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Abstract

We propose a new approach to the automated verification of the
correctness of programs handling arrays. An abstract interpreter sup-
plies auxiliary numeric invariants to an interpolation-based refinement
procedure suited to array programs. Experiments show that this com-
bination approach, implemented in an enhanced version of the Booster
software model-checker, performs better than the pure interpolation-
based approach, at no additional cost.

1 Introduction

Our goal is to automatically prove the correctness of programs handling
arrays; that is, to show that they always compute what they are supposed
to, as opposed to merely testing them on a limited set of samples. This is
a difficult challenge, if only because this problem is undecidable in general:
our hope is thus to succeed in practice, on industrially-relevant cases.

In order to prove that a program handling arrays (especially those of
dynamic length) is safe with respect to a list of assertions, i.e., cannot exhibit
executions violating any of them, one has to generate quantified properties
that are both (i) maintained inductively by the program and (ii) strong
enough to entail the validity of the assertions of the program. As an example,
consider the following procedure, from [16]:

void D10 ( ) {
i n t i = 1 ; i n t j = 0 ;
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while ( i < s i z e ) {
a [ j ] = b [ i ] ; i = i +2; j = j +1 ;

}
i = 1 ; j = 0 ;
while ( i < s i z e ) {

a s s e r t ( a [ j ] == b [2∗ j +1 ] ) ; i = i +2; j = j +1 ;
}

}

To prove the safety of D10 one has to come up with the following invari-
ant1

∀x, y.
(

0 ≤ x ∧ y = 2x+ 1 ∧
2j = i− 1 ∧ 2x+ 1 ≤ 2j

)
→ a[x] = b[y] (1)

which holds at the head of the loop by induction on the number of loop
iterations.

The approach presented here can infer invariants like (1) completely au-
tomatically, and can successfully verify many programs with arrays that are
still out of reach for state-of-the-art software model-checkers (e.g., [17, 19,
14, 7, 11, 16]).

Inferring invariants such as (1) automatically is challenging. An ap-
proach aimed at producing such invariants has to address several sub-problems:
(i) deducing general inductive properties of the program (like 2j = i − 1),
(ii) establishing the number of quantified variables required to express the
program invariant (here, x and y), (iii) finding the relation between the
quantified variables and the program variables (e.g., 2x+ 1 ≤ 2j), (iv) and
establishing useful properties of the array contents by using appropriate
variables as indexes.

1.1 Contribution

The contribution of this paper is a new approach for the completely au-
tomatic inference of complex quantified invariants for programs operating
over arrays. Our approach splits the generation of a quantified invariant in
two sub-tasks: (i) generating property-independent inductive invariants (ii)
refining them to property-dependent safe inductive invariants, i.e., strong
enough to prove the safety of the given system. This idea arose from the
observation that some atomic formulas of (1), such as 2j = i−1, are general
inductive facts of the program, not depending on the assertions we want
to prove; other facts, instead, do depend on the property, meaning that
they are required specifically to prove the safety of this particular assertion
(e.g. quantified invariants are needed because the assertion is a universal
property over the array contents). In light of this, we can use an abstract
interpreter, working with a suitable abstract domain, e.g., convex polyhe-
dra [15, 8], to infer the “general purpose” inductive facts for the program,

1http://rise4fun.com/Boogie/GG2.
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and then generate the remaining facts using refinement procedures based
on Craig interpolation, tailored to the inference of quantified invariants for
programs with arrays, e.g., [5].

Our approach combines the strengths of abstract interpretation and
interpolation-based refinement. Indeed, interpolation is great at proving
array properties, but often fails to establish necessary auxiliary arithmetic
constraints, such as 2j = i − 1, y = 2x + 1 and 2x + 1 ≤ 2j. For instance,
instead of coming up with 2j = i− 1, which would help establish the safety
of the program after any number of iterations, they may successively come
up with i = 1 ∧ j = 0, then i = 3 ∧ j = 1, then i = 5 ∧ j = 2 . . . , refut-
ing the existence of counterexample traces of increasing length. This causes
the enumeration of all possible unwindings of program loops and, by con-
sequence, the divergence of the model-checker (unless the loops have small
maximal trip counts). In contrast, abstract interpretation easily establishes
such inductive arithmetic facts, but lifting abstract interpretation to array
properties is nontrivial [21, 22, 14, 20].

Architecture-wise, our solution pipelines an abstract interpreter into soft-
ware model checker based on the Lazy Abstraction with Interpolants (lawi)
framework. We will prove (Section 3) that this combination is sound. In
addition, in order to be successful, our approach also applies Flatten-
ing and TermAbstraction phases for better generalization of the inter-
polants within the lawi framework. Flattening is a preprocessing tech-
nique known in software model-checking frameworks for array programs (see,
e.g., [5]), used to transform the declarative encoding of a program into a
format particularly suitable for inferring quantified invariants. TermAb-
straction is a heuristic meant to nudge interpolating procedures towards
the inference of “good” interpolants, with the overall effect of improving
the model-checker performance. In our setting, Flattening plays a cen-
tral role in connecting the abstract interpreter with the interpolation-based
refinement procedure: we will show (Section 4) that interpolating proce-
dures, once enhanced with the TermAbstraction heuristic, can success-
fully leverage the lemmas inferred by the abstract interpreter thanks to the
Flattening-based preprocessing.

We implemented our framework on the top of the Booster software
model-checker [2]. Experiments discussed in Section 5 show clearly that on
the one hand, our solution allows verifying programs that were previously
out of the capabilities of this tool and, on the other hand, it does not affect
negatively the performances of the tool on those examples that could already
be verified, improving the solving time for many of them.

1.2 Related Work

Combining different techniques for enabling the efficient analysis of complex
inputs is a common practice in software verification (see, e.g., [1, 23, 2]). Our

3



work was inspired by [1], presenting an efficient combination of Abstract
Interpretation with interpolation-based refinement procedures, limited to
the quantifier-free case, though, while our approach works at a quantified
level.

Our approach is completely automatic: this mainly differentiates it from
semi-automatic approaches, where usually the predicates are suggested by
the user, such as [18]. Our approach is not constrained to the inference
of invariants of a given shape, in contrast with the approach of [25]. We
can handle program with any control-flow structure, as opposed to [17],
and we exploit SMT-based interpolating procedures for the refinement of
inductive invariant: this differentiates our work from those exploiting first-
order theorem provers [24]. In contrast to [19], our approach is not based
on machine-learning.

Inference of array-programs properties can be performed as well by
adopting an abstract domain segmenting the array, syntactically [20, 22]
or semantically [14], and assigning to each segment an abstract value. Such
approaches may be very efficient in terms of computation time and mem-
ory usage, but may produce false alarms due to the over-approximations
involved: (i) the invariants are constrained by the abstract domain (e.g.
if the domain is intervals, only interval properties may be expressed) and
the segmentation in use; in contrast, our approach has more flexibility (our
domain is a large class of first-order formulas); (ii) in addition to the over-
approximation introduced by the abstraction, further over-approximation is
generally needed to enforce termination of the analysis, through widening
operators.

2 Preliminaries

We use lower-case Latin letters x, i, c, d, e, . . . for variables; for tuples of
variables we use bold face letters like x, i, c,d, e . . . . |x| is the length of the
tuple x. Given a variable v, v′ is a copy of v with a prime, v(n) is a copy of
v with n primes, v′ = {v′ | v ∈ v} and v(n) = {v(n) | v ∈ v} for any tuple
of variables v.

With E(x) we denote that the syntactic expression (term, formula, tuple
of terms or of formulæ) E contains at most the free variables taken from the
tuple x. We use lower-case Greek letters φ, ϕ, ψ, . . . for formulæ. E(y/x)
is the expression E where the free occurrences of x have been substituted
by y. The notation φ(t) identifies a quantifier-free formula φ obtained from
φ(x) by substituting the tuple of variables x with the tuple of terms t.

As in the SMT-LIB standard [9], a theory T is a pair (Σ, C), where Σ is
a signature and C is a class of Σ-structures; the structures in C are called the
models of T . A Σ-formula α is T -satisfiable if there exists a Σ-structureM
in C such that α is true inM under a suitable assignment to the free variables
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of α (in symbols, M |= α); it is T -valid (in symbols, T |= α) if its negation
is T -unsatisfiable. ψ1 T -entails ψ2 (in symbols, ψ1 |=T ψ2) iff ψ1 → ψ2 is T -
valid. The satisfiability modulo the theory T (SMT (T )) problem amounts
to establishing the T -satisfiability of quantifier-free Σ-formulæ.

In this paper the theory of arrays plays a central role, given the desired
applications of our approach. We will work mainly with arrays of integers.
and denote with AZ the theory of Presburger arithmetic with the addition
of free function symbols (the free function symbols will represent the array
variables of the analyzed programs).

3 Safe Transition Systems

We assume programs are represented as transition systems, i.e., triples ST =
(v, linit, T ) where v is the tuple of variables handled by the program with the
addition of a fresh variable pc taking values over the set of program locations
L = {l1, . . . , ln}, among which we distinguish an ‘initial’ location linit and an
‘error’ location lerror. T is a set of relations {τ1(v,v′), . . . , τn(v,v′)} encoding
the program body, and T is a first order theory fixing the semantics of
programs operations encoded into the τ ’s. By abuse of notation,

T (v,v′) :=
∨
τ∈T

τ(v,v′)

For each τj ∈ T we identify two locations called the ‘source’ location src(τj)
and the ‘target’ location trg(τj). For each τj it holds that τj |= pc = src(τj)
and τj |= pc′ = trg(τj). For all τj ∈ T, src(τj) 6= lerror and there exists at
least one transition τi ∈ T such that src(τi) = linit.

Example 3.1. The D10 procedure given in the introduction is represented
by the transition system SAZ = (v, linit, T ) with v = (pc, i, j, a, b). pc takes
values over the set L = {linit, l1, l2, l3, lerror}. T comprises the following rela-
tions2:

τ1 := pc = linit ∧ i′ = 1 ∧ j′ = 0 ∧ pc′ = l1

τ2 :=

(
pc = l1 ∧ i < size ∧ a[j] = b[2j + 1] ∧
a′ = store(a, j, b[i]) ∧ i′ = i+ 2 ∧ j′ = j + 1

)
τ3 := pc = l1 ∧ i ≥ size ∧ i′ = 1 ∧ j′ = 0 ∧ pc′ = l2

τ4 := pc = l2 ∧ i < size ∧ a[j] = b[2j + 1] ∧ i′ = i+ 2 ∧ j′ = j + 1

τ5 := pc = l2 ∧ i ≥ size ∧ pc′ = l3

τ6 := pc = l2 ∧ i < size ∧ a[j] 6= b[2j + 1] ∧ pc′ = lerror

Our goal is to check if a given transition system ST is safe with respect
to its error location lerror. Formally we have the following definition:

2For every τj , we assume v′ = v for any v′ ∈ v′ not appearing in τj .

5



Definition 3.1 (Safety). A transition system ST = (v, linit, T ) is safe iff
the following formula

pc(0) = linit ∧
n∧
i=0

T (v(i),v(i+1)) ∧ pc(n+1) = lerror (2)

is T -unsatisfiable for any n ≥ 1.

It is well-known (see, e.g., [26]) that one can show (2) to be unsatisfiable
by providing a safe inductive invariant for ST :

Definition 3.2 (Invariants). A safe inductive invariant for S is a formula
H(v) such that

(i) T |= ∀v.pc = linit → H(v)

(ii) T |= ∀v,v′.H(v) ∧ T (v,v′)→ H(v′)

(iii) T |= ∀v.H(v)→ pc 6= lerror

(3)

If H(v) satisfies only (i) and (ii), it is said to be an inductive invariant (but
not safe).

In our approach, as discussed in the next Section, an Abstract Interpreter
infers inductive invariants (which, by themselves, do not prove the safety of
the system), which are then “suggested” to a lawi framework, in order to
limit its divergence. This “suggestion” phase can be formalized with the
notion of constrained transition system.

Definition 3.3 (Constrained transition system). Let ST = (v, linit, T ) be a
transition system and K(v) an invariant for ST . The constrained transition

system SK(v)
T is defined as (v, linit, T

′) where T ′ = {K(v)∧τj(v,v′) | τj(v,v′) ∈
T}.

The transformation is sound, from a safety point of view, as shown by
the following result.

Theorem 3.1. ST is safe iff SK(v)
T is safe.

4 Generating better interpolants

The Lazy Abstraction with Interpolants (lawi) framework resembles CounterExample-
Guided Abstraction Refinement (cegar) [12]. Given ST it generates an ab-
stract system ŜT in such a way that the set of possible executions of ST is a
sub-set of those of ŜT ; the converse does not hold. Thus, any property that
holds for the executions of ŜT also holds for those of ST . If there exists an
execution π̂ of ŜT not satisfying the property, we cannot conclude that there

6



exists an execution of ST violating the property. In this case, the framework
generates a formula φπ of the kind

pc(0) = linit ∧

[
n∧
i=0

τi(v
(i),v(i+1))

]
∧ pc(n+1) = lerror (4)

with τi ∈ T , that is T -satisfiable only if ST admits π as a counterexam-
ple. If φπ is T -unsatisfiable, a set of interpolants are computed to refine
the abstraction level of ŜT and exclude π̂ from the set of its admitted coun-
terexamples. Such interpolants are a sequence of formulæ {I0(v), . . . , In(v)}
satisfying the following constraints [28]: (i) I0(v) ≡ >, (ii) In(v) ≡ ⊥, (iii)
for all 1 ≤ i ≤ n, Ii−1(v) ∧ τi(v,v′) |=T Ii(v′) and (iv) all the free variables
of Ii, for all 1 ≤ i < n occur both in τi and τi+1. Interpolating procedures
usually exploit the proof of unsatisfiability of the (4) in order to generate
the sequence {I0(v), . . . , In(v)}. By transforming a transition system ST
into a constrained transition system SK(v)

T , the (4) becomes

pc(0) = linit ∧

[
n∧

i=0

K(v(i)) ∧ τi(v(i),v(i+1))

]
∧ pc(n+1) = lerror (5)

The main issue is that interpolating procedures tend to ignore the presence
of K(v) in (5). This section describes how it is possible to “force” them to
exploit this additional information to generate better interpolants. We will
first briefly introduce the Flattening and TermAbstraction techniques.
We will subsequently show that the additional information contained in
K(v) can lead, by adopting such two techniques, to the generation of better
interpolants.

4.1 Flattening and Term Abstraction

Flattening and TermAbstraction are two techniques required in lawi
approaches dealing with programs with arrays, as shown in [5]. Flattening
is based on the rewriting rule φ(a[t], ...) ∃x(x = t∧φ(a[x], ...)), for a fresh
x. Given a transition system ST , Flattening returns an equivalent copy
of ST where every array variable is indexed only by existentially quantified
variables. This preprocessing operation gives the opportunity of computing
quantified invariants by exploiting quantifier-free interpolants. The idea is
that the procedure in charge of checking the T -satisfiability of a formula
like (4) or (5) pre-processes the counterexample formulæ by Skolemizing
the existentially quantified variables introduced by Flattening and then
instantiating the implicit universally quantified variables contained in the
array store symbols, since E(. . . , store(a, i, e), . . . ) ≡ E(. . . , a′, . . . )∧a′[i] =
e ∧ ∀x.(x 6= i → a′[x] = a[x]) for a fresh a′, and atoms like a = b for a, b
array variables, because a = b ≡ ∀x.a[x] = b[x], for a fresh x. Any Skolem
constant contained in the interpolants will act as an “implicitly quantified”
variable3.

3The interested reader can refer to [5] for further information about this framework.
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As discussed in the introduction, the performance of a lawi-based frame-
work strongly depends on the quality of the computed interpolants. Ter-
mAbstraction addresses this problem. It takes in input the two incon-
sistent formulæ A,B for which one wants to compute an interpolant I and
iteratively try to remove a list of terms λ = 〈t1, . . . , tn〉 from the shared
language of A and B. Terms in λ are guilty of keeping the interpolants too
precise. TermAbstraction iteratively checks whether A(ci/ti) ∧B(di/ti)
is inconsistent, for term ti and fresh constants ci, di. At the end, A and
B will be free from some terms of λ and the interpolant will be likely free
from such terms as well. The intuition behind TermAbstraction is that
if a formula remains unsatisfiable even though some terms are replaced with
new unknowns, then the resulting interpolants will be less specific, since
they will not exploit the particulars of these terms. Notably, Booster
(the software model-checker over which we implemented our new invariant
generation technique) does not require any user interaction for generating
suitable term abstraction lists, as explained in [2].

Example 4.1. lawi frameworks usually carries out the verification of a
program by representing precisely the control-flow structure and abstract-
ing away the data-flow information (see, e.g., [28]). Let’s consider the coun-
terexample τ1, τ3, τ6, which is the one raised by the execution of safari [6]
on the transition system discussed in the Example 3.1. This counterexample
is represented by the conjunction of the formulæ4

(τ6) i(1) < size ∧ a(1)[j] 6= b(1)[2j + 1]

(τ3) i(2) ≥ size ∧ i(1) = 1 ∧ j(1) = 0 ∧ id(a, b, 2)

(τ1) i(2) = 1 ∧ j(2) = 0

A state-of-the-art interpolating prover, like iZ3 [27], returns this set of
interpolants5 for such a formula:

I0 := > I1 := i(1) < size

I2 := i(2) 6= 1 I3 := ⊥

The transition system returned by Flattening is

τ1 := pc = linit ∧ i′ = 1 ∧ j′ = 0 ∧ pc′ = l1

τ2 := ∃x.

(
pc = l1 ∧ x = i ∧ i < size ∧ 2j + 1 = i ∧ i ≥ 1 ∧
a′ = store(a, j, b[x]) ∧ i′ = x+ 2 ∧ j′ = j + 1

)
τ3 := pc = l1 ∧ i ≥ size ∧ 2j + 1 = i ∧ i ≥ 1 ∧ i′ = 1 ∧ j′ = 0 ∧ pc′ = l2

τ4 := ∃x, y.

 pc = l2 ∧ x = j ∧ y = 2x+ 1 ∧
a[x] = b[y] ∧ 2j + 1 = i ∧ i < size ∧
i ≥ 1 ∧ i′ = i+ 2 ∧ j′ = j + 1


4For readability we omitted the pc variable etc. Also, id(t1, . . . , tn; k) for t

(k)
1 = t

(k−1)
1 ∧

. . . ∧ t(k)n = t
(k−1)
n .

5http://rise4fun.com/iZ3/ukd
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τ5 := pc = l2 ∧ i ≥ size ∧ 2j + 1 = i ∧ i ≥ 1 ∧ pc′ = l3

τ6 := ∃x, y.

 pc = l2 ∧ x = j ∧ y = 2x+ 1 ∧
i < size ∧ a[x] 6= b[y] ∧ 2j + 1 = i ∧
i ≥ 1 ∧ pc′ = lerror


Unsurprisingly, the interpolants do not change if we exploit the coun-

terexample generated from these transitions6. We obtain better interpolants
by applying TermAbstraction with the term abstraction list 〈i, j〉. In this
case, j can be abstracted away, giving the interpolants

I0 := >

I1 := size > i(1) ∧ z1 = 2z0 + 1 ∧ b(1)[z1] 6= a(1)[z0]

I2 := z1 = 2z0 + 1 ∧ a(2)[z0] 6= b(2)[z1] ∧ i(2) > 1

I3 := ⊥

These two interpolants are better than the one obtained without Ter-
mAbstraction, as they include some Skolem variables. Given the back-
ward nature of the lawi framework we are exploiting, these Skolem variables
will be the universally quantified variables of the final safe inductive invari-
ant that we are aiming for.

The combination of Flattening and TermAbstraction inside a lawi
framework allows to achieve very good results, but still fails on non-trivial
examples such as the D10 procedure. Next Section shows how to overcome
this limitation.

4.2 Constrained transition systems yielding
better interpolants

In our framework we exploit an abstract interpreter for the generation of
inductive invariants. Abstract interpretation is a general framework for the
efficient generation of invariants (see, e.g., [13]). It restricts the search for the
invariant to an abstract domain: e.g. a conjunction of interval constraints
Lx ≤ x ≤ Ux, one for each variable x, where constants Lx and Ux are found
by the abstract interpreter [13]; or, in the domain of (convex) polyhedra,
arbitrary conjunctions of linear (in)equalities [15].

In this paper we will work with convex polyhedra. This is the abstract
domain P = (P,v,t,u,O) where P is the set of linear inequalities over v,
v is a partial order over P, t and u are respectively the join and the meet
operators of the lattice (P,v) and O is a widening operator. We assume
that our abstract interpreter computes a standard upward Kleene iteration
sequence over P driven by program instructions over the scalars. Operations
on arrays are treated as follows: array reads return undefined values, array

6http://rise4fun.com/iZ3/plGl
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writes are ignored. Convergence to a fixpoint is guaranteed by the applica-
tion of the widening operator O7. The abstract interpreter takes, therefore,
as input a program ST and returns for each control location an inductive
invariant, that is, an element of P closed by post-image computation with
respect to the τ ’s of ST , which therefore includes all reachable states at that
location. After converting, for each program location l, the invariant into a
first-order formula Cl(v), one obtains an inductive invariant for ST , satisfied
by all reachable states:

K(v) :=
∧
l∈L

pc = l→ Cl(v) (6)

Given an inductive invariant K(v) for a transition system ST , we can

build a constrained system SK(v)
T , in such a way to include the K(v) in the

counterexample formulæ, as stated in Section 3. Providing (5) instead of
(2) to an interpolating theorem prover does not always ensure that the new
interpolants will be more general, though. The reason is that the unsatisfia-
bility cores of (2) and (5), from which the interpolants are computed, might
be the same; this depends on the internal heuristics of the (SMT-)solver in
use. We thus need to nudge the solver into using the invariants in its proof
and thus in the interpolants: this can be done by exploiting Flattening
and TermAbstraction.

The intuition is that the additional inductive invariants may help in
abstracting away more terms in the term abstraction list: the Flatten-
ing procedure links the new inductive invariants to the transition relation
allowing TermAbstraction to reveal different unsat-cores, leading to the
computation of different interpolants. Lemmas inferred by an abstract inter-
preter are general facts about the program (since they are inductive facts),
and unsat-cores containing them are more likely to generate general inter-
polants.

Example 4.2. We consider again the transition system given in the Exam-
ple 3.1. An abstract interpreter working with the polyhedra abstract domain
[15, 8] infers the inductive invariant K(v) := pc 6= linit → (2j+1 = i∧i ≥ 1).

The counterexample τ6, τ3, τ1 of the ‘flat’ version of SK(v)
AZ

is represented by
the conjunction of the formulæ

(τ6)

[
1 ≤ i(1) ∧ 2j(1) + 1 = i(1) ∧ z1 = 2z0 + 1 ∧

j(1) = z0 ∧ i(1) < size ∧ a(1)[z0] 6= b(1)[z1]

]

(τ3)

[
1 ≤ i(2) ∧ 2j(2) + 1 = i(2) ∧ i(1) = 1 ∧

size ≤ i(2) ∧ j(1) = 0 ∧ id(a[z0], a[z1], b[z0], b[z1]; 2)

]
(τ1) i(2) = 1 ∧ j(2) = 0

7For more information on this abstract domain, the interested reader is referred to
[15, 8].
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This time, TermAbstraction can abstract away the occurrences of i
and j when generating the interpolant “between” τ6 and τ3, and abstracts
away i when computing the interpolant “between” τ3 and τ1:

I0 := >
I1 := 0 ≤ z0 ∧ b[z1] 6= a[z0] ∧ z1 = 2z0 + 1 ∧ size > 2z0 + 1

I2 := 0 ≤ z0 ∧ b[z1] 6= a[z0] ∧ z1 = 2z0 + 1 ∧ 2j > 1

I3 := ⊥

With the adoption of this combined framework, Booster can infer a
safe inductive invariant for the D10 procedure.

5 Experimental evaluation

We implemented our technique on the top of the Booster model-checker,
available from http://www.inf.usi.ch/phd/alberti/prj/booster/.
Booster is a software model-checker targeting the analysis of array pro-
grams [2]. It integrates several orthogonal verification techniques, such as
bounded model checking [10] (for fast bug finding only), acceleration [3, 4]
and lazy abstraction with interpolants (lawi) [5]. It follows the standard
architecture of a compiler: a parser yields an intermediate representation,
which is subject to several optimizations before being fed to an engine for
checking its safety.

The abstract interpreter we implemented in Booster relies on the Parma
Polyhedra Library, offering an efficient implementation of the results pre-
sented in [8].

Flattening and TermAbstraction are already implemented in Booster,
as described in [2]. Moreover, Booster adopts a portfolio approach for the
lawi framework, i.e., it executes in parallel several instances of the fixpoint
engine trying different settings among the most promising ones, including
different term abstraction lists. This way, the user does not have to suggest
any term abstraction list. For the experimental evaluation, we compared
the old version of Booster with the new one, enhanced with the abstract
interpreter.8

8Besides a lawi framework for arrays, Booster comprises an acceleration-based
framework. Acceleration is a completely orthogonal technique with respect to abstrac-
tion, and its performance is not affected by the presence of the abstract interpreter. This
means that acceleration contributes equally to both versions of the tool and it is not
biasing the experimental evaluation.
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Figure 1: Comparison of the running time of the old and the new version
of Booster. Time-out has been set to 200 seconds. A point below the
diagonal represents an example where the new version beats the old version.
Points on the right vertical axes represent benchmarks on which the old
version times out.

Benchmark Status New Old

set property (ground) SAFE 4.333 T.O.
copy9 (ground) SAFE 6.618 10.027
partial init (ground) SAFE 0.615 30.232
bubble sort v1 SAFE 0.368 0.403
bubble sort v1 (bug, ground) UNSAFE 1.085 2.798
bubble sort (ground) SAFE 13.655 T.O.
selection sort SAFE 13.252 T.O.
D10 SAFE 0.972 T.O.

Figure 2: Running time (in seconds) for significant examples. The “ground”
flag indicates that the program have only quantifier-free assertions, while
“bug” flags the examples edited in order to insert a bug.
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We experimentally evaluated our new technique on a large set of pro-
grams handling arrays. These files comes from different heterogeneous sources
(related works, Internet, SV-COMP, etc.). Figure 1 compares the running
time of the new version of Booster with the old version. Table 2 reports the
statistics for some representative benchmarks. The results show clearly that
the abstract interpreter does not decrease the performances on the examples
that were already verifiable by Booster in its previous version. In the set
of the new examples verifiable by Booster there are the entire benchmark
suite of [16] and several sorting algorithms such as bubble sort (in two dif-
ferent versions) and selection sort. The negligible slowdown on very easy
examples, i.e., those for which the verification takes a time between 0.01
and 0.1 seconds, is due to the execution of the abstract interpreter. In con-
trast, the analysis is sped up by more than an order of magnitude on bigger
(and more significant) examples (represented by the points below the dashed
line), and examples that resulted in time-out are now proved automatically.
We point out that the verification starts from the source-code and is fully
automatic.

6 Conclusions and Future work

In this paper we have shown the beneficial effects of integrating an abstract
interpreter working on a numerical domain with an SMT-based refinement
procedure. Despite its simplicity, this framework is able to achieve important
results in the area of analysis of programs with arrays.

As a future work, it would be interesting to evaluate the benefits of ab-
stract domain targeting the inference of quantified inductive invariants, e.g.,
[14, 21]. This is not straightforward: a quantified inductive invariant would
add universal quantifiers in the guard of the transitions. This means that
the lawi framework should include some techniques to deal with these extra
quantifiers, as it has been done in [4] to deal with accelerated transitions.
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[22] N. Halbwachs and M. Péron. “Discovering properties about arrays in
simple programs”. In: PLDI. 2008, pp. 339–348.

[23] J. Henry, D. Monniaux, and M. Moy. “Succinct Representations for
Abstract Interpretation”. In: SAS. Vol. 7460. LNCS. Springer, 2012,
pp. 283–299.
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