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We describe a deterministic algorithm that computes an approximate root of n complex polynomial equations in n unknowns in average polynomial time with respect to the size of the input, in the Blum-Shub-Smale model with square root. It rests upon a derandomization of an algorithm of Beltrán and Pardo and gives a deterministic affirmative answer to Smale's 17th problem. The main idea is to make use of the randomness contained in the input itself.

Introduction

Shub and Smale provided an extensive theory of Newton's iteration and homotopy continuation which aims at studying the complexity of computing approximate roots of complex polynomial systems of equations with as many unknowns as equations. [START_REF] References | A stable, polynomial-time algorithm for the eigenpair problem[END_REF] In their theory, an approximate root of a polynomial system refers to a point from which Newton's iteration converges quadratically to an exact zero of the system-see Definition 1. This article answers with a deterministic algorithm the following question that they left open: Problem (Smale2 ). Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?

The term algorithm refers to a machine à la Blum-Shub-Smale 3 (BSS): a random access memory machine whose registers can store arbitrary real numbers, that can compute elementary arithmetic operations in the real field at unit cost and that can branch according to the sign of a given register. To avoid vain technical argumentation, I consider the BSS model extended with the possibility of computing the square root of a positive real number at unit cost. The wording uniform algorithm emphasizes the requirement that a single finite machine should solve all the polynomial systems whatever the degree or the dimension. The complexity should be measured with respect to the size of the input, that is the number of real coefficients in a dense representation of the system to be solved. An important characteristic of a root of a polynomial system is its conditioning. Because of the feeling that approximating a root with arbitrarily large condition number requires arbitrarily many steps, the problem only asks for a complexity that is polynomial on the average when the input is supposed to be sampled from a certain probability distribution that we choose. The relevance of the average-case complexity is arguable, for the input distribution may not reflect actual inputs arising from applications. But yet, average-case complexity sets a mark with which any other result should be compared.

The problem of solving polynomial systems is a matter of numerical analysis just as much as it is a matter of symbolic computation. Nevertheless, the reaches of these approaches differ in a fundamental way. In an exact setting, having one root of a generic polynomial system is having them all because of Galois' indeterminacy, and it turns out that the number of solutions of a generic polynomial system is the product of the degrees of the equations, Bézout's bound, and is not polynomially bounded by the number of coefficients in the input. This is why achieving a polynomial complexity is only possible in a numerical setting.

The main numerical method to solve a polynomial system f is homotopy continuation. The principle is to start from another polynomial system g of which we know a root η and to move g toward f step by step while tracking all the way to f an approximate root of the deformed system by Newton's iteration. The choice of the step size and the complexity of this procedure is well understood in terms of the condition number along the homotopy path. 4 Most of the theory so far is exposed in the book Condition. 5 The main difficulty is to choose the starting pair (g, η). Shub and Smale6 showed that there exists good starting pairs, and even many, for some measure, but without providing a way to compute them efficiently. Beltrán and Pardo7 discovered how to pick a starting pair at random and showed that, on average, this is a good choice. This led to a nondeterministic polynomial average-time algorithm which answers Smale's question. Bürgisser and Cucker8 performed a smoothed analysis of the Beltrán-Pardo algorithm and described a deterministic algorithm with complexity N O(log log N ) , where N is the input size. The question of the existence of a deterministic algorithm with polynomial average complexity it still considered open.

This work provides, with Theorem 23, a complete deterministic answer to Smale's problem, even though, as we will see, it enriches the theory of homotopy continuation itself only marginally. The answer is based on a derandomization of the nondeterministic Beltrán and Pardo's algorithm according to two basic observations. Firstly, an approximate root of a system f is also an approximate root of a slight perturbation of f . Therefore, to compute an approximate root of f , one can only consider the most significant digits of the coefficients of f . Secondly, the remaining least significant digits, or noise, of a continuous random variable are practically independent from the most significant digits and almost uniformly distributed. In the BSS model, where the input is given with infinite precision, this noise can be extracted and can be used in place of a genuine source of randomness. This answer shows that for Smale's problem, the deterministic model and the nondeterministic are essentially equivalent: randomness is part of the question from its very formulation asking for an average analysis. It is worth noting that the idea that the input is subject to a random noise that does not affect the result is what makes the smoothed analysis of algorithms relevant.9 Also, the study of the resolution of a system f given only the most significant digits of f is somewhat related to recent works in the setting of machines with finite precision. 10 The derandomization proposed here is different in nature from the derandomization theorem BPP R = P R ,11 which states that a decision problem that can be solved over the reals in polynomial time (worst-case complexity) with randomization and bounded error probability can also be solved deterministically in polynomial time. Contrary to this work, the derandomization theorem above relies on the ability of a BSS machine to hold arbitrary constants in its definition, even hardly computable ones or worse, not computable ones which may lead to unlikely statements. For example, one can decide the termination of Turing machines with a BSS machine insofar Chaitin's Ω constant is built in the machine.
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The method of homotopy continuation

This part exposes the principles of Newton's iterations and homotopy continuation upon which rests Beltrán and Pardo's algorithm. It mostly contains known results and variations of known results that will be used in the next part ; notable novelties are the inequality relating the maximum of the condition number along a homotopy path by the integral of the cube of the condition number (Proposition 7) and a variant of Beltràn and Pardo's randomization procedure (Theorem 9). For Smale's problem, the affine setting and the projective setting are known to be equivalent,12 so we only focus on the latter.

Approximate root

Let n be a positive integer. The space C n+1 is endowed with the usual Hermitian inner (Symbols in the margin mark the place where they are defined.) product. For d ∈ N, let H d denote the vector space of homogeneous polynomials of degree d in the variables x 0 , . . . , x n . It is endowed with an Hermitian inner product, called Weyl's inner product, for which the monomial basis is an orthogonal basis and

x a0 0 • • • x an n 2 = a0!•••an! (a1+•••+an)! . Let d 1 , .
. . , d n be positive integers and let H denote H d1 ו • •×H dn , the space of all systems of H homogeneous equations in n+1 variables and of degree d 1 , . . . , d n . This space is endowed with the Hermitian inner product induced by the inner product of each factor. The dimension n and the d i 's are fixed throughout this article. Let D be the maximum of all d i 's and let N D N denote the complex dimension of H, namely

N = n + d 1 n + • • • + n + d n n .
Elements of H are polynomial systems to be solved, and 2N is the input size. Note that 2 N , n 2 N and D N .

For every Hermitian space V , we endow the set S(V ) of elements of norm 1 with the induced Riemannian metric d S : the distance between two points x, y ∈ S(V ) is the angle between them, namely cos d S (x, y) = Re x, y . The projective space P(V ) is endowed with the quotient Riemannian metric d P defined by

d P ([x], [y]) def = min λ∈S(C) d S (x, λy). An element of f ∈ H is regarded as a homogeneous polynomial function C n+1 → C n . A root-or solution, or zero-of f is a point ζ ∈ P n such that f (ζ) = 0. Let V be the V solution variety {(f, ζ) ∈ H × P n | f (z) = 0}. For z ∈ C n+1 \ {0}, let df (z) : C n+1 → C n denote the differential of f at z. Let z ⊥ be the orthogonal complement of Cz in C n+1 . If the restriction df (z)| z ⊥ : z ⊥ → C n is invertible, we define the projective Newton operator N , N (f, z) introduced by Shub, 13 by N (f, z) def = z -df (z)| -1 z ⊥ (f (z)). It is clear that N (f, λz) = λN (f, z), so N (f, -) defines a partial function P n → P n .
Definition 1. A point z ∈ P n is an approximate root of f if the sequence defined recursively by z 0 = z and z k+1 = N (f, z k ) is well defined and if there exists ζ ∈ P n such that f (ζ) = 0 and d P (z k , ζ) 2 1-2 k d P (z, ζ) for all k 0. The point ζ is the associated root of z and we say that z approximates ζ as a root of f .

For f ∈ H and z ∈ C n+1 \ {0}, we consider the linear map

Ξ(f, z) : (u 1 , . . . , u n ) ∈ C n → df (z)| -1 z ⊥ d 1 z d1-1 u 1 , . . . , d n z dn-1 u n ∈ z ⊥
and the condition number14 of f at z is defined to be µ(f, z)

def = f Ξ(f, z) , where Ξ(f, z) µ(f, z) is the operator norm. When df (z)| z ⊥ is not invertible, we set µ(f, z) = ∞.
The condition number is often denoted µ norm but we stick here to the shorter notation µ. For all u, v ∈ C × we check that µ(uf, vz) = µ(f, z). We note also that µ(f, z)

√ n 1. 15 The projective µ-theorem (a weaker form of the better known projective γ-theorem) relates the condition number and the notion of approximate root:

Theorem 2 (Shub, Smale 16 ). For any (f, ζ) ∈ V and z ∈ P n , if D 3/2 µ(f, ζ)d P (z, ζ) 1 3 , then z is an approximate root of f with associated root ζ.
Remark. The classical form of the result,

17 requires D 3/2 µ(f, ζ) tan(d P (z, ζ))
3 -√ 7. The hypothesis required here is stronger: since

D 3/2 µ(f, ζ) 1, if D 3/2 µ(f, ζ)d P (z, ζ) 1 3 then d P (z, ζ) 1 3 and then tan(d P (z, ζ)) 3 tan( 1 3 )d P (z, ζ) 3- √ 7 D 3/2 µ(f,ζ) because tan( 1 3 ) 3 - √ 7.
The symbol indicates an inequality that is easily checked using a calculator.

The algorithmic use of the condition number heavily relies on this explicit Lipschitz estimate:

Proposition 3 (Shub 18 ). Let 0 ε 1 7 . For any f, g ∈ P(H) and x, y ∈ P n , if

µ(f, x) max D 1/2 d P (f, g), D 3/2 d P (x, y) ε 4 then (1 + ε) -1 µ(f, x) µ(g, y) (1 + ε)µ(f, x).

Homotopy continuation algorithm

Let I ⊂ R be an interval containing 0 and let t ∈ I → f t ∈ P(H) be a continuous function.

Let ζ be a root of f 0 such that df 0 (ζ) |ζ ⊥ is invertible. There is a subinterval J ⊂ I containing 0 and open in I, and a continuous function t ∈ J → ζ t ∈ P n such that ζ 0 = ζ and f t (ζ t ) = 0 for all t ∈ J. We choose J to be the largest such interval.

Lemma 4. If t → f t is C 1 on I and if µ(f t , ζ t ) is bounded on J, then J = I.
Proof. Without loss of generality, we may assume that I is compact, so that ḟt is bounded on I. Let M be the supremum of µ(f t , ζ t ) ḟt on J. From the construction of ζ t with the implicit function theorem we see that t ∈ J → ζ t is M -Lipschitz continuous. Hence the map t ∈ J → ζ t extends to a continuous map on J. Thus J is closed in I, and

I = J because J is also open. Proposition 5. Let (f, ζ) ∈ V , g ∈ P(H) and 0 < ε 1 7 . If D 3/2 µ(f, ζ) 2 d P (f, g) ε 4(1+ε) , then: (i) there exists a unique root η of g such that d P (ζ, η) (1 + ε)µ(f, ζ)d P (f, g); (ii) (1 + ε) -1 µ(f, ζ) µ(g, η) (1 + ε)µ(f, ζ);
(iii) ζ approximates η as a root of g and η approximates ζ as a root of f . Proof. Let t ∈ [0, 1] → f t ∈ P(H) be a geodesic path such that f 0 = f , f 1 = g and ḟt = d P (f, g). Let t ∈ J → ζ t be the homotopy continuation associated to this path starting from the root ζ and defined as above on a maximal interval

J ⊂ [0, 1]. Let µ t denote µ(f t , ζ t ).
For all t ∈ J we know that ζt µ t ḟt ,19 so that

d P (ζ 0 , ζ t ) t 0 ζu du d P (f, g) t 0 µ u du. (1) 
Let J be the closed subinterval of J defined by

J = t ∈ J ∀t t, D 3/2 µ 0 d P (ζ 0 , ζ t ) ε 4 . For all t ∈ J we have D 3/2 µ 0 d P (ζ 0 , ζ t ) ε
4 , by definition, and

D 1/2 µ 0 d P (f 0 , f t ) D 3/2 µ 2 0 d P (f, g) ε 4
, by hypothesis. Thus, Proposition 3 ensures that

(1 + ε) -1 µ 0 µ t (1 + ε)µ 0 , for all t ∈ J . ( 2 
)
Thanks to Inequality (1) we conclude that

d P (ζ 0 , ζ t ) (1 + ε)t d P (f, g)µ 0 , for all t ∈ J , so that D 3/2 µ 0 d P (ζ 0 , ζ t ) tε 4 , using the assumption D 3/2 µ(f, ζ) 2 d P (f, g) ε 4(1+ε) . This proves that J is open in J. Since it is also closed, we have J = J. Since µ t is bounded on J , by Inequality (2), Lemma 4 implies that J = J = [0, 1]. Now, Inequalities (1) and (2) imply that d P (ζ 0 , ζ 1 ) (1 + ε)d P (f, g)µ 0 . This proves (i) and (ii) follows from (2) for t = 1.
To prove that η approximates ζ as a root of f , it is enough to check that

D 3/2 µ(f, ζ)d P (ζ, η) (1 + ε)D 3/2 µ(f, ζ) 2 d P (f, g) ε 4 1 3 ,
by Theorem 2. To prove that ζ approximates η as a root of g, we check that

D 3/2 µ(g, η)d P (ζ, η) (1 + ε) 2 D 3/2 µ(f, ζ) 2 d P (f, g) ε(1 + ε) 4 1 3 .
This proves (iii) and the lemma.

Throughout this article, let ε = 1 13 , A = 1 52 , B = 1 101 and B = 1 65 . The main result that A, B, B , ε allows computing a homotopy continuation with discrete jumps is the following: Lemma 6. For any (f, ζ) ∈ V and g ∈ H and for any z

∈ P n , if D 3/2 µ(f, z)d P (z, ζ) A and D 3/2 µ(f, z) 2 d P (f, g) B then:
(i) z is an approximate root of g with some associated root η;

(ii) (1 + ε) -2 µ(f, z) µ(g, η) (1 + ε) 2 µ(f, z); (iii) D 3/2 µ(g, η)d P (z, η) 1 23 . If moreover D 3/2 µ(f, z) 2 d P (f, g) B then: (iv) D 3/2 µ(g, z )d P (z , η) A, where z = N (g, z). Proof. Firstly, we bound µ(f, ζ). Since D 3/2 µ(f, z)d P (z, ζ) A = ε 4 , Proposition 3 gives (1 + ε) -1 µ(f, ζ) µ(f, z) (1 + ε)µ(f, ζ). Next, we have D 3/2 µ(f, ζ) 2 d P (f, g) (1 + ε) 2 B ε 4(1+ε)
, thus Proposition 5 applies and ζ is an approximate root of g with some associated root η such that d P (ζ, η) (1 + ε)µ(f, ζ)d P (f, g) and(1 + ε) -1 µ(f, ζ) µ(g, η) (1 + ε)µ(f, ζ) andthis gives (ii).

Then, we check that z approximates η as a root of g. Indeed

d P (z, η) d P (z, ζ) + d P (ζ, η) A + (1 + ε) 2 B D 3/2 µ(f, z) (1 + ε) 2 (A + (1 + ε) 2 B ) D 3/2 µ(g, η) .
And

(1 + ε) 2 (A + (1 + ε) 2 B ) 1 23 < 1 3
, so Theorem 2 applies and we obtain (i) and (iii). We assume now that D 3/2 µ(f, z) 2 d P (f, g) B. All the inequalities above are valid with B replaced by B. By definition of an approximate root d P (z , η) 1 2 d P (z, η), so that

D 3/2 µ(g, η)d P (z , η) 1 2 (1 + ε) 2 (A + (1 + ε) 2 B) ε 4 . Thus (1 + ε) -1 µ(g, η) µ(g, z ) (1 + ε)µ(g, η).
To conclude, we have

D 3/2 µ(g, z )d(z , η) 1 2 (1 + ε) 3 (A + (1 + ε) 2 B) A. Let f, g ∈ S(H), with f = -g. Let t ∈ [0, 1] → Γ(g, f, t) be the geodesic path from g to f Γ(g, f, t) in S(H).
The condition f = -g guarantees that the geodesic path is uniquely determined, namely

Γ(g, f, t) = sin ((1 -t)α) sin(α) g + sin(tα) sin(α) f, (3) 
where α = d S (f, g) ∈ [0, π) is the angle between f and g. Let z ∈ P n such that D 3/2 µ(g, z)d P (z, η) A, for some root η of g. By Lemma 6(i), applied with g = f and η = ζ, the point z is an approximate root of g, with associated root η. Given g and z, we can compute an approximate root of f in the following way. Let g 0 = g, t 0 = 0 and by induction on k we define

µ k = µ(g k , z k ), t k+1 = t k + B D 3/2 µ 2 k d S (f, g)
, g k+1 = Γ(g, f, t k+1 ) and z k+1 = N (g k+1 , z k ).

Let K(f, g, z), or simply K, be the least integer such that t K+1 > 1, if any, and

K(f, g, z) = ∞ K(f, g, z)
otherwise. Let M (f, g, z) denote the maximum of all µ k with 0 k K. Let HC be the M (f, g, z)

HC(f, g, z) procedure that takes as input f , g and z and outputs z K . Algorithm 1 recapitulates the definition. It terminates if and only if K < ∞, in which case K is the number of iterations. For simplicity, we assume that we can compute exactly the square root function, the trigonometric functions and the operator norm required for the computation of µ(f, z). Section 2.5 shows how to implement things in the BSS model extended with the square root only.

Let h t = Γ(f, g, t) and let t ∈ J → ζ t be the homotopy continuation associated to t ∈ [0, 1] → h t , where η 0 is the associated root of z, defined on a maximal subinterval

J ⊂ [0, 1]. Let I p (f, g, z), M (f, g, z) M (f, g, z) def = sup t∈J µ(f t , ζ t ) and I p (f, g, z) def = J µ(h t , η t ) p dt. ( 4 
)
Algorithm 1. Homotopy continuation Input. f , g ∈ S(H) and z ∈ P n .

Precondition. There exists a root η of g such that 52 D 3/2 µ(g, z)d P (z, η) 1.

Output. w ∈ P n

Postcondition. w is an approximate root of f .

function

HC(f , g, z) t ← 1/ 101D 3/2 µ(g, z) 2 d S (f, g) while 1 > t do h ← Γ(g, f, t) z ← N (h, z) t ← t + 1/ 101D 3/2 µ(h, z) 2 d S (f, g) end while return z end function
The behavior of the procedure HC can be controlled in terms of the integrals I p (f, g, z). It is one of the corner stone of the complexity theory of homotopy continuation methods. The following estimation of the maximum of the condition number, along a homotopy path, in terms of the third moment of the condition number seems to be original. It will be important for the average complexity analysis.

Proposition 7. If J = [0, 1] then M (f, g, z) 151 D 3/2 I 3 (f, g, z). Proof. Let ε = 1 7 and let s ∈ [0, 1] such that µ(f s , ζ s ) is maximal. For all t ∈ [0, 1], d S (f s , f t ) |t -s|d S (f, g). Thus, if |t -s| ε 4(1 + ε)D 3/2 µ(f s , ζ s ) 2 d S (f, g) , ( 5 
) then µ(f t , ζ t ) (1 + ε) -1 µ(f s , ζ s ), by Proposition 5. Since d S (f, g) π, the diameter of the interval H of all t ∈ [0, 1] satisfying Inequality (5) is at least ε 4π(1+ε)D 3/2 µ(fs,ζs) 2 . Thus 1 0 µ(f t , ζ t ) 3 dt H µ(f s , ζ s ) 3 (1 + ε) 3 dt ε µ(f s , ζ s ) 4π(1 + ε) 4 D 3/2 1 151 µ(f s , ζ s ) D 3/2 .
Theorem 8 (Shub 20 ). With the notations above, if D 3/2 µ(g, z)d P (z, η) A then:

(i) HC(f, g, z) terminates if and only if I 2 (f, g, z) is finite, in which case J = [0, 1];
If moreover HC(f, g, z) terminates then:

(ii) (1 + ε) -2 M (f, g, z) M (f, g, z) (1 + ε) 2 M (f, g, z). (iii) K(f, g, z) 136 D 3/2 d S (f, g)I 2 (f, g, z); (iv) HC(f, g, z) is an approximate root of f ; (v) D 3/2 µ(f, ζ)d P (HC(f, g, z), ζ) 1 23
, where ζ is the associated root of HC(f, g, z). 20 Shub, "Complexity of Bezout's theorem. VI. Geodesics in the condition (number) metric".

Proof. Let η k denote ζ t k . Since D 3/2 µ 2 k d P (g k , g k+1 ) B for all k 0, Lemma 6(iv) proves, by induction on k that D 3/2 µ k d P (z k , η k ) A for any k 0.

Assume that [0, t k ] ⊂ J for some k 0 and let t ∈ [t k , t k+1 ] ∩ J so that Lemma 6(ii) applies to (g k , η k ), h t and z k and asserts that

D 3/2 µ 2 k d(g k , h t ) D 3/2 µ 2 k d(g k , g k+1 ) B. Because D 3/2 µ k d(z k , η k ) A,
(1 + ε) -2 µ k µ(h t , ζ t ) (1 + ε) 2 µ k . (6) By definition µ 2 k (t k+1 -t k ) = B D 3/2 d S (f,g)
, so integrating over t leads to

t k 0 µ(h t , ζ t ) 2 dt (1 + ε) -4 k-1 j=0 µ 2 j (t j+1 -t j ) = kB (1 + ε) 4 D 3/2 d S (f, g) , (7) 
and

sup J 0 µ(h t , ζ t ) 2 (1 + ε) 4 k j=0 µ 2 j (t j+1 -t j ) = (1 + ε) 4 (k + 1)B D 3/2 d S (f, g) . ( 8 
)
Assume now that I 2 (f, g, z) is finite. The left-hand side of Inequality ( 7) is finite so there exists a k such that t k+1 ∈ J. But then Inequalities (6) shows that µ t is bounded on J which implies, Lemma 4 that J = [0, 1]. And since t k+1 ∈ J, this proves that K is finite.

Conversely, assume that K is finite, i.e. HC(f, g, z) terminates. Then there exists a maximal k such that [0, t k ] ⊂ J and thus for all

t ∈ J µ(h t , ζ t ) (1 + ε) 2 max j k µ(g k , z k ).
So µ(h t , ζ t ) is bounded on J, which implies that J = [0, 1], and thus k = K. Inequality (8) then shows that I 2 (f, g, z) is finite, which concludes the proof of (i). We keep assuming that K is finite. Inequality ( 6) shows (ii). Since [0, t K ] ⊂ [0, 1], by definition, Inequalities ( 7) and (8) shows that

1 B(1 + ε) 4 D 3/2 d S (f, g)I 2 (f, g, z) -1 K (1 + ε) 4 B D 3/2 d S (f, g)I 2 (f, g, z).
We check that (1+ε) 4 B 136, which gives (iii). Finally, Lemmas 6(i) and 6(iii) show that z K approximates ζ 1 as a root of f and that D 3/2 µ(f, ζ 1 )d P (z K , ζ 1 ) 1 23 , which gives (iv) and (v).

A variant of Beltrán-Pardo randomization

An important discovery of Beltrán and Pardo is a procedure to pick a random system and one of its root simultaneously without actually solving any polynomial system. And from the complexity point of view, it turns out that a random pair (g, η) ∈ V is a good starting point to perform the homotopy continuation.

Let g ∈ S(H) be a uniform random variable, where the uniform measure is relative to the Riemannian metric on S(H). Almost surely g has finitely many roots in P n . Let η be one of them, randomly chosen with the uniform distribution. The probability distribution of the random variable (g, η) ∈ V is denoted ρ std . The purpose of Beltrán and Pardo's procedure 21 ρ std is to generate random pairs (g, η), according to the distribution ρ std without solving any polynomial system. We give here a variant which requires only a uniform random variable in S(C N ) S(H) as the source of randomness.

Let us assume that f = (f 1 , . . . , f n ) ∈ S(H) is a uniform random variable and write f as

f i = c i x di 0 + d i x di-1 0 n j=1 a i,j x i + f i (x 0 , . . . , x n ),
for some c i , a i,j ∈ C and f i ∈ H di such that f i (e 0 ) = 0 and df i (e 0 ) = 0. Let f = (f 1 , . . . , f n ) ∈ H. By construction, f (e 0 ) = 0 and df (e 0 ) = 0. Let 

M def =    a 1,1 • • • a 1,n c 1 . . . . . . . . . . . . a n,1 • • • a n,n c n    ∈ C n×(n+1
Ψ i def = d i n i=0 x i ζ i di-1 n j=0 m i,j x j , (9) 
where ζ i denotes the complex conjugation. By construction

Ψ M,ζ (ζ) = 0. Let u ∈ U (n + 1), the unitary group of C n+1 , such that u(e 0 ) = ζ.
The choice of u is arbitrary but should depend only on ζ. For example, we can choose u, for almost all ζ, to be the unique element of U (n + 1) with determinant 1 that is the identity on the orthogonal complement of {e 0 , ζ} and that sends e 0 to ζ.

Finally, let g = f • u -1 + Ψ M,ζ ∈ H. By construction g(ζ) = 0. We define BP(f ) def = (g, ζ) which is a point in the solution variety V. BP(f ) Theorem 9. If f ∈ S(H) is a uniform random variable, then BP(f ) ∼ ρ std .
Proof. We reduce to another variant of Beltrán-Pardo procedure given by Bürgisser and Cucker 22 in the case of Gaussian distributions. Let f ∈ S(H) be a uniform random variable, and let χ ∈ [0, ∞) be an independent random variable following the chi distribution with 2N degrees of freedom, so that χf is a centered Gaussian variable in H with covariance matrix I 2N (which we call hereafter a standard normal variable). For ζ ∈ P n , let R ζ ⊂ H be the subspace of all g such that g(ζ) = 0 and dg(ζ) = 0 and let S ζ be the orthogonal complement of R ζ in H. The system χf splits orthogonally as χf + χh, where χf ∈ R e0 and χh ∈ S e0 are independent standard normal variables. Let M ∈ C n×(n+1) , ζ ∈ P n , ζ ∈ S n and u ∈ U (n + 1) be defined in the same way as in the definition of BP(f ). The map that gives M as a function of h is an isometry S e0 → C n×(n+1) , so χM is a standard normal variable that is independent from f . Let λ ∈ S(C) be an independent uniform random variable, so that λζ is uniformly distributed in ker M ∩ S n when M has full rank, which is the case with probability 1. The composition map g ∈ R e0 → g • u -1 ∈ R ζ is an isometry. Thus, conditionally to ζ, the system χf • u -1 is a standard We check easily that Ψ M,λζ = M F = h , where M F denotes the Froebenius matrix norm, that is the usual Hermitian norm on C n×(n+1) . Moreover f • u -1 = f , this is the fundamental property of Weyl's inner product on H. Thus H = f = χ, and in turn

f • u -1 + Ψ M,λζ , ζ = (H/ H , ζ) ∼ ρ std ,
which is almost what we want, up to the presence of λ. Let ∆ ∈ C n×n be the diagonal matrix given by ( λdi-1 ) n+1) and ker ∆M = ker M so (χM, u, ζ ) and (χ∆M, u, ζ ) have the same probability distribution. Since χf is independent from χM and λ, it follows that the system H defined by

1 i n . It is clear that Ψ M,λζ = Ψ ∆M,ζ . The map M → ∆M is an isometry of C n×(
H def = χf • u -1 + Ψ χM,ζ ,
has the same probability distribution as H. To conclude the proof, we note that H = χ and that (H /χ, ζ) = BP(f ).

Given f ∈ S(H), Beltrán and Pardo's algorithm proceeds in sampling a system g ∈ S(H) from the uniform distribution and then computing HC(f, BP(g)). If the input f is a uniform random variable then we can evaluate the expected number of homotopy steps E(K(f, BP(g))). Indeed, let η be root of g, uniformly chosen, the theorem above asserts that BP(g) has the same probability distribution as (g, η) so E(K(f, BP(g))) = E(K(f, g, η)). Thanks to Theorem 8(iii), it is not difficult to see that E(K(f, g, η)) 214 D 3/2 E(µ(g, η) 2 ). This is why the estimation of E(µ(g, η) 2 ) is another corner stone of the average complexity analysis of homotopy methods. Deriving from a identity of Beltrán and Pardo, we obtain the following: 

E(µ(g, η) 2+2s ) = Γ(N + 1) Γ(N -s) n k=1 n + 1 k + 1 Γ(k -s) Γ(k) n -k+s .
We use the inequalities x -y Γ(x) Γ(x -y) (x -1) -y Γ(x), for x ∈ [1, ∞) and y ∈ [0, 1], which comes from the log-convexity of Γ. In particular, since 0 s < 1,

Γ(N + 1) Γ(N -s) = N Γ(N ) Γ(N -s) N 1+s and Γ(k -s) Γ(k) (k -1) -s . Thus E(µ(g, η) 2+2s ) N 1+s n + 1 2 Γ(1 -s) Γ(1) n s-1 + n k=2 n + 1 k + 1 (k -1) -s n -k+s .
On the one hand

(1 -s)Γ(1 -s) = Γ(2 -s) Γ(2) = Γ(1), so n + 1 2 Γ(1 -s) Γ(1) n s-1 (n + 1)n 2 1 1 -s n s-1 n 1+s 1 -s .
On the other hand,

n k=2 n + 1 k + 1 (k -1) -s n -k+s n 1+s n+1 k=3 n + 1 k n -k = n 1+s 1 + 1 n n+1 -1 - n + 1 n - 1 n 2 n + 1 2 n 1+s 4 n 1+s 4(1 -s)
.

Putting together all above, we obtain the claim.

2 Derandomization of the Beltrán-Pardo algorithm

Duplication of the uniform distribution on the sphere

An important argument of the construction is the ability to produce approximations of two independent uniform random variables in S 2N -1 from a single uniform random variable in S 2N -1 given with infinite precision. More precisely, let Q be a positive integer. This section is dedicated to the construction of two functions -Q and {-} Q from the sphere S 2N -1 to itself, respectively called the truncation and the fractional part at precision Q. For u ∈ S 2N -1 , u Q is close to u and if u is uniform random variable, then {u} Q is nearly uniformly distributed in S 2N -1 and nearly independent from u Q , in the following sense:

Lemma 11. For any u ∈ S 2N -1 , d S ( u Q , u) 3N 1/2 /Q. Moreover, for any continuous nonnegative function Θ : S 2N -1 × S 2N -1 → R, 1 vol(S 2N -1 ) S 2N -1 Θ u Q , {u} Q du exp 2N 3/2 Q vol(S 2N -1 ) 2 S 2N -1 S 2N -1 Θ ( u Q , v) du dv.
For x ∈ R, let A(x) denote the integral part of a and let A Q (a)

def = Q -1 A(Qa) be the trunca- tion at precision Q. For x ∈ R 2N -1 , let A Q (x) ∈ R 2N -1 be the vector (A Q (x 1 ), . . . , A Q (x 2N -1 )) and let B Q (x) def = (x-A Q (x))Q, which is a vector in [0, 1] 2N -1 . We note that A Q (x)-x 2 (2N -1)/Q 2 , because the difference is bounded componentwise by 1/Q.
Let C and C + denote [-1, 1) 2N -1 and [0, 1) 2N -1 respectively, and let F (x) = (1+ x 2 ) -N . We first show that if x ∈ C is a random variable with probability density function F (divided by the appropriate normalization constant) then B Q (x) is nearly uniformly distributed in C + and nearly independent from A Q (x).

Lemma 12. For any continuous nonnegative function

Θ : [-1, 1] 2N -1 × [0, 1] 2N -1 → R, C Θ (A Q (x), B Q (x)) F (x)dx exp 2N 3/2 Q C+ C Θ (A Q (x), y) F (x)dx dy.
Proof. For any integers -Q

k i < Q, for 1 i 2N -1, the function A Q is constant on the set 2N -1 i=1 ki Q , ki+1 Q
, and these sets form a partition of C. Let X 1 , . . . , X (2Q) 2N -1 denote an enumeration of these sets and let a k denote the unique value of

A Q on X k . The diameter of X k is √ 2N -1/Q. Since the function x ∈ [0, ∞) → -N log(1+x 2 ) is N -Lipschitz continuous, we derive that max X k F e N √ 2N -1/Q min X k F e 2N 3/2 /Q min X k F. ( 10 
)
For any 1 k (2Q) 2N -1 , we have

X k Θ (A Q (x), B Q (x)) F (x)dx max X k F X k Θ (a k , (x -a k )Q) dx, because A Q (x) = a k on X k and by definition of B Q (x). A simple change of variable shows that X k Θ (a k , (x -a k )Q) dx = vol(X k ) C+ Θ(a k , y)dy.
Besides, for all y ∈ C + ,

Θ(a k , y) 1 vol(X k ) min X k F X k Θ (A Q (x), y) F (x)dx.
Putting together all above and summing over k gives the claim.

Thanks to a method due to Sibuya, we may transform a uniform random variable of C + into a uniform random variable in S 2N -1 . Let x = (x 1 , . . . , x 2N -1 ) ∈ C + , let y 1 , . . . , y N -1 denote the numbers x N +1 , . . . , x 2N -1 arranged in ascending order, and let y 0 = 0 and y N = 1. Let S(x) ∈ R 2N denote the vector such that for any

1 i N S(x) S(x) 2i-1 def = y i -y i-1 cos(2πx i ) and S(x) 2i def = y i -y i-1 sin(2πx i ). (11) 
Proposition 13 (Sibuya 25 ). If x is a uniformly distributed random variable in C + , then S(x) is uniformly distributed in S 2N -1 .

We now define -Q and {-} Q . Let Σ ⊂ R 2N be the set of all x ∈ R 2N such that x ∞ = 1. It is divided into 4N faces that are isometric to C: they are the sets

Σ ε i def = {x ∈ Σ | x i = ε},
for ε ∈ {-1, 1} and 1 i 2N and the isometries are given by the maps

t i,ε : Σ ε i → C, x → (x 1 , . . . , x i-1 , x i+1 , . . . , x n ).
Through these isometries, we define the functions A Q and B Q on Σ: for x ∈ Σ ε i we set

A Q (x) def = t -1 i,ε (A Q (t i,ε (x))) ∈ Σ ε i and B Q (x) def = B Q (t i,ε (x)) ∈ C + . Let ν ∞ : u ∈ S 2N -1 → u/ u ∞ ∈ Σ and its inverse ν 2 : x ∈ Σ → x/ x ∈ S 2N -1
. Finally, we define, for u ∈ S 2N -1 , using Sibuya's function S, see Equation ( 11),

u Q , {u} Q u Q def = ν 2 A Q (ν ∞ (u)) and {u} Q def = S B Q (ν ∞ (u)) . (12) 
We may now prove Lemma 11. 25 Sibuya, "A method for generating uniformly distributed points on N -dimensional spheres".

Proof of Lemma 11.

Let u ∈ S 2N -1 . It is well-known that d S ( u Q , u) π 2 u Q -u . Furthermore, the map ν 2 is clearly 1-Lipschitz continuous on Σ so u Q -u A Q (ν ∞ (u))- ν ∞ (u)
and we already remarked that the latter is at most

√ 2N -1/Q. With π 2 √ 2
3, this gives the first claim.

Concerning the second claim, we consider the partition of the sphere by the sets ν 2 (Σ ε i ). For any u ∈ ν 2 (Σ ε i ), we have

ν ∞ (u) = u 1 u i , . . . , u i-1 u i , 1, u i+1 u i , . . . , u n u i .
Hence, by Lemma 14 below, the absolute value of the Jacobian of the map

ν ∞ : ν 2 (Σ ε i ) → Σ ε i at some ν 2 (x), x ∈ Σ ε 1 , is precisely (ν 2 (x) i ) -2N = x 2N = 1 + t i,ε (x) 2 N = F (t i,ε (x)) -1 .
Thus, the change of variable ν ∞ gives

ν2(Σ ε i ) Θ u Q , {u} Q du = Σ ε i Θ ν 2 A Q (x) , S(B Q (x)) F (t i,ε (x))dx,
and then Lemma 12 (applied over Σ ε i with the isometry t i,ε :

Σ ε i → C) implies exp 2N 3/2 Q Σ ε i C+ Θ ν 2 A Q (x) , S(y) dy F (t i,ε (x))dx
and Proposition 13 gives the equality

= exp 2N 3/2 Q vol(S 2N -1 ) Σ ε i S 2N -1 Θ ν 2 A Q (x) , v dv F (t i,ε (x))dx,
and applying the inverse change of variable ν 2 : Σ ε i → ν 2 (Σ ε i ) and summing over i and ε gives the claim.

Lemma 14. Let H = x ∈ R 2N x 1 > 0 and let ϕ be the map

ϕ : S 2N -1 ∩ H -→ R 2N -1 (u 1 , . . . , u 2N ) -→ u 2 u 1 , . . . , u 2N u 1 .
Then, for any u

∈ S 2N -1 ∩ H, |det(dϕ(u))| = u -2N 1 
, where S 2N -1 and R 2N -1 are considered with their usual Riemannian structures.

Proof. Let ψ : u ∈ R 2N ∩ H → u2 u1 , . . . , u 2N u1
, so that ϕ is the restriction of ψ to the sphere S 2N -1 . Firstly, the matrix of dψ(x), for some x ∈ R 2N , in the standard bases of R 2N and R 2N -1 , is given by

Mat (dϕ(x)) = 1 x 2 1    -x 2 x 1 0 . . . . . . -x 2N 0 x 1    . (13) 
Let u ∈ S 2N -1 ∩H. We may assume without loss of generality that u is of the form (u 1 , u 2 , 0, . . . , 0), with u 2 1 + u 2 2 = 1, because |det(dϕ(u))| is invariant under any unitary transformation of u that preserves the first coordinate. Let T ⊂ R 2N be the tangent space at u of S 2N -1 . Naturally, dϕ(u) = dψ(u) |T . An orthonormal basis of T is given by {f, e 3 , . . . , e 2N }, where f = (-u 2 , u 1 , 0, . . . , 0) and where e i is the ith coordinate vector. Using Equation ( 13), we compute that dϕ(u)(f ) = u -2 1 e 1 and that dϕ(u)

(e i ) = u 1 -1 e i-1 , for 3 i 2N . Thus |det (dϕ(u))| = u -2N 1 .
The orthogonal monomial basis of H gives an identification H R 2N and we define this way the truncation f Q and the fractional part {f } Q of a polynomial system f ∈ S(H). The derandomization relies on finding a approximate root of f Q , for some Q large enough, and using {f } Q as the source of randomness for the Beltrán-Pardo procedure. Namely, we compute HC( f Q , BP({f } Q )). Almost surely, this computation produces an approximate root of f Q . If Q is large enough, it is also an approximate root of f . The main technical difficulty is to choose a precision and to ensure that the result is correct while keeping the complexity under control.

Homotopy continuation with precision check

Let f , f , g ∈ S(H) and let η ∈ P n be a root of g. Throughout this section, we assume that d S (f, f ) ρ, for some ρ > 0 and that d S (f, g) π/2. Up to changing g into -g, the latter is always true, since d S (f, -g) = π -d S (f, g). The notations I 2 , M and M used in this section have been introduced in §1.2. If ρ is small enough, then HC(f , g, η) is an approximate root not only of f but also of f . But if ρ fails to be small enough, HC(f , g, η) may not even terminate or, to say the least, HC(f , g, η) may take arbitrarily long to compute something that is not an approximate root of f . To control the complexity of the new algorithm, it is important to be able to recognize this situation at least as fast as HC(f, g, η) would terminate.

As in §1.2, let f t = Γ(g, f, t) and f t = Γ(g, f , t). Let t ∈ J → ζ t ∈ P n be the homotopy continuation associated to f t , on [0, 1], and t ∈ J → ζ t ∈ P n be the one associated to f t , defined on some maximal intervals J, J ⊂ [0, 1] containing 0. Let µ t = µ(f t , ζ t ) and µ t = µ(f t , ζ t ).

Lemma 15. d S (f t , f t ) 2d S (f, f ) for any t ∈ [0, 1]. Proof. Let α t = d S (f t , f t ), β = d S (f, g) π
2 and γ = d S (f , g). Without loss of generality, we may assume that α 1 < π 2 , otherwise the inequality α t 2α 1 that we want to check is trivial. The spherical law of cosines applied to the spherical triangle {g, f t , f t } gives the equality cos α t = cos(tβ) cos(tγ) + sin(tβ) sin(tγ) cos A,

where A is the angle of the triangle at g. We deal with three cases. Firstly, we assume that γ π 2 . Then cos α t decreases at t increases: Indeed, Equation ( 14) rewrites as

cos α t = cos(tβ -tγ) -sin(tβ) sin(tγ)(1 -cos A) (15) 
and, as t increases, cos(tβ -tγ) decreases, because |β -γ| π, and both sin(tβ) and sin(tγ) increase, because β, γ π 2 . Thus cos α t cos α 1 , for 0 t 1, and it follows that α t α 1 . Second case, we assume that γ > π 2 and β = π 2 . For t ∈ [0, 1], Equation (15) shows that

cos α t cos( π 2 -γ) -(1 -cos A) = sin γ + cos A -1,
using cos(tβ -tγ) cos(β -γ) and 1 -cos(A) 0. Equation ( 14) shows that cos α 1 = sin γ cos A. In particular cos A 0, since α 1 π 2 and sin γ 0. It follows that 2 sin 2 γ cos 2 A sin 4 γ + cos 4 A sin γ + cos A, and finally that cos(2α 1 ) cos α t , because cos(2α 1 ) = 2 cos 2 α 1 -1. Since 2α 1 π, we obtain that 2α 1 α t , which concludes in the second case.

Third case, we assume only that γ > π 2 (and always β π 2 ). Let h ∈ S(H) be the unique point on the spherical segment [f, f ] such that d S (g, h) = π 2 . In particular, we have that d S (f, f ) = d S (f, h) + d S (h, f ) and

α t = d S (f t , f t ) d S (f t , h t ) + d S (h t , f t ),
where h t def = Γ(g, h, t). The first case shows that d S (f t , h t ) d S (f, h) and the second case shows that d S (h t , f t ) 2d S (h, f ).

Thus α t d S (f, h) + 2d S (h, f ) 2d S (f, f ).
Recall that M (f, g, ζ) denotes sup t∈J µ t , see §1.2 and Equation (4).

Lemma 16. If D 3/2 M (f, g, ζ) 2 ρ 1 168 then J = J = [0, 1] and for any t ∈ [0, 1]:

(i) (1 + ε) -1 µ t µ t (1 + ε)µ t ; (ii) D 3/2 µ t d P (ζ t , ζ t ) 1 51 .
Proof. The assumption implies that M (f, g, ζ) < ∞, and thus J = [0, 1], by Lemma 4. Let S the set of all t ∈ J such that D This leads to the procedure HC , see Algorithm 2. It modifies procedure HC (Algorithm 1) in only one respect: each iteration checks up on the failure condition D 3/2 µ(h, z) 2 ρ > 1 151 . If the failure condition is never met, then HC computes exactly the same thing as HC. Recall that M (f , g, η) denotes the maximum condition number µ that arises in the homotopy continuation HC(f , g, η), and that I p (f, g, η) denote the integral of µ p along the homotopy path from g to f , see §1.2 and Equation (4).

Proposition 17. If d S (f, g) π 2 and d(f, f ) ρ, then the procedure HC (f , g, η, ρ):

(i) terminates and performs at most 158 D 3/2 d S (f, g)I 2 (f, g, η) + 4 steps;

Besides D 3/2 I 2 (f s , g, η)ρ (1 + ε) 2 D 3/2 M (f s , g, η) 2 ρ (1+ε) 2 112 , so we obtain K(f s , g, η) 158D 3/2 d S (f s , g)I 2 (f s , g, η) + 4 158D 3/2 d S (f, g)I 2 (f, g, η) + 4.
Together with Equation ( 16), this completes the proof of (i).

Let us assume that the procedure HC (f , g, η, ρ) succeeds and let z be its output, which is nothing but HC(f , g, η). Theorem 8(v) shows that D 3/2 µ 1 d P (z, ζ 1 ) 1 23 , where ζ 1 is the root of f 1 = f obtained by homotopy continuation. As above, with s = 1, we check that µ 1 (1 + ε)µ 1 andD 3/2 µ 1 d P (ζ 1 , ζ 1 ) 1 51 using Lemma 16. Thus

D 3/2 µ 1 d P (z, ζ 1 ) (1 + ε) 1 23 + 1 51 < 1 3 .
Then z approximates ζ 1 as a root of f 1 , by Theorem 2. This proves (ii).

Lastly, let us assume that

D 3/2 M (f, g, η) 2 ρ 1 236 . Lemma 16 implies that M (f, g, η) (1 + ε) -1 M (f , g, η) and Theorem 8(ii) shows that M (f , g, η) (1 + ε) 2 M (f , g, η). Thus D 3/2 M (f , g, η) 2 ρ (1 + ε) 6 D 3/2 M (f, g, η) 2 ρ (1 + ε) 6 236 1 151
and HC (f , g, η, ρ) succeeds. This proves (iv).

A deterministic algorithm

Let f ∈ S(H) be the input system to be solved and let Q 1 be a given precision. We compute

f = f Q , (g, η) = BP({f } Q ), ε = sign(π/2 -d S (f, g)) and ρ = 3N 1/2 /Q.
Lemma 11 shows that d S (f, f ) ρ. Then we run the homotopy continuation procedure with precision check HC (f , εg, η, ρ), which may fail or output a point z ∈ P n . If it does succeed, then Proposition 17 ensures that z is an approximate root of f . If the homotopy continuation fails, then we replace Q by Q 2 and we start again, until the call to HC succeeds. This leads to the deterministic procedure DBP, Algorithm 3. If the computation of DBP(f ) terminates then the result is an approximate root of f . Section 2.4 studies the average number of homotopy steps performed by DBP(f ) while Section 2.5 studies the average total cost of an implementation of DBP in the BSS model extended with the square root.

Average analysis

Let f ∈ S(H) be the input system, a uniform random variable, and we consider a run of the procedure DBP(f ). Let Q k be the precision at the kth iteration, namely

Q k = N 2 k . We set Q k also f k , g k , η k , ε k , ρ k f k = f Q k , (g k , η k ) = BP({f } Q k ), ε k = sign(π/2 -d S (f, g k )) and ρ k = 3N 1/2 /Q k .
Let Ω be the least k such that the homotopy continuation with precision check HC (f k , ε k g k , η k , ρ k ) Ω succeeds. Note that Ω is a random variable. To perform the average analysis of the total number of homotopy steps, we first deal with each iteration separately (Lemmas 18 and 19) and then give tail bounds on the probability distribution of Ω (Proposition 20). Even if the Algorithm 3. Deterministic variant of Beltrán-Pardo algorithm

Input. f ∈ H Output. z ∈ P n Postcondition. z is an approximate root of f function DBP(f ) Q ← N repeat Q ← Q 2 f ← f Q (g, η) ← BP({f } Q ) ε ← sign(Re f, g ) ρ ← (2N ) 1/2 /Q z ← HC (f , εg, η, ρ) until HC succeeds return z end function
number of steps in each iteration are not independent from each other and from Ω, Hölder's inequality allows obtaining a bound on the total number of steps (Theorem 21).

Let (g, η) ∈ V be a random variable with distribution ρ std and independent of f . g, η

Lemma 18. Let Θ : H × V → R be any nonnegative measurable function. For any k 1,

E (Θ(f k , ε k g k , η k )) 10E (Θ(f k , g, η)) .
Proof. It is an application of Lemma 11. We first remark that ε k ∈ {-1, 1} so

Θ (f k , ε k g k , η k ) Θ (f k , g k , η k ) + Θ (f k , -g k , η k ) . Then E (Θ(f k , g k , η k )) = 1 vol(S(H)) S(H) Θ f Q k , BP({f } Q k ) df exp 2N 3/2 Q k vol(S(H)) 2 S(H)×S(H) Θ ( f Q k , BP(g)) df dg by Lemma 11 = exp 2N 3/2 Q k vol(S(H)) H V Θ ( f Q k , g, η) df dρ std (g, η) by Theorem 9 = exp 2N 3/2 Q k E (Θ(f k , g, η)) .
Similarly,

E (Θ(f k , -g k , η k )) exp 2N 3/2 Q k E (Θ(f k , -g, η)
), and since g and -g have the same probability distribution, E (Θ(f k , -g, η)) = E (Θ(f k , g, η)). To conclude, we remark that Q k N 2 and that e √ 2 5.

Lemma 19. E(I p (f, g, η)) = E(µ(g, η) p ) for any p 1 and k 1.

(ii) if f ∈ S(H) is a uniform random variable, then the average number of operations performed by A(f ) is at cnD 3/2 N (N + n 3 ).

Firstly, we describe an implementation of Algorithms HC and DBP in the extended BSS model. The first difficulty is the condition number µ(f, z): it rests upon the operator norm for the Euclidean distance which is not computable with rational operations. While there are efficient numerical algorithms to compute such an operator norm in practice, it is not so easy to give an algorithm that approximates it in good complexity in the BSS model. 26 Fortunately, we can easily compute the operator norm of a matrix M ∈ C n×n within a factor 2 as follows: 27 we first compute a tridiagonalization T of the Hermitian matrix M t M with O(n 3 ) operations, using Householder's reduction, and then 28

1 √ 3 T 1 M 2 T 1 ,
where T 1 is the operator 1 -norm of T , that is the maximum 1 -norm of a column. Therefore, up to a few modifications in the constants, we may assume that µ(f, z) is computable in O(n 3 ) operations, given df (z).

The second difficulty lies in the use of the trigonometric functions sine and cosine. They first appear in the definition of the geodesic path Γ, Equation (3), which is used in Algorithm 2. In the case where d S (f, g) π/2, it is good enough to replace Γ(g, f, δ) by δf + (1 -δ)g δf + (1 -δ)g .

This is classical and implies modifications in the constants only. 29 The trigonometric functions also appear in Sibuya's function S, see Equation ( 11). This issue can be handled with power series approximations:

Lemma 24. There is a BSS machine with square root that computes, for any Proof.

Because Q k = N 2 k , E Ω k=1 log Q k = ∞ k=1 log Q k P(Ω k) = log N ∞ k=1 2 k P(Ω k).
Lemma 22, with δ = 1, C = 2 and L = 5 gives that

∞ k=1 2 k P(Ω k) 2 L+2 + 2 L+19 N 5 N 2 L -2 129,
where we used that N 2.

This concludes the proof of Theorem 23.

Conclusion

The derandomization proposed here relies on extracting randomness from the input itself, which is made possible by the BSS model and the infinite precision it provides. Actually, this might also work under finite, and rather moderate, precision. Indeed, in the kth iteration of Algorithm 3, we need, very loosely speaking, about log Q k digits of precision but not much more, because by construction, the homotopy continuation procedure HC aborts when more precision would be required for the result to be relevant. And then, Lemma 27 shows that log Q k , is typically no more that 129 log N . So it is reasonnable to think that, extending the work of Briquel et al.,31 we may run a variant of Algorithm 3 on a finite precision machine and obtain a significant probability of success as long as we work with C log N digits of precision, for some constant C > 0.

Besides, Armentano et al. 32 proposed recently a new complexity analysis of Beltrán-Pardo algorithm which relies on a refined homotopy continuation algorithm.33 They obtained a randomized algorithm that terminates on the average on a random input after O(nD 3/2 N 1/2 ) homotopy steps. This is a significant improvement on the previously known O(nD 3/2 N ) bound. The derandomization method should also apply to this refined algorithm, in all likelihood, but this is not immediate: to devise the homotopy continuation with precision check, we had to look deep inside the continuation process. Adapting the method to a refined homotopy continuation process will inevitably lead to further difficulties.

Contents 1

 1 The method of homotopy continuation 4 1.1 Approximate root . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Homotopy continuation algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 A variant of Beltrán-Pardo randomization . . . . . . . . . . . . . . . . . . . . 9 2 Derandomization of the Beltrán-Pardo algorithm 12 2.1 Duplication of the uniform distribution on the sphere . . . . . . . . . . . . . . 12 2.2 Homotopy continuation with precision check . . . . . . . . . . . . . . . . . . . 15 2.3 A deterministic algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 Average analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.5 Implementation in the BSS model with square root . . . . . . . . . . . . . . . 21

Theorem 10 .

 10 If (g, η) ∼ ρ std , then E(µ(g, η) p ) 3 4-p (nN ) p/2 for any 2 p < 4. Proof. Let s = p/2 -1. Beltrán and Pardo 24 state that

  N and any x ∈ [0, 1] 2N -1 , with O(N log N ) operations, a point S(x) ∈ S 2N -1 such that Lemma 26. E(Ω) 7 Proof. By Lemma 22, with C = 1, δ = 1 and L = 5,

  ) . Almost surely, ker M has dimension 1; Let ζ ∈ P n be the point representing ker M and let ζ ∈ S(C n+1 ) be the unique element of ker M ∩ S(C n+1 ) whose first nonzero coordinate is a real positive number. Let Ψ M,ζ = (Ψ 1 , . . . , Ψ n ) ∈ H be defined by

  Bürgisser and Cucker, Condition, Chap. 17. 22 Bürgisser and Cucker, Condition, Theorem 17.21(a). normal variable in R ζ . As a consequence, and according to Bürgisser and Cucker 23 , the system H

def = χf • u -1 + Ψ

χM,λζ is a standard normal variable in H and ζ is uniformly distributed among its roots. Hence H/ H is uniformly distributed in S(H) and (H/ H , ζ) ∼ ρ std .

  3/2 µ t d P (ζ t , ζ t ) 1 51 . It is a nonempty closed subset of J . Let t ∈ S. By Lemma 15, we have d P (f t , f t ) 2ρ, so Proposition 5 implies that there exists a root η of f t such that d P (η, ζ t ) 2(1 + ε)µ t ρ and (1 + ε) -1 µ t µ(f t , η) (1 + ε)µ t . Because d P (η, ζ t ) d P (η, ζ t ) + d P (ζ t , ζ t ) and t ∈ S we obtain Theorem 2 implies that ζ t approximates η as a root of f t . Since it is also an exact root of f t , this implies ζ t= η. In particular D 3/2 µ t d P (ζ t , ζ t ) 2(1 + ε)D 3/2 µ 2 t ρ < 151 . Thus t is in the interior of S, which proves that S is open and finally that S = J. Moreover, since µ t (1 + ε)µ t , µ t is bounded on J , thus J = [0, 1].

	D 3/2 µ 2 t d P (f t , f t )	2 112	=	ε 4(1 + ε)	.	
	D 3/2 µ(f t , η)d P (η, ζ t ) D 3/2 (1+ε)µ t 2(1 + ε)µ t ρ +	1 51D 3/2 µ t	(1+ε) 2 2 112	+(1+ε)	1 51	1 3	.
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Algorithm 2. Homotopy continuation with precision check

Input. f , g ∈ S(H), z ∈ P n and ρ > 0.

Output. w ∈ P n or fail.

Specifications. See Proposition 17.

function HC (f , g, z, ρ) t ← 1/ 101D 3/2 µ(g, z) 2 d S (f, g) h ← g while 1 > t and D 3/2 µ(h, z) 2 ρ 1 151 do h ← Γ(g, f, t) z ← N (h, z) t ← t + 1/ 101D 3/2 µ(h, z) 2 d S (f, g) end while if D 3/2 µ(h, z) 2 ρ > [START_REF] References | A stable, polynomial-time algorithm for the eigenpair problem[END_REF] 151 then return fail else return z end if end function (ii) outputs an approximate root of f , or fails;

(iii) succeeds ( i.e. outputs some z ∈ P n ) if and only if D 3/2 M (f , g, η) 2 ρ 1 151 ;

(iv) succeeds if D 3/2 M (f, g, η) 2 ρ 1 236 .

Proof. At each iteration, the value of t increases by at least 151ρ/(101d S (f , g)), thus there are at most 101d S (f , g)/(151ρ) iterations before termination.

By construction, the procedure HC (f , g, η, ρ) fails if and only if at some point of the procedure HC(f , g, η, ρ) it happens that D 3/2 µ(h, z) 2 ρ > 1 151 . In other words, the procedure HC (f , g, η, ρ) fails if and only if D 3/2 M (f , g, η) 2 ρ > 1 151 , by definition of M . And since the procedure terminates, it succeeds if and only if it does not fail. This proves (iii).

Let us bound the number K (f , g, η, ρ) of iterations of the procedure HC (f , g, η, ρ) before termination. If HC (f , g, η, ρ) succeeds, then K (f , g, η, ρ) = K(f , g, η). Furthermore

Let s ∈ [0, 1] such that HC (f s , g, η, ρ) succeeds, that is to say D 3/2 M (f s , g, η) 2 ρ 1 151 . Theorem 8(ii) shows that

In particular

112 and Lemma 16 shows that (1 + ε) -2 µ t (1+ε)µ t for all t s. So we obtain that (1+ε

by Theorem 8(iii)

by Lemma 15.

Proof. Let h t = Γ(g, f, t), for t ∈ [0, 1], and let ζ t be the associated homotopy contin-Let τ ∈ [0, 1] be a uniform random variable independent from f and (g, η). Clearly E(I p (f, g, η)) = E(µ(h τ , ζ τ ) p ), so it is enough to prove that (h τ , ζ τ ) ∼ ρ std . The systems f and g are independent and uniformly distributed on S(H). So their probability distributions is invariant under any unitary transformation of H. Then so is the probability distribution of h t for any t ∈ [0, 1], and there is a unique such probability distribution: the uniform distribution on S(H). The homotopy continuation makes a bijection between the roots of g and those of h t . Since η is uniformly chosen among the roots of g, so is ζ t among the roots of h t . That is, (h t , ζ t ) ∼ ρ std for all t ∈ [0, 1], and then

by Proposition 17(iv)

) by Markov's inequality.

Lemma 19 and Theorem 10 imply then

All in all, and since

Let K(f ) be the total number of homotopy steps performed by procedure DBP(f ) and let K(f ) the number of homotopy steps performed by procedure HC (f k , ε k g k , η k , ρ k ) be denoted by

By Lemma 18 and Proposition 17(i),

, and because d S (f, g) π and by Minkowski's inequality, we obtain

Jensen's inequality implies that I 2 (f, g, η) p I 2p (f, g, η). Then E (I 2p (f, g, η)) We write the expectation of K(f ) as

Let q = 1/ log N , so that 1 p + 1 q = 1. From Hölder's inequality, E(X k 1 Ω k ) E(X p k ) 1/p P(Ω k) 1/q and thus

Lemma 22 below, with C = 1, L = 4 and δ = 1/q, shows that

2 17/ log 21 e 5 e 2 L -1 6.

The claim follows then from Equation ( 17) and 6 • 15000 2 17 .

Lemma 22. For any C, δ > 0 and any integer L 2 such that

Proof. For any k, Proposition 20 implies that [START_REF] References | A stable, polynomial-time algorithm for the eigenpair problem[END_REF] . Of course, it also holds that

and the latter sum is a geometric sum which evaluates to C L+2 /(N δ2 L -C).

Implementation in the BSS model with square root

Algorithms HC and DBP (Algorithms 2 and 3 respectively) have been described assuming the possibility to compute exactly certain nonrational functions: the square root, the trigonometric functions sine and cosine and the operator norm of a linear map. A BSS machine can only approximate them, but it can do it efficiently. I propose here an implementation in the BSS model extended with the ability of computing the square root of a positive real number at unit cost. We could reduce further to the plain BSS model at the cost of some lengthy and nearly irrelevant technical argumentation. We now prove the main result of this article:

Theorem 23. There exists a BSS machine A with square root and a constant c > 0 such that for any positive integer n and any positive integers d 1 , . . . , d n :

(i) A(f ) computes an approximate root of f for almost all f ∈ H; Jacobian is almost constant: we can check that there is a universal constant C > 0 that

Thus for any continuous function θ :

θ(y)dy.

Let S be the function [0, 1] 2N -1 → S 2N -1 defined in the same way as S, Equation ( 11), but with Cos Q and Sin Q in place of sin and cos respectively, with some Q ∼ log N such that (1 + Ce -Q ) N 2. It is easy to check that S satisfies the desired properties.

In Algorithm DBP, there is no harm in using S in place of S. We obtain this way variants of Algorithms HC and DBP that fit in the BSS model with square root. It remains to evaluate the overall number of operations. It is well known that f (z) and df (z) can be computed at a point z ∈ C n+1 in O(N ) operations-the latter as a consequence of a theorem of Baur and Strassen. 30 Together with the approximate computation of the operator norm discussed above, this implies the following: Lemma 25. There exists a BSS machine with square root that compute µ(f, z) (within a factor 2) and N (f, z), for any f ∈ H and z ∈ P n , in O(N + n 3 ) operations.

The cost of the kth iteration in Algorithm DBP is dominated by the cost of computing f Q k and BP({f } Q k ) and the cost of the call to HC'. The cost of the call to HC' is dominated by the cost of the homotopy steps. Each homotopy step costs O(N + n 3 ) operations, by Lemma 25.

We now evaluate the cost of computing f Q and BP({f } Q ). Naturally, the integral part A(x) of a real number x is not a rational function of x but it can be computed in the BSS model in O(log(1 + |x|)) operations using the recursive formula, say for x 0, 

where K(f ) is the total number of homotopy steps. By Theorem 21, E(K(f )) = O(nD 3/2 N ), so it only remains to bound the expectations of Ω and Ω k=1 log Q k . 30 Baur and Strassen, "The complexity of partial derivatives".