit = 5.104. 200 runs are computed for each possible strategy and topology.
The performance of algorithms is measured either with the number of rounds to
reach the global maximum, either using the expected running time (ERT). ERT
is expected running time to reach a level fitness of the algorithm with simulated
restart. It is equal to Es[T ] + (1− p̂s)/p̂s.Tlimit where p̂s the estimated success
rate, and Es[T ] is the average number of rounds when the fitness level is reached.

We study four topologies of network: the complete topology where each node
is connected to all others nodes, a random topology where there is an edge
between two nodes with probability p = 0.1, the grid topology which is a two-
dimensional regular square grid where each node is connected to the four nearest



neighbors, and the circle topology where the nodes are connected to two others
nodes to form a circle. The size of the networks is n ∈ {4, 16, 32, 64}. In order to
have the same number of fitness evaluations in one round whatever the network
size n, the λ parameter is set to 64/n.

A couple of parameters are used in the different selection strategies. For the
SBM strategies, the value of metaheuristic mutation rates are pmut ∈ {0.001,
0.002, 0.01, 0.1}. The window size of the SBMi is set to 5. For AP, the extreme
values are set to pmin = 0.1 and pmax = 1. The adaptive and the learning
rates are α ∈ {0.1, 0.25, 0.5, 0.75, 1} and β ∈ {0.1, 0.25, 0.5, 0.75, 1}. For all the
UCB strategies, the parameter C values are {0.1, 0.5, 5, 25, 100}. For the variant
UCB-W, the set of windows sizes is {10, 100, 1000}. Following [6], the param-
eters of Page-Hinkley test are to δ = 0.15, the restart thresholds γ are from
{0.5, 0.75, 1, 2, 5, 10}. Moreover, 2 baseline strategies are used: the random one
(rnd.) select at random at each round a metaheuristic, and the constant one
(cst.) always select the same metaheuristic which is randomly chosen at the
beginning.

3.2 Computational Results

One-Max Overall Performance. From a purely distributed perspective, the
first interesting measure is the number of rounds it takes for an algorithm to find
the global maximum. The number of rounds provides an idea about the degree of
parallelism in an ideal scenario where the communication cost is assumed to be
negligible compared to the cost of function evaluation. The relative performance
of the different strategies is summarized in Table 1. The best performing pa-
rameters are set for each strategies. Several observations can be extracted from
Table 1. First, the performance of the different strategies are consistent with the
considered configurations in the sense that they can overall be ranked similarly
independently of the topology type or graph size. More importantly, we remark
that the impact of exchanging rewards information between node has a strong
impact on performance. Interestingly, this impact is positive in the case of SBM
and AP, whereas it is not when considering UCB. In fact, SBMc appears to
overall outperform all the other strategies and APc appears to performing best
when both considering the circle, grid and random topologies with large number
of nodes. In contrast, the performance of the four implemented versions of UCB
is deteriorating systematically as the information from neighbors is incorporated.
We attribute this to the fact that this information is actually pushing the UCB
strategy to diversify more the search as soon as some operators (even with a
good rewards) has been used by other neighboring nodes. UCB is less effective
than random selection. The C-value which tunes the exploration-exploitation
tradeoff has no impact on this result. Indeed, we have performed an extended
sensitive analysis of parameter C (not presented here to save space) which does
not changed this result. This also suggests that the UCB strategy has to be
completely rethought in order to infer accurate exploration-exploitation tradeoff
in the dynamic distributed setting. Notice however, that independent UCB-HPi
is still able to provide very competitive results compared to SBMc and APc.



Table 1. For each topology and graph size, number of selection strategies which sta-
tistically outperforms (according to the Wilcoxon test at confidence level p = 0.05) a
given strategy method for the one-Max problem with N = 1000. The 0 value is the
best one: no other strategy significantly outperforms the considered one.

Topo. Size cst. rand. SBMi SBMc APi APc
UCB

UCBi UCBc HPi HPc Wi Wc

circle 4 8 4 1 0 7 7 10 11 2 3 3 3

circle 16 4 6 3 0 4 0 10 11 1 6 6 6

circle 32 4 6 3 1 4 0 10 11 2 6 6 9

circle 64 4 6 3 2 4 0 10 11 1 6 6 9

grid 4 8 4 1 0 4 9 10 11 2 4 3 3

grid 16 4 5 2 0 4 0 10 11 1 4 6 4

grid 32 4 5 3 1 4 0 10 11 1 4 4 6

grid 64 4 6 3 1 4 0 10 11 1 6 6 9

rnd. 4 7 3 0 0 5 7 10 11 0 3 3 3

rnd. 16 4 4 1 0 4 3 10 11 1 4 4 5

rnd. 32 4 4 3 1 4 0 10 11 2 4 4 9

rnd. 64 4 4 3 1 4 0 10 11 1 4 4 9

compl. 4 7 3 1 0 7 7 10 10 2 3 3 3

compl. 16 6 3 1 0 5 6 11 10 1 4 3 9

compl. 32 3 3 2 0 3 8 11 10 1 3 3 9

compl. 64 3 3 2 0 3 3 11 10 1 3 7 9

Average 4.875 4.312 2 0.4375 4.375 3.125 10.187 10.75 1.25 4.187 4.437 6.562

Sensitivity to parameters. In the previous discussion, we were focused on
the overall behavior of the different strategies for a fixed parameter setup. In
fact, one may wonder what is the impact is of the parameters used for every
strategy. This is illustrated in Fig. 1 where we give representative examples on
the sensitivity of SBM, AP and UCB-HP to different parameter settings both in
the case of an independent and a collective strategy. We can appreciate that SBM
is rather stable under different configurations although for the collective variant,
the impact of the mutation rate is slightly more pronounced (a small values
is advised). The same thing holds for the AP strategy where the algorithm is
robust to a wide range of values of α and β, with he exception of the adaption rate
α = 1 which is to be avoided since it promotes strong convergence in the reward
estimation. For the UCB-HP strategy, the value of C, which appears in the
confidence bound, plays an important role but only in the independent strategy.
For the collective strategy, where the information from neighbors is actually
deteriorating performance, the C-value does not seem to have any impact and
cannot help obtaining improved results.
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Fig. 1. Average number of rounds to find the maximum of the one-Max problem as
function of the parameter values of different selection strategies. From left to right:
SBM, AP, UCP-HP strategies ; top: independent selection, bottom collective selection.

Parallelism. In the previous discussions, we were only interested in analyzing
the relative behavior of the strategies for a fixed topology. In particular, the
results of Table 1 do not allow us to appreciate the relative impact of different
topologies on the performance of each strategy. For this purpose, we show in
Fig. 2 the relative performance of SBM and AP in different configurations. It is
important to recall that the number of function evaluations at every single round
and for all the considered configurations is the same which means that the num-
ber of function evaluations needed overall in any of the considered configuration
is by the same multiplicative factor similar to the number of rounds depicted
in Fig. 2. This observation has an important impact, since then, we are able to
obtain different trade-offs when considering the number of exchanged messages
as an important indicator of parallel speed-ups that one could obtain when effec-
tively deploying our strategies in a real distributed setting. In fact, the number
of messages needed to exchange information is exactly the number of rounds
times the number of edges used in the considered topology. In the case of the
complete (resp, circle, grid, random) topology, the number of edges is n(n−1)/2
(resp. n − 1, O(n), O(p.n2)) where n is the number of nodes. From Fig. 2, we
can notice that the number of rounds stays stable for the complete and random
topology (except for 4 nodes) with the complete topology being slightly bet-
ter. However the number of rounds increases sharply for the circle and the grid
which we attribute to the increase of the topology diameter. Roughly speaking,
although the increase in the number of rounds for the circle and the grid is at
most by a factor of 2, the number of needed messages stays linear in the number
of nodes. This is to contrast with the complete topology where the increase in
the number of messages is polynomial. Hence, in a practical setting where the
cost of message-passing is non-negligible, we claim that the best choice would
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Fig. 2. Average number of rounds to find the maximum (one-Max problem) according
to the topology and the number of nodes. From left to right and top to bottom: SBMi,
SBMc, APi, and APc strategies.

be the random topology which exhibits the most appealing tradeoffs in terms of
the number of rounds v.s. the number of messages exchanged overall.

NK-landscapes In this paper, we also consider a more sophisticated class of
problems captured by the so-called NK-landscapes. The family of NK-landscapes
constitutes a model of multimodal problems [9]. The search space is binary
strings of size N : {0, 1}N . N refers to the problem size, and K to the number
of bits that influence a particular position from the bit-string, i.e. the epistatic
interactions. The objective function f : {0, 1}N → [0, 1) to be maximized is
defined as follows.

f(x) =
1

N

N∑
i=1

fi(xi, xi1 , . . . , xiK )

where fi : {0, 1}K+1 → [0, 1) defines the component function associated with
each bit xi. By increasing the number of epistatic interactions K from 0 to (N −
1), NK-landscapes can be gradually tuned from smooth to rugged. In this work,
we set the position of these interactions at random. Component values are uni-
formly distributed in the range [0, 1).

Our interest in the NK-landscapes stems from the fact that usually different
bit-flip mutation rates are believed to provide different performances. To illus-
trate this claim, we show in Fig. 3, the empirical probability that a solution with
the fitness given by the x-axis is be improved if a uniform bit-flip operator with
rate c/N is applied, where c varies in the range {1, 2, 4, 8, 16}. We can clearly see
that the operator which is likely to provide an improvement depends strongly
of the attained fitness level. Hence, this kind of landscapes appears to be par-
ticularly interested to be studied within the DAMS framework. Accordingly, we



Table 2. Rank of the different strategies according to the topology and the number of
computation nodes for NK-landscapes with N = 1000 and K = 1, 4, 8.

Topo. Size unif. cst. rand. SBMi SBMc APi APc
UCB

UCBi UCBc HPi HPc Wi Wc

K = 1

compl. 16 0 9 6 3 7 12 2 1 10 4 5 8 11

compl. 64 0 10 7 6 1 4 9 12 3 2 5 11 8

circle 16 0 2 11 3 5 1 10 8 7 6 4 12 9

circle 64 0 7 8 2 1 6 4 12 9 3 10 11 5

average 0 7 8 3.5 3.5 5.75 6.25 8.25 7.25 3.75 6 10.5 8.5

K = 4

compl. 16 0 6 12 9 1 11 3 2 4 8 10 5 7

compl. 64 0 6 3 8 5 11 12 1 4 10 2 7 9

circle 16 1 11 12 8 4 5 6 3 7 0 2 10 9

circle 64 0 10 9 11 6 7 12 5 4 3 2 1 8

average 0.25 8.25 9 9 4 8.5 8.25 2.75 4.75 5.25 4 5.75 8.25

K = 8

compl. 16 1 3 9 0 11 7 6 2 10 4 8 5 12

compl. 64 0 12 4 10 3 6 9 11 2 5 8 1 7

circle 16 7 0 4 5 6 12 3 9 10 2 1 8 11

circle 64 0 2 12 3 11 8 9 5 10 7 1 4 6

average 2 4.25 7.25 4.5 7.75 8.25 6.75 6.75 8 4.5 4.5 4.5 9

perform the same experiments while considering different NK-landscapes with
N = 1000 and K ∈ {1, 4, 8}. The portfolio of metaheuristics is composed by
five (1 + λ)-ES based on the uniform bit-flip rate c/N with rates c = 1, 2, 4, 8,
and 16. We tune the parameters according to the results the one-Max problem:
pnut = 0.01 for SMB, α = 0.5 and β = 0.5 for AP, and C = 25 for UCB strate-
gies. Interestingly, we find that no significant differences can be reported between
any of the considered selection strategies when looking at the final fitness value
(this is nor reported due to space limitations). However, we are able to report
different behavior when examining the empirical expected running time (ERT)
to attain the median fitness value (computed over all configurations).

The ERT results are summarized in Table 2. In addition to adaptive selection
strategy, we also tested a uniform and static strategy, denoted unif in the table,
where every nodes share the same metaheuristic all along the execution. In the
table, we choose to present the performance of the best uniform-static strategy
which is not the same according to the topology and the number of nodes.
Perhaps, the most interesting observation is than the uniform-static strategy
is the best performing and none of the considered DAMS variants is able to
outperform it. This might be surprising at first sight, but not if we account for the
time required to learn the best metaheuristic to apply. In fact, when examining
carefully Fig. 3 in light of the information given by the empirical improvement
probability, we can see that the fitness level is increasing very abruptly for NK-



landscapes in the early stages of the search. Hence, the different fitness windows
where one has to choose the best operator are very tight which is to contrast with
the time it may need for a strategy to detect which operator is actually the best
to apply. As a consequence, even though the fixed operator used by a uniform
static strategy is not optimal in all the stages of the execution, it still does not
loose time in learning by testing less efficient operators. It worth-noticing that the
previous experiments raise the question of whether we really need to adapt the
search heuristics at runtime and does it really serve in practice? We argue that
the answer to this question is definitively yes. In fact, the general lessons that we
can learn from our experiments with the NK-landscapes can be formulated as
following. First, in a black-box scenario, the time during which a metaheuristic is
the best one depends strongly on the landscape. Hence, learning this landscape
at runtime is for sure a plausible alternative. Second, we need to study more
carefully the cost of the learning stage of selection strategy in function of the
considered landscape, and to design novel alternative adaptive strategy that
would be able to minimize the learning cost at the aim of improving efficiency.
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Fig. 3. Empirical improvement probabilities vs. fitness level (left). Fitness vs. rounds in
log-scale. Center: uniform-static, right: different strategies. NK-landscapes with K = 4.

4 Conclusion

In this paper, we investigate new adaptive strategies for distributed metaheuris-
tic selection. Accordingly, we explored the applicability of adaptive pursuit and
upper bound confidence based algorithms in the distributed setting where sev-
eral heterogeneous islands have to cooperate in order to select the most accurate
metaheuristic dynamically at runtime. In particular, we consider the possibil-
ity of incorporating the distributed information coming from the neighboring
islands and study its impact on the search behavior by considering independent
and collective schemes. We conduct a throughout experimental study in order
to better understand the major ingredients toward making such schemes suc-
cessful. We find that special care must be taken when attempting to use the
rewards observed distributively at different islands in order to obtain accurate



exploration-exploitation trade-offs. Besides, our study keeps open several ques-
tions that deserve further investigation in the future. For instance, we could
analyze the selection strategies on others benchmarks such as knapsack or graph
coloring problems. It would also be interesting to study the gain one can achieve
by the proposed strategies when effectively deployed in a real distributed test-
bed. In such a setting, the communication cost is very likely to introduce new
challenges; but the increasing power offered by modern computation systems is
worth to be investigated in order to derive highly efficient adaptive strategies.
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