Francesco Alberti

David Monniaux

Polyhedra to the rescue of array interpolants

We propose a new approach to the automated verification of the correctness of programs handling arrays. An abstract interpreter supplies auxiliary numeric invariants to an interpolation-based refinement procedure suited to array programs. Experiments show that this combination approach, implemented in an enhanced version of the Booster software model-checker, performs better than the pure interpolationbased approach, at no additional cost.

Introduction

Our goal is to automatically prove the correctness of programs handling arrays; that is, to show that they always compute what they are supposed to, as opposed to merely testing them on a limited set of samples. This is a difficult challenge, if only because this problem is undecidable in general: our hope is thus to succeed in practice, on industrially-relevant cases.

In order to prove that a program handling arrays (especially those of dynamic length) is safe with respect to a list of assertions, i.e., cannot exhibit executions violating any of them, one has to generate quantified properties that are both (i) maintained inductively by the program and (ii) strong enough to entail the validity of the assertions of the program. As an example, consider the following procedure, from [START_REF] Dillig | Fluid Updates: Beyond Strong vs. Weak Updates[END_REF]: void D10 () { i n t i = 1 ; i n t j = 0 ; while (i < s i z e) { a [j] = b [i] ; i = i + 2 ; j = j + 1 ; } i = 1 ; j = 0 ; while (i < s i z e) { a s s e r t (a [j] == b [2 * j + 1]) ; i = i + 2 ; j = j + 1 ; } }

To prove the safety of D10 one has to come up with the following invariant 1∀x, y.

0 ≤ x ∧ y = 2x + 1 ∧ 2j = i -1 ∧ 2x + 1 ≤ 2j → a[x] = b[y] (1)
which holds at the head of the loop by induction on the number of loop iterations.

The approach presented here can infer invariants like (1) completely automatically, and can successfully verify many programs with arrays that are still out of reach for state-of-the-art software model-checkers (e.g., [START_REF] Dragan | LINGVA: Generating and Proving Program Properties using Symbol Elimination[END_REF][START_REF] Garg | ICE: A Robust Framework for Learning Invariants[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF][START_REF] Angelis | VeriMAP: A Tool for Verifying Programs through Transformations[END_REF][START_REF] Bjørner | On Solving Universally Quantified Horn Clauses[END_REF][START_REF] Dillig | Fluid Updates: Beyond Strong vs. Weak Updates[END_REF]).

Inferring invariants such as [START_REF] Albarghouthi | Craig Interpretation[END_REF] automatically is challenging. An approach aimed at producing such invariants has to address several sub-problems: (i) deducing general inductive properties of the program (like 2j = i -1), (ii) establishing the number of quantified variables required to express the program invariant (here, x and y), (iii) finding the relation between the quantified variables and the program variables (e.g., 2x + 1 ≤ 2j), (iv) and establishing useful properties of the array contents by using appropriate variables as indexes.

Contribution

The contribution of this paper is a new approach for the completely automatic inference of complex quantified invariants for programs operating over arrays. Our approach splits the generation of a quantified invariant in two sub-tasks: (i) generating property-independent inductive invariants (ii) refining them to property-dependent safe inductive invariants, i.e., strong enough to prove the safety of the given system. This idea arose from the observation that some atomic formulas of (1), such as 2j = i -1, are general inductive facts of the program, not depending on the assertions we want to prove; other facts, instead, do depend on the property, meaning that they are required specifically to prove the safety of this particular assertion (e.g. quantified invariants are needed because the assertion is a universal property over the array contents). In light of this, we can use an abstract interpreter, working with a suitable abstract domain, e.g., convex polyhedra [START_REF] Cousot | Automatic Discovery of Linear Restraints Among Variables of a Program[END_REF][START_REF] Bagnara | Precise widening operators for convex polyhedra[END_REF], to infer the "general purpose" inductive facts for the program, and then generate the remaining facts using refinement procedures based on Craig interpolation, tailored to the inference of quantified invariants for programs with arrays, e.g., [START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF].

Our approach combines the strengths of abstract interpretation and interpolation-based refinement. Indeed, interpolation is great at proving array properties, but often fails to establish necessary auxiliary arithmetic constraints, such as 2j = i -1, y = 2x + 1 and 2x + 1 ≤ 2j. For instance, instead of coming up with 2j = i -1, which would help establish the safety of the program after any number of iterations, they may successively come up with i = 1 ∧ j = 0, then i = 3 ∧ j = 1, then i = 5 ∧ j = 2 . . . , refuting the existence of counterexample traces of increasing length. This causes the enumeration of all possible unwindings of program loops and, by consequence, the divergence of the model-checker (unless the loops have small maximal trip counts). In contrast, abstract interpretation easily establishes such inductive arithmetic facts, but lifting abstract interpretation to array properties is nontrivial [START_REF] Gulwani | Lifting abstract interpreters to quantified logical domains[END_REF][START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF][START_REF] Gopan | A framework for numeric analysis of array operations[END_REF].

Architecture-wise, our solution pipelines an abstract interpreter into software model checker based on the Lazy Abstraction with Interpolants (lawi) framework. We will prove (Section 3) that this combination is sound. In addition, in order to be successful, our approach also applies Flattening and TermAbstraction phases for better generalization of the interpolants within the lawi framework. Flattening is a preprocessing technique known in software model-checking frameworks for array programs (see, e.g., [START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF]), used to transform the declarative encoding of a program into a format particularly suitable for inferring quantified invariants. TermAbstraction is a heuristic meant to nudge interpolating procedures towards the inference of "good" interpolants, with the overall effect of improving the model-checker performance. In our setting, Flattening plays a central role in connecting the abstract interpreter with the interpolation-based refinement procedure: we will show (Section 4) that interpolating procedures, once enhanced with the TermAbstraction heuristic, can successfully leverage the lemmas inferred by the abstract interpreter thanks to the Flattening-based preprocessing.

We implemented our framework on the top of the Booster software model-checker [START_REF] Alberti | Booster: an accelerationbased verification framework for array programs[END_REF]. Experiments discussed in Section 5 show clearly that on the one hand, our solution allows verifying programs that were previously out of the capabilities of this tool and, on the other hand, it does not affect negatively the performances of the tool on those examples that could already be verified, improving the solving time for many of them.

Related Work

Combining different techniques for enabling the efficient analysis of complex inputs is a common practice in software verification (see, e.g., [START_REF] Albarghouthi | Craig Interpretation[END_REF][START_REF] Henry | Succinct Representations for Abstract Interpretation[END_REF][START_REF] Alberti | Booster: an accelerationbased verification framework for array programs[END_REF]). Our work was inspired by [START_REF] Albarghouthi | Craig Interpretation[END_REF], presenting an efficient combination of Abstract Interpretation with interpolation-based refinement procedures, limited to the quantifier-free case, though, while our approach works at a quantified level.

Our approach is completely automatic: this mainly differentiates it from semi-automatic approaches, where usually the predicates are suggested by the user, such as [START_REF] Flanagan | Predicate abstraction for software verification[END_REF]. Our approach is not constrained to the inference of invariants of a given shape, in contrast with the approach of [START_REF] Jhala | Array Abstractions from Proofs[END_REF]. We can handle program with any control-flow structure, as opposed to [START_REF] Dragan | LINGVA: Generating and Proving Program Properties using Symbol Elimination[END_REF], and we exploit SMT-based interpolating procedures for the refinement of inductive invariant: this differentiates our work from those exploiting firstorder theorem provers [START_REF] Hoder | Invariant Generation in Vampire[END_REF]. In contrast to [START_REF] Garg | ICE: A Robust Framework for Learning Invariants[END_REF], our approach is not based on machine-learning.

Inference of array-programs properties can be performed as well by adopting an abstract domain segmenting the array, syntactically [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF][START_REF] Halbwachs | Discovering properties about arrays in simple programs[END_REF] or semantically [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF], and assigning to each segment an abstract value. Such approaches may be very efficient in terms of computation time and memory usage, but may produce false alarms due to the over-approximations involved: (i) the invariants are constrained by the abstract domain (e.g. if the domain is intervals, only interval properties may be expressed) and the segmentation in use; in contrast, our approach has more flexibility (our domain is a large class of first-order formulas); (ii) in addition to the overapproximation introduced by the abstraction, further over-approximation is generally needed to enforce termination of the analysis, through widening operators.

Preliminaries

We use lower-case Latin letters x, i, c, d, e, . . . for variables; for tuples of variables we use bold face letters like x, i, c, d, e |x| is the length of the tuple x. Given a variable v, v is a copy of v with a prime,

v (n) is a copy of v with n primes, v = {v | v ∈ v} and v (n) = {v (n) | v ∈ v} for any tuple of variables v.
With E(x) we denote that the syntactic expression (term, formula, tuple of terms or of formulae) E contains at most the free variables taken from the tuple x. We use lower-case Greek letters φ, ϕ, ψ, . . . for formulae. E(y/x) is the expression E where the free occurrences of x have been substituted by y. The notation φ(t) identifies a quantifier-free formula φ obtained from φ(x) by substituting the tuple of variables x with the tuple of terms t.

As in the SMT-LIB standard [START_REF] Barrett | The Satisfiability Modulo Theories Library (SMT-LIB)[END_REF], a theory T is a pair (Σ, C), where Σ is a signature and C is a class of Σ-structures; the structures in C are called the models of

T . A Σ-formula α is T -satisfiable if there exists a Σ-structure M in C such that α is true in M under a suitable assignment to the free variables of α (in symbols, M |= α); it is T -valid (in symbols, T |= α) if its negation is T -unsatisfiable. ψ 1 T -entails ψ 2 (in symbols, ψ 1 |= T ψ 2) iff ψ 1 → ψ 2 is T - valid.
The satisfiability modulo the theory T (SM T (T)) problem amounts to establishing the T -satisfiability of quantifier-free Σ-formulae.

In this paper the theory of arrays plays a central role, given the desired applications of our approach. We will work mainly with arrays of integers. and denote with A Z the theory of Presburger arithmetic with the addition of free function symbols (the free function symbols will represent the array variables of the analyzed programs).

Safe Transition Systems

We assume programs are represented as transition systems, i.e., triples S T = (v, l init , T) where v is the tuple of variables handled by the program with the addition of a fresh variable pc taking values over the set of program locations L = {l 1 , . . . , l n }, among which we distinguish an 'initial' location l init and an 'error' location l error . T is a set of relations {τ 1 (v, v), . . . , τ n (v, v)} encoding the program body, and T is a first order theory fixing the semantics of programs operations encoded into the τ 's. By abuse of notation,

T (v, v) := τ ∈T τ (v, v)
For each τ j ∈ T we identify two locations called the 'source' location src(τ j) and the 'target' location trg(τ j). For each τ j it holds that τ j |= pc = src(τ j) and τ j |= pc = trg(τ j). For all τ j ∈ T, src(τ j) = l error and there exists at least one transition τ i ∈ T such that src(τ i) = l init .

Example 3.1. The D10 procedure given in the introduction is represented by the transition system S A Z = (v, l init , T) with v = (pc, i, j, a, b). pc takes values over the set L = {l init , l 1 , l 2 , l 3 , l error }. T comprises the following relations2 :

τ 1 := pc = l init ∧ i = 1 ∧ j = 0 ∧ pc = l 1 τ 2 := pc = l 1 ∧ i < size ∧ a[j] = b[2j + 1] ∧ a = store(a, j, b[i]) ∧ i = i + 2 ∧ j = j + 1 τ 3 := pc = l 1 ∧ i ≥ size ∧ i = 1 ∧ j = 0 ∧ pc = l 2 τ 4 := pc = l 2 ∧ i < size ∧ a[j] = b[2j + 1] ∧ i = i + 2 ∧ j = j + 1 τ 5 := pc = l 2 ∧ i ≥ size ∧ pc = l 3 τ 6 := pc = l 2 ∧ i < size ∧ a[j] = b[2j + 1] ∧ pc = l error
Our goal is to check if a given transition system S T is safe with respect to its error location l error . Formally we have the following definition: Definition 3.1 (Safety). A transition system S T = (v, l init , T) is safe iff the following formula

pc (0) = l init ∧ n i=0 T (v (i) , v (i+1)) ∧ pc (n+1) = l error (2)
is T -unsatisfiable for any n ≥ 1.

It is well-known (see, e.g., [START_REF] Manna | Temporal Verification of Reactive Systems: Safety[END_REF]) that one can show (2) to be unsatisfiable by providing a safe inductive invariant for S T :

Definition 3.2 (Invariants). A safe inductive invariant for S is a formula H(v) such that (i) T |= ∀v.pc = l init → H(v) (ii) T |= ∀v, v .H(v) ∧ T (v, v) → H(v) (iii) T |= ∀v.H(v) → pc = l error (3)
If H(v) satisfies only (i) and (ii), it is said to be an inductive invariant (but not safe).

In our approach, as discussed in the next Section, an Abstract Interpreter infers inductive invariants (which, by themselves, do not prove the safety of the system), which are then "suggested" to a lawi framework, in order to limit its divergence. This "suggestion" phase can be formalized with the notion of constrained transition system. Definition 3.3 (Constrained transition system). Let S T = (v, l init , T) be a transition system and K(v) an invariant for S T . The constrained transition system S

K(v) T is defined as (v, l init , T) where T = {K(v)∧τ j (v, v) | τ j (v, v) ∈ T }.
The transformation is sound, from a safety point of view, as shown by the following result.

Theorem 3.1. S T is safe iff S K(v) T is safe.

Generating better interpolants

The Lazy Abstraction with Interpolants (lawi) framework resembles CounterExample-Guided Abstraction Refinement (cegar) [START_REF] Clarke | Counterexample-Guided Abstraction Refinement[END_REF]. Given S T it generates an abstract system ŜT in such a way that the set of possible executions of S T is a sub-set of those of ŜT ; the converse does not hold. Thus, any property that holds for the executions of ŜT also holds for those of S T . If there exists an execution π of ŜT not satisfying the property, we cannot conclude that there exists an execution of S T violating the property. In this case, the framework generates a formula φ π of the kind

pc (0) = l init ∧ n i=0 τ i (v (i) , v (i+1)) ∧ pc (n+1) = l error (4)
with τ i ∈ T , that is T -satisfiable only if S T admits π as a counterexample. If φ π is T -unsatisfiable, a set of interpolants are computed to refine the abstraction level of ŜT and exclude π from the set of its admitted counterexamples. Such interpolants are a sequence of formulae {I 0 (v), . . . , I n (v)} satisfying the following constraints [START_REF] Mcmillan | Lazy Abstraction with Interpolants[END_REF]:

(i) I 0 (v) ≡ , (ii) I n (v) ≡ ⊥, (iii) for all 1 ≤ i ≤ n, I i-1 (v) ∧ τ i (v, v) |= T I i (v)
and (iv) all the free variables of I i , for all 1 ≤ i < n occur both in τ i and τ i+1 . Interpolating procedures usually exploit the proof of unsatisfiability of the (4) in order to generate the sequence {I 0 (v), . . . , I n (v)}. By transforming a transition system S T into a constrained transition system S K(v) T

, the (4) becomes

pc (0) = l init ∧ n i=0 K(v (i)) ∧ τi(v (i) , v (i+1)) ∧ pc (n+1) = lerror (5)
The main issue is that interpolating procedures tend to ignore the presence of K(v) in (5). This section describes how it is possible to "force" them to exploit this additional information to generate better interpolants. We will first briefly introduce the Flattening and TermAbstraction techniques. We will subsequently show that the additional information contained in K(v) can lead, by adopting such two techniques, to the generation of better interpolants.

Flattening and Term Abstraction

Flattening and TermAbstraction are two techniques required in lawi approaches dealing with programs with arrays, as shown in [START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF]. Flattening is based on the rewriting rule φ(a[t], ...) ∃x(x = t ∧ φ(a[x], ...)), for a fresh x. Given a transition system S T , Flattening returns an equivalent copy of S T where every array variable is indexed only by existentially quantified variables. This preprocessing operation gives the opportunity of computing quantified invariants by exploiting quantifier-free interpolants. The idea is that the procedure in charge of checking the T -satisfiability of a formula like (4) or (5) pre-processes the counterexample formulae by Skolemizing the existentially quantified variables introduced by Flattening and then instantiating the implicit universally quantified variables contained in the array store symbols, since E(. . . , store(a, i, e), . . .) ≡ E(. . . , a , . . .

) ∧ a [i] = e ∧ ∀x.(x = i → a [x] = a[x]
) for a fresh a , and atoms like a = b for a, b array variables, because a = b ≡ ∀x.a[x] = b[x], for a fresh x. Any Skolem constant contained in the interpolants will act as an "implicitly quantified" variable 3 .

As discussed in the introduction, the performance of a lawi-based framework strongly depends on the quality of the computed interpolants. Ter-mAbstraction addresses this problem. It takes in input the two inconsistent formulae A, B for which one wants to compute an interpolant I and iteratively try to remove a list of terms λ = t 1 , . . . , t n from the shared language of A and B. Terms in λ are guilty of keeping the interpolants too precise. TermAbstraction iteratively checks whether A(c i /t i) ∧ B(d i /t i) is inconsistent, for term t i and fresh constants c i , d i . At the end, A and B will be free from some terms of λ and the interpolant will be likely free from such terms as well. The intuition behind TermAbstraction is that if a formula remains unsatisfiable even though some terms are replaced with new unknowns, then the resulting interpolants will be less specific, since they will not exploit the particulars of these terms. Notably, Booster (the software model-checker over which we implemented our new invariant generation technique) does not require any user interaction for generating suitable term abstraction lists, as explained in [START_REF] Alberti | Booster: an accelerationbased verification framework for array programs[END_REF].

Example 4.1. lawi frameworks usually carries out the verification of a program by representing precisely the control-flow structure and abstracting away the data-flow information (see, e.g., [START_REF] Mcmillan | Lazy Abstraction with Interpolants[END_REF]). Let's consider the counterexample τ 1 , τ 3 , τ 6 , which is the one raised by the execution of safari [START_REF] Alberti | SAFARI: SMT-Based Abstraction for Arrays with Interpolants[END_REF] on the transition system discussed in the Example 3.1. This counterexample is represented by the conjunction of the formulae 4 (τ6)

i (1) < size ∧ a (1) [j] = b (1)

[2j + 1] (τ3) i (2) ≥ size ∧ i (1) = 1 ∧ j (1) = 0 ∧ id(a, b, 2) (τ1) i (2) = 1 ∧ j (2) = 0
A state-of-the-art interpolating prover, like iZ3 [START_REF] Mcmillan | Interpolants from Z3 proofs[END_REF], returns this set of interpolants 5 for such a formula:

I0 := I1 := i (1) < size I2 := i (2) = 1 I3 := ⊥
The transition system returned by Flattening is

τ1 := pc = l init ∧ i = 1 ∧ j = 0 ∧ pc = l1 τ2 := ∃x. pc = l1 ∧ x = i ∧ i < size ∧ 2j + 1 = i ∧ i ≥ 1 ∧ a = store(a, j, b[x]) ∧ i = x + 2 ∧ j = j + 1 τ3 := pc = l1 ∧ i ≥ size ∧ 2j + 1 = i ∧ i ≥ 1 ∧ i = 1 ∧ j = 0 ∧ pc = l2 τ4 := ∃x, y.    pc = l2 ∧ x = j ∧ y = 2x + 1 ∧ a[x] = b[y] ∧ 2j + 1 = i ∧ i < size ∧ i ≥ 1 ∧ i = i + 2 ∧ j = j + 1   
4 For readability we omitted the pc variable etc. Also, id(t1, . . . , tn; k) for t

(k) 1 = t (k-1) 1 ∧ . . . ∧ t (k) n = t (k-1) n . 5 http://rise4fun.com/iZ3/ukd τ5 := pc = l2 ∧ i ≥ size ∧ 2j + 1 = i ∧ i ≥ 1 ∧ pc = l3 τ6 := ∃x, y.    pc = l2 ∧ x = j ∧ y = 2x + 1 ∧ i < size ∧ a[x] = b[y] ∧ 2j + 1 = i ∧ i ≥ 1 ∧ pc = lerror   
Unsurprisingly, the interpolants do not change if we exploit the counterexample generated from these transitions 6 . We obtain better interpolants by applying TermAbstraction with the term abstraction list i, j . In this case, j can be abstracted away, giving the interpolants (1) [z1] = a (1) [z0]

I0 := I1 := size > i (1) ∧ z1 = 2z0 + 1 ∧ b
I2 := z1 = 2z0 + 1 ∧ a (2) [z0] = b (2) [z1] ∧ i (2) > 1 I3 := ⊥
These two interpolants are better than the one obtained without Ter-mAbstraction, as they include some Skolem variables. Given the backward nature of the lawi framework we are exploiting, these Skolem variables will be the universally quantified variables of the final safe inductive invariant that we are aiming for.

The combination of Flattening and TermAbstraction inside a lawi framework allows to achieve very good results, but still fails on non-trivial examples such as the D10 procedure. Next Section shows how to overcome this limitation.

Constrained transition systems yielding better interpolants

In our framework we exploit an abstract interpreter for the generation of inductive invariants. Abstract interpretation is a general framework for the efficient generation of invariants (see, e.g., [START_REF] Cousot | Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF]). It restricts the search for the invariant to an abstract domain: e.g. a conjunction of interval constraints L x ≤ x ≤ U x , one for each variable x, where constants L x and U x are found by the abstract interpreter [START_REF] Cousot | Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints[END_REF]; or, in the domain of (convex) polyhedra, arbitrary conjunctions of linear (in)equalities [START_REF] Cousot | Automatic Discovery of Linear Restraints Among Variables of a Program[END_REF].

In this paper we will work with convex polyhedra. This is the abstract domain P = (P, , , ,) where P is the set of linear inequalities over v, is a partial order over P, and are respectively the join and the meet operators of the lattice (P,) and is a widening operator. We assume that our abstract interpreter computes a standard upward Kleene iteration sequence over P driven by program instructions over the scalars. Operations on arrays are treated as follows: array reads return undefined values, array writes are ignored. Convergence to a fixpoint is guaranteed by the application of the widening operator 7 . The abstract interpreter takes, therefore, as input a program S T and returns for each control location an inductive invariant, that is, an element of P closed by post-image computation with respect to the τ 's of S T , which therefore includes all reachable states at that location. After converting, for each program location l, the invariant into a first-order formula C l (v), one obtains an inductive invariant for S T , satisfied by all reachable states:

K(v) := l∈L pc = l → C l (v) (6)
Given an inductive invariant K(v) for a transition system S T , we can build a constrained system S K(v) T , in such a way to include the K(v) in the counterexample formulae, as stated in Section 3. Providing (5) instead of (2) to an interpolating theorem prover does not always ensure that the new interpolants will be more general, though. The reason is that the unsatisfiability cores of (2) and (5), from which the interpolants are computed, might be the same; this depends on the internal heuristics of the (SMT-)solver in use. We thus need to nudge the solver into using the invariants in its proof and thus in the interpolants: this can be done by exploiting Flattening and TermAbstraction.

The intuition is that the additional inductive invariants may help in abstracting away more terms in the term abstraction list: the Flattening procedure links the new inductive invariants to the transition relation allowing TermAbstraction to reveal different unsat-cores, leading to the computation of different interpolants. Lemmas inferred by an abstract interpreter are general facts about the program (since they are inductive facts), and unsat-cores containing them are more likely to generate general interpolants.

Example 4.2. We consider again the transition system given in the Example 3.1. An abstract interpreter working with the polyhedra abstract domain [START_REF] Cousot | Automatic Discovery of Linear Restraints Among Variables of a Program[END_REF][START_REF] Bagnara | Precise widening operators for convex polyhedra[END_REF] infers the inductive invariant K(v) := pc = l init → (2j +1 = i∧i ≥ 1). The counterexample τ 6 , τ 3 , τ 1 of the 'flat' version of S K(v) A Z is represented by the conjunction of the formulae

(τ6) 1 ≤ i (1) ∧ 2j (1) + 1 = i (1) ∧ z1 = 2z0 + 1 ∧ j (1) = z0 ∧ i (1)
< size ∧ a (1) [z0] = b (1) [z1]

(τ3) 1 ≤ i (2) ∧ 2j (2) + 1 = i (2) ∧ i (1) = 1 ∧ size ≤ i (2) ∧ j (1) = 0 ∧ id(a[z0], a[z1], b[z0], b[z1]; 2) (τ1) i (2) = 1 ∧ j (2) = 0
This time, TermAbstraction can abstract away the occurrences of i and j when generating the interpolant "between" τ 6 and τ 3 , and abstracts away i when computing the interpolant "between" τ 3 and τ 1 :

I0 := I1 := 0 ≤ z0 ∧ b[z1] = a[z0] ∧ z1 = 2z0 + 1 ∧ size > 2z0 + 1 I2 := 0 ≤ z0 ∧ b[z1] = a[z0] ∧ z1 = 2z0 + 1 ∧ 2j > 1 I3 := ⊥
With the adoption of this combined framework, Booster can infer a safe inductive invariant for the D10 procedure.

Experimental evaluation

We implemented our technique on the top of the Booster model-checker, available from http://www.inf.usi.ch/phd/alberti/prj/booster/.

Booster is a software model-checker targeting the analysis of array programs [START_REF] Alberti | Booster: an accelerationbased verification framework for array programs[END_REF]. It integrates several orthogonal verification techniques, such as bounded model checking [START_REF] Biere | Symbolic Model Checking without BDDs[END_REF] (for fast bug finding only), acceleration [START_REF] Alberti | Decision Procedures for Flat Array Properties[END_REF][START_REF] Alberti | Definability of Accelerated Relations in a Theory of Arrays and Its Applications[END_REF] and lazy abstraction with interpolants (lawi) [START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF]. It follows the standard architecture of a compiler: a parser yields an intermediate representation, which is subject to several optimizations before being fed to an engine for checking its safety.

The abstract interpreter we implemented in Booster relies on the Parma Polyhedra Library, offering an efficient implementation of the results presented in [START_REF] Bagnara | Precise widening operators for convex polyhedra[END_REF].

Flattening and TermAbstraction are already implemented in Booster, as described in [START_REF] Alberti | Booster: an accelerationbased verification framework for array programs[END_REF]. Moreover, Booster adopts a portfolio approach for the lawi framework, i.e., it executes in parallel several instances of the fixpoint engine trying different settings among the most promising ones, including different term abstraction lists. This way, the user does not have to suggest any term abstraction list. For the experimental evaluation, we compared the old version of Booster with the new one, enhanced with the abstract interpreter. We experimentally evaluated our new technique on a large set of programs handling arrays. These files comes from different heterogeneous sources (related works, Internet, SV-COMP, etc.). Figure 1 compares the running time of the new version of Booster with the old version. Table 2 reports the statistics for some representative benchmarks. The results show clearly that the abstract interpreter does not decrease the performances on the examples that were already verifiable by Booster in its previous version. In the set of the new examples verifiable by Booster there are the entire benchmark suite of [START_REF] Dillig | Fluid Updates: Beyond Strong vs. Weak Updates[END_REF] and several sorting algorithms such as bubble sort (in two different versions) and selection sort. The negligible slowdown on very easy examples, i.e., those for which the verification takes a time between 0.01 and 0.1 seconds, is due to the execution of the abstract interpreter. In contrast, the analysis is sped up by more than an order of magnitude on bigger (and more significant) examples (represented by the points below the dashed line), and examples that resulted in time-out are now proved automatically. We point out that the verification starts from the source-code and is fully automatic.

Conclusions and Future work

In this paper we have shown the beneficial effects of integrating an abstract interpreter working on a numerical domain with an SMT-based refinement procedure. Despite its simplicity, this framework is able to achieve important results in the area of analysis of programs with arrays.

As a future work, it would be interesting to evaluate the benefits of abstract domain targeting the inference of quantified inductive invariants, e.g., [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF][START_REF] Gulwani | Lifting abstract interpreters to quantified logical domains[END_REF]. This is not straightforward: a quantified inductive invariant would add universal quantifiers in the guard of the transitions. This means that the lawi framework should include some techniques to deal with these extra quantifiers, as it has been done in [START_REF] Alberti | Definability of Accelerated Relations in a Theory of Arrays and Its Applications[END_REF] to deal with accelerated transitions.

8

 8

Figure 1 :

 1 Figure 1: Comparison of the running time of the old and the new version of Booster. Time-out has been set to 200 seconds. A point below the diagonal represents an example where the new version beats the old version. Points on the right vertical axes represent benchmarks on which the old version times out.

Figure 2 :

 2 Figure 2: Running time (in seconds) for significant examples. The "ground" flag indicates that the program have only quantifier-free assertions, while "bug" flags the examples edited in order to insert a bug.

http://rise4fun.com/Boogie/GG2.

For every τj, we assume v = v for any v ∈ v not appearing in τj.

The interested reader can refer to[START_REF] Alberti | An extension of lazy abstraction with interpolation for programs with arrays[END_REF] for further information about this framework.

http://rise4fun.com/iZ3/plGl

For more information on this abstract domain, the interested reader is referred to[15,

8].

Besides a lawi framework for arrays, Booster comprises an acceleration-based framework. Acceleration is a completely orthogonal technique with respect to abstraction, and its performance is not affected by the presence of the abstract interpreter. This means that acceleration contributes equally to both versions of the tool and it is not biasing the experimental evaluation.

* Supported by Swiss National Science Foundation under grant no. P1TIP2 152261. † The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013) / ERC Grant Agreement nr. 306595 "STATOR" http://stator.imag.fr/.