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A deterministic algorithm to compute

approximate roots of polynomial systems

in polynomial average time

Pierre Lairez

Abstract

We describe a deterministic algorithm that computes an approximate root of n complex polyno-

mial equations in n unknowns in average polynomial time with respect to the size of the input, in

the Blum-Shub-Smale model with square root. It rests upon a derandomization of an algorithm

of Beltrán and Pardo and gives a deterministic a�rmative answer to Smale’s 17
th

problem. The

main idea is to make use of the randomness contained in the input itself.

Introduction

Shub and Smale provided an extensive theory of Newton’s iteration and homotopy continuation

which aims at studying the complexity of computing approximate roots of complex polynomial

systems of equations with as many unknowns as equations.
1

In their theory, an approximate root of

a polynomial system refers to a point from which Newton’s iteration converges quadratically to an

exact zero of the system—see De�nition 1. This article answers by a deterministic algorithm the

following question that they left open:

Problem (Smale
2
). Can a zero of n complex polynomial equations in n unknowns be found approxi-

mately, on the average, in polynomial time with a uniform algorithm?

The term algorithm refers a machine à la Blum-Shub-Smale
3

(BSS): a random access machine

whose registers can store arbitrary real numbers, that can compute elementary arithmetic operations

in the real �eld at unit cost and that can branch according to the sign of a given register. To avoid

vain technical argumentation, I consider the BSS model extended with the possibility of computing
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the square root of a positive real number at unit cost. The wording uniform algorithm emphasizes

the requirement that a single �nite machine should solve all the polynomial systems whatever

the degree or the dimension. The complexity should be measured with respect to the size of the

input, that is the number of real coe�cients in a dense representation of the system to be solved.

An important characteristic of a root of a polynomial system is its conditioning. Because of the

feeling that approximating a root with arbitrarily large condition number requires arbitrarily many

steps, the problem only asks for a complexity that is polynomial on the average when the input is

supposed to be sampled from a certain probability distribution that we choose. The relevance of the

average-case complexity is arguable, for the input distribution may not re�ect actual inputs arising

from applications. Though, average-case complexity sets a mark with which any other result should

be compared.

The problem of solving polynomial systems is a matter of numerical analysis just as much as

it is a matter of symbolic computation. Nevertheless, the reaches of these approaches di�er in a

fundamental way. In an exact setting, having one root of a generic polynomial system is having

them all because of Galois’ indeterminacy, and it turns out that the number of solutions of a

generic polynomial system is the product of the degrees of the equations, Bézout’s bound, and

is not polynomially bounded by the number of coe�cients in the input. This is why achieving a

polynomial complexity is only possible in a numeric setting.

The main numerical method to solve a polynomial system f is homotopy continuation. The

principle is to start from another polynomial system д of which we know a root η and to move д

toward f step by step while tracking all the way to f an approximate root of the deformed system

by Newton’s iteration. The choice of the step size and the complexity of this procedure is well

understood in terms of the condition number along the homotopy path.
4

Most of the theory so far

is exposed in the book Condition.
5

The main di�culty is to choose the starting pair (д,η). Shub

and Smale
6

showed that there exists good starting pairs but without providing a way to compute

them e�ciently. Beltrán and Pardo
7

discovered how to pick a starting pair at random and showed

that, on average, this is a good choice. This led to a non-deterministic polynomial average-time

algorithm which answers Smale’s question. Bürgisser and Cucker
8

performed a smoothed analysis

of the Beltrán-Pardo algorithm and described a deterministic algorithm with complexity N O (log logN )
,

where N is the input size. The question of the existence of a deterministic algorithm with polynomial

average complexity it still considered open.

This work provides, with Theorem 22, a complete deterministic answer to Smale’s problem, even

though, as we will see, it enriches the theory of homotopy continuation itself only marginally.

The answer is based on a derandomization of the non-deterministic Beltrán and Pardo’s algorithm

according to two basic observations. Firstly, an approximate root of a system f is also an approximate

root of a slight pertubation of f . Therefore, to compute an approximate root of f , one can only

consider the most signi�cant digits of the coe�cients of f . Secondly, the remaining least signi�cant

digits, or noise, of a continuous random variable are practically independent from the most signi�cant

4
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digits and almost uniformly distributed. In the BSS model, where the input is given with in�nite

precision, this noise can be extracted and can be used in place of a genuine source of randomness.

This answer shows that for Smale’s problem, the deterministic model and the non-deterministic

are essentially equivalent: randomness is part of the question from its very formulation asking for

an average analysis. It is worth noting that the idea that the input is subject to noise that does not

a�ect the result is what makes the smoothed analysis of algorithms relevant.
9

Also, the study of the

resolution of a system f given only the most signi�cant digits of f is somewhat related to recent

works in the setting of machines with �nite precision.
10

The derandomization proposed here is di�erent in nature from the derandomization theorem

BPPR = PR,
11

which states that a decision problem that can be solved over the reals in polynomial

time (worst-case complexity) with randomization and bounded error probability can also be solved

deterministically in polynomial time. Contrary to this work, the derandomization theorem above

relies on the ability of a BSS machine to hold arbitrary constants in its de�nition, even hardly

computable ones or worse, not computable ones which may lead to unlikely statements. For

example, one can decide the termination of Turing machines with a BSS machine insofar Chaitin’s Ω

constant is built in the machine.

Acknowledgment I am very grateful to Peter Bürgisser for his help and constant support. This

work is partially funded by the research grant BU 1371/2-2 of the Deutsche Forschungsgemeinschaft.
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1.1 Approximate root

Let n be a positive integer. The space Cn+1
is endowed with the usual Hermitian inner product. (Symbols in the

margin mark the

place where they are

de�ned.)

For d ∈ N, let Hd denote the vector space of homogeneous polynomials of degree d in the vari-

ables x0, . . . ,xn . It is endowed with an Hermitian inner product, called Weyl’s inner product, for

which the monomial basis is an orthogonal basis and ‖xa0

0
· · · xann ‖

2 =
a0!· · ·an !

(a1+· · ·+an )!
. Let d1, . . . ,dn

be positive integers and let H denote Hd1
× · · · × Hdn , the space of all systems of homogeneous H

equations in n + 1 variables and of degree d1, . . . ,dn . This space is endowed with the Hermitian

inner product induced by the inner product of each factor. The dimension n and the di ’s are �xed

throughout this article. Let D be the maximum of all di ’s and let N denote the complex dimension D
NofH , namely

N =

(
n + d1

n

)
+ · · · +

(
n + dn

n

)
.

Elements of H are polynomial systems to be solved, and 2N is the input size. Note that 2 6 N ,

n2 6 N and D 6 N .

For all Hermitian space V , we endow the set S(V ) of elements of norm 1 with the induced

Riemannian metric dS: the distance between two points x ,y ∈ S(V ) is the angle between them,

namely cosdS (x ,y) = Re〈x ,y〉. The projective space P(V ) is endowed with the quotient Riemannian

metric dP de�ned by

dP ([x],[y])
def

= min

λ∈S(C)
dS (x ,λy).

An element of f ∈ H is regarded as a homogeneous polynomial function Cn+1 → Cn
. A

root—or solution, or zero—of f is a point ζ ∈ Pn
such that f (ζ ) = 0. Let V be the solution variety V{

( f ,ζ ) ∈ H × Pn �� f (z) = 0

}
. For z ∈ Cn+1 \ {0}, let df (z) : Cn+1 → Cn

denote the di�erential of f

at z. Let z⊥ be the orthogonal complement of Cz in Cn+1
. If the restriction df (z) |z⊥ : z⊥ → Cn

is

invertible, we de�ne the projective Newton operator N by N ( f ,z)

N ( f ,z)
def

= z − df (z) |−1

z⊥ ( f (z)).

It is clear that N ( f ,λz) = λN ( f ,z), so N ( f ,−) de�nes a partial function Pn → Pn
.

De�nition 1. A point z ∈ Pn
is an approximate root of f if the sequence de�ned by z0 = z

and zk+1 = N ( f ,zk ) is well de�ned and if there exists ζ ∈ Pn
such that f (ζ ) = 0 and dP (zk ,ζ ) 6

2
1−2

k
dP (z,ζ ) for all k > 0. The point ζ is the associated root of z and we say that z approximates ζ

as a root of f .

For f ∈ H and z ∈ Cn+1 \ {0}, we consider the linear map

Θ( f ,z) : (u1, . . . ,un ) ∈ C
n 7→ df (z) |−1

z⊥
( √

d1‖z‖
d1−1u1, . . . ,

√
dn ‖z‖

dn−1un
)
∈ z⊥

and the condition number13 of f at z is de�ned to be µ ( f ,z)
def

= ‖ f ‖ ‖Θ( f ,z)‖, where ‖Θ( f ,z)‖ is µ ( f ,z)

the operator norm. When df (z) |z⊥ is not invertible, we set µ ( f ,z) = ∞. For all λ,µ ∈ C× we check

that µ (λ f ,µz) = µ ( f ,z). The projective γ -theorem relates the condition number and the notion of

approximate root:

Theorem 2 (Shub, Smale
14

). For any ( f ,ζ ) ∈ V and z ∈ Pn , if D3/2µ ( f ,ζ )dP (z,ζ ) 6
1

3
, then z is an

approximate root of f with associated root ζ .
13

See Bürgisser and Cucker, Condition, §16, for more details about the condition number. What is denoted µ here is

denoted µnorm in this reference.

14
Shub and Smale, “Complexity of Bézout’s theorem. I. Geometric aspects”.
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Remark. The classical form of the result,
15

requires D3/2µ ( f ,ζ ) tan(dP (z,ζ )) 6 3−
√

7. The hypoth-

esis required here is stronger: since D3/2µ ( f ,ζ ) > 1, if D3/2µ ( f ,ζ )dP (z,ζ ) 6
1

3
then dP (z,ζ ) 6

1

3

and then tan(dP (z,ζ )) 6 3 tan( 1

3
)dP (z,ζ ) 6

3−
√

7

D3/2µ (f ,ζ ) because tan( 1

3
) 6 3 −

√
7. The symbol 6 6

indicates an inequality that is easily checked using a calculator.

The algorithmic use of the condition number heavily relies on this explicit Lipschitz estimate:

Proposition 3 (Shub
16

). Let 0 6 ε 6 1

7
. For any f ,д ∈ P(H ) and x ,y ∈ Pn , if

µ ( f ,x ) max

(
D1/2dP ( f ,д),D

3/2dP (x ,y)
)
6
ε

4

then (1 + ε )−1µ ( f ,x ) 6 µ (д,y) 6 (1 + ε )µ ( f ,x ).

1.2 Homotopy continuation algorithm

Let I ⊂ R be an interval containing 0 and let t ∈ I 7→ ft ∈ P(H ) be a continuous function. Let ζ

be a root of f0 such that df0 (ζ ) |ζ ⊥ is invertible. There is a subinterval J ⊂ I containing 0 and open

in I , and a continuous function t ∈ J 7→ ζt ∈ P
n

such that ζ0 = ζ and ft (ζt ) = 0 for all t ∈ J . We

choose J to be the largest such interval.

Lemma 4. If µ ( ft ,ζt ) is bounded on J , then J = I .

Proof. Let M be the supremum of µ ( ft ,ζt ) on J . From the construction of ζt with the implicit

function theorem we see that t ∈ J 7→ ζt is M-Lipschitz continuous. Hence the map t ∈ J 7→ ζt
extends to a continous map on J . Thus J is closed in I , and I = J because J is also open. �

Proposition 5. Let ( f ,ζ ) ∈ V , д ∈ P(H ) and 0 < ε 6 1

7
. If D3/2µ ( f ,ζ )2dP ( f ,д) 6

ε
4(1+ε ) , then

(i) there exists a unique root η of д such that dP (ζ ,η) 6 (1 + ε )µ ( f ,ζ )dP ( f ,д);

(ii) (1 + ε )−1µ ( f ,ζ ) 6 µ (д,η) 6 (1 + ε )µ ( f ,ζ ).

(iii) ζ approximates η as a root of д and η approximates ζ as a root of f ;

Proof. Let t ∈ [0,1] 7→ ft ∈ P(H ) be a geodesic path such that f0 = f , f1 = д and ‖ ˙ft ‖ = dP ( f ,д).

Let t ∈ J 7→ ζt be the homotopy continuation associated to this path starting from the root ζ and

de�ned as above on a maximal interval J ⊂ [0,1]. Let µt denote µ ( ft ,ζt ).

For all t ∈ J we know that ‖ ˙ζt ‖ 6 µt ‖ ˙ft ‖,
17

so that

dP (ζ0,ζt ) 6

∫ t

0

‖ ˙ζu ‖du 6 dP ( f ,д)

∫ t

0

µudu . (1)

Let J ′ be the closed subinterval of J de�ned by J ′ =
{
t ∈ J ��� ∀t

′ 6 t ,D3/2µ0dP (ζ0,ζt ′ ) 6
ε
4

}
. For

all t ∈ J ′ we have D3/2µ0dP (ζ0,ζt ) 6
ε
4
, by de�nition and D1/2µ0dP ( f0, ft ) 6 D3/2µ2

0
dP ( f ,д) 6

ε
4
,

by hypothesis. Thus, Proposition 3 ensures that

(1 + ε )−1µ0 6 µt 6 (1 + ε )µ0, for all t ∈ J ′. (2)

15
Blum, Cucker, Shub, and Smale, Complexity and real computation, §14, Theorems 1 and 2.

16
Shub, “Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric”, Theorem 1; see also Bürgisser

and Cucker, Condition, Theorem 16.2.

17
Bürgisser and Cucker, Condition, Corollary 16.14 and Inequality (16.12).
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Thanks to Inequality (1) we conclude that dP (ζ0,ζt ) 6 (1 + ε )t dP ( f ,д)µ0, for all t ∈ J ′, so

that D3/2µ0dP (ζ0,ζt ) 6
tε
4

. This proves that J ′ is open in J . Since it is also closed, we have J ′ = J .

Since µt is bounded on J ′, by Inequality (2), Lemma 4 implies that J ′ = J = [0,1]. Now, Inequalities (1)

and (2) imply that dP (ζ0,ζ1) 6 (1 + ε )dP ( f ,д)µ0. This proves (i) and (ii) follows from (2) for t = 1.

To prove that η approximates ζ as a root of f , it is enough to check that

D3/2µ ( f ,ζ )dP (ζ ,η) 6 (1 + ε )D3/2µ ( f ,ζ )2dP ( f ,д) 6
ε

4

6
1

3

,

by Theorem 2. To prove that ζ approximates η as a root of д, we check that

D3/2µ (д,η)dP (ζ ,η) 6 (1 + ε )2D3/2µ ( f ,ζ )2dP ( f ,д) 6
ε (1 + ε )

4

6
1

3

.

This proves (iii) and the lemma. �

Throughout this article, let ε = 1

13
, A = 1

52
, B = 1

101
and B′ = 1

65
. The main result that allows to

compute a homotopy continutation with discrete jumps is the following:

Lemma 6. For any ( f ,ζ ) ∈ V and д ∈ H and for any z ∈ Pn , if D3/2µ ( f ,z)dP (z,ζ ) 6 A

and D3/2µ ( f ,z)2dP ( f ,д) 6 B′ then:

(i) z is an approximate root of д with some associated root η;

(ii) (1 + ε )−2µ ( f ,z) 6 µ (д,η) 6 (1 + ε )2µ ( f ,z).

(iii) D3/2µ (д,η)dP (z,η) 6
1

23
;

If moreover D3/2µ ( f ,z)2dP ( f ,д) 6 B then

(iv) D3/2µ (д,z ′)dP (z
′,η) 6 A, where z ′ = N (д,z).

Proof. Firstly, we bound µ ( f ,ζ ). Since D3/2µ ( f ,z)dP (z,ζ ) 6 A = ε
4
, Proposition 3 gives

(1 + ε )−1µ ( f ,ζ ) 6 µ ( f ,z) 6 (1 + ε )µ ( f ,ζ ).

Next, we have D3/2µ ( f ,ζ )2dP ( f ,д) 6 (1 + ε )2B′ 6 ε
4(1+ε ) , thus Proposition 5 applies and ζ is

an approximate root of д with some associated root η such that dP (ζ ,η) 6 (1 + ε )µ ( f ,ζ )dP ( f ,д)

and (1 + ε )−1µ ( f ,ζ ) 6 µ (д,η) 6 (1 + ε )µ ( f ,ζ ) and this gives (ii).

Then, we check that z approximates η as a root of д. Indeed

dP (z,η) 6 dP (z,ζ ) + dP (ζ ,η) 6
A + (1 + ε )2B′

D3/2µ ( f ,z)
6

(1 + ε )2 (A + (1 + ε )2B′)

D3/2µ (д,η)
.

And (1 + ε )2 (A + (1 + ε )2B′) 6 1

23
< 1

3
, so Theorem 2 applies and we obtain (i) and (iii).

We assume now that D3/2µ ( f ,z)2dP ( f ,д) 6 B. All the inequalities above are valid with B′

replaced by B. By de�nition of an approximate root dP (z
′,η) 6 1

2
dP (z,η), so that

D3/2µ (д,η)dP (z
′,η) 6

1

2

(1 + ε )2 (A + (1 + ε )2B) 6
ε

4

.

Thus (1 + ε )−1µ (д,η) 6 µ (д,z ′) 6 (1 + ε )µ (д,η).

To conclude, we have D3/2µ (д,z ′)d (z ′,η) 6 1

2
(1 + ε )3 (A + (1 + ε )2B) 6 A. �
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Algorithm 1. Homotopy continuation

Input. f , д ∈ S(H ) and z ∈ Pn .

Precondition. There exists a root η of д such that 52D3/2µ (д,z)dP (z,η) 6 1.

Output. w ∈ Pn

Postcondition. w is an approximate root of f .

function HC(f , д, z)

t ← 1/
(
101D3/2µ (д,z)2dS ( f ,д)

)
while 1 > t do

h ← Γ(д, f ,t )
z ← N (h,z)
t ← t + 1/

(
101D3/2µ (h,z)2dS ( f ,д)

)
end while
return z

end function

Let f ,д ∈ S(H ), with f , −д. Let t ∈ [0,1] 7→ Γ(д, f ,t ) be the geodesic path from д to f in S(H ).

The condition f , −д guarantees that the geodesic path is uniquely determined. Namely

Γ(д, f ,t ) =
sin ((1 − t )α )

sin(α )
д +

sin(tα )

sin(α )
f , (3)

where α = dS ( f ,д) ∈ [0,π [ is the angle between f and д.

Let z ∈ Pn
such that D3/2µ (д,z)dP (z,η) 6 A, for some root η of д. By Lemma 6(i), applied

with д = f and η = ζ , the point z is an approximate root of д, with associated root η. Given д and z,

we can compute an approximate root of f in the following way. Let д0 = д, t0 = 0 and by induction

on k we de�ne

µk = µ (дk ,zk ), tk+1 = tk +
B

D3/2µ2

kdS ( f ,д)
, дk+1 = Γ(д, f ,tk+1) and zk+1 = N (дk+1,zk ).

Let K ( f ,д,z), or simply K , be the least integer such that tK+1 > 1, if any, and K ( f ,д,z) = ∞ K ( f ,д,z)

otherwise. Let M̃ ( f ,д,z) denote the maximum of all µk with 0 6 k 6 K . Let HC be the procedure M̃ ( f ,д,z)

HC( f ,д,z)
that takes as input f , д and z and outputs zK . Algorithm 1 recapitulates the de�nition. It terminates

if and only if K < ∞, in which case K is the number of iterations. For simplicity, we assume that we

can compute exactly the square root function, the trigonometric functions and the operator norm

required for the computation of µ ( f ,z). Section §2.5 shows how to implement things in the BSS

model extended with the square root only.

Let ht = Γ( f ,д,t ) and let t ∈ J 7→ ζt be the homotopy continuation associated to t ∈ [0,1] 7→ ht ,

where η0 is the associated root of z, de�ned on a maximal subinterval J ⊂ [0,1]. Let Ip ( f ,д,z),

M ( f ,д,z)
M ( f ,д,z)

def

= max

t ∈J
µ ( ft ,ζt ) and Ip ( f ,д,z)

def

=

∫
J
µ (ht ,ηt )

p
dt .

The behavior of the procedure HC can be controlled in terms of the integrals Ip ( f ,д,z). It is one of

the corner stone of the complexity theory of hotopy continuation methods. The following estimation

of the maximum of the condition number, along a homotopy path, in terms of the third moment of

the condition number seems to be original. It will be important for the average complexity analysis.
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Proposition 7. If J = [0,1] thenM ( f ,д,z) 6 151D3/2I3 ( f ,д,z).

Proof. Let ε = 1

7
and let s ∈ [0,1] such that µ ( fs ,ζs ) is maximal. For all t ∈ [0,1], dS ( fs , ft ) 6

|t − s |dS ( f ,д). Thus, if

|t − s | 6
ε

4(1 + ε )D3/2µ ( fs ,ζs )2dS ( f ,д)
, (4)

then µ ( ft ,ζt ) > (1+ε )−1µ ( fs ,ζs ), by Proposition 5. SincedS ( f ,д) 6 π , the diameter of the intervalH

of all t ∈ [0,1] satisfying Inequality (4) is at least
ε

4π (1+ε )D3/2µ (fs ,ζs )2
. Thus∫

1

0

µ ( ft ,ζt )
3
dt >

∫
H

µ ( fs ,ζs )
3

(1 + ε )3
dt >

ε µ ( fs ,ζs )

4π (1 + ε )4D3/2

>
1

151

µ ( fs ,ζs )

D3/2

. �

Theorem 8 (Shub
18

). With the notations above, if D3/2µ (д,z)dP (z,η) 6 A then:

(i) HC( f ,д,z) terminates if and only if I2 ( f ,д,z) is �nite, in which case J = [0,1];

If moreover HC( f ,д,z) terminates then:

(ii) (1 + ε )−2M ( f ,д,z) 6 M̃ ( f ,д,z) 6 (1 + ε )2M ( f ,д,z).

(iii) K ( f ,д,z) 6 136D3/2dS ( f ,д)I2 ( f ,д,z);

(iv) HC( f ,д,z) is an approximate root of f ;

(v) D3/2µ ( f ,ζ )dP (HC( f ,д,z),ζ ) 6 1

23
, where ζ is the associated root of HC( f ,д,z).

Proof. Let ηk denote ζtk . Since D3/2µ2

kdP (дk ,дk+1) 6 B for all k > 0, Lemma 6(iv) proves, by

induction on k that D3/2µkdP (zk ,ηk ) 6 A for any k > 0

Assume that [0,tk ] ⊂ J for some k > 0 and let t ∈ [tk ,tk+1] ∩ J so that

D3/2µ2

kd (дk ,ht ) 6 D3/2µ2

kd (дk ,дk+1) 6 B.

Moreover D3/2µkd (zk ,ηk ) 6 A, so Lemma 6(ii) applies to (дk ,ηk ), ht and zk and asserts that

(1 + ε )−2µk 6 µ (ht ,ζt ) 6 (1 + ε )2µk . (5)

By de�nition µ2

k (tk+1 − tk ) =
B

D3/2dS (f ,д)
, so integrating over t leads to∫ tk

0

µ (ht ,ζt )
2
dt > (1 + ε )−4

k−1∑
j=0

µ2

j (tj+1 − tj ) =
kB

(1 + ε )4D3/2dS ( f ,д)
, (6)

and

∫
sup J

0

µ (ht ,ζt )
2 6 (1 + ε )4

k∑
j=0

µ2

j (tj+1 − tj ) =
(1 + ε )4 (k + 1)B

D3/2dS ( f ,д)
. (7)

Assume now that I2 ( f ,д,z) is �nite. The left-hand side of Inequality (6) is �nite so there exists a k

such that tk+1 < J . But then Inequalities (5) shows that µt is bounded on J which implies, Lemma 4

that J = [0,1]. And since tk+1 < J , this proves that K is �nite.

Conversely, assume that K is �nite, i.e. HC( f ,д,z) terminates. Then there exists a maximal k

such that [0,tk ] ⊂ J and thus for all t ∈ J

µ (ht ,ζt ) 6 (1 + ε )2 max

j6k
µ (дk ,zk ).

18
Shub, “Complexity of Bezout’s theorem. VI. Geodesics in the condition (number) metric”.
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So µ (ht ,ζt ) is bounded on J , which implies that J = [0,1], and thus k = K . Inequality (6) then

shows that I2 ( f ,д,z) is �nite, which concludes the proof of (i). We keep assuming that K is �nite.

Inequality (5) shows (ii). Since [0,tK ] ⊂ [0,1], by de�nition, Inequalities (6) and (7) shows that

1

B (1 + ε )4
D3/2dS ( f ,д)I2 ( f ,д,z) − 1 6 K 6

(1 + ε )4

B
D3/2dS ( f ,д)I2 ( f ,д,z).

We check that
(1+ε )4
B 6 136, which gives (iii). Finally, Lemmas 6(i) and 6(iii) show that zK approxi-

mates ζ1 as a root of f and that D3/2µ ( f ,ζ1)dP (zK ,ζ1) 6
1

23
, which gives (iv) and (v). �

1.3 Beltrán-Pardo randomization and average complexity analysis

An important discovery of Beltrán and Pardo is a procedure to pick a random system and one of its

root simultaneously without actually solving any polynomial system. And from the complexity

point of view, it turns out that a random pair (д,η) ∈ V is a good starting point to perform the

homotopy continuation. Let д ∈ S(H ) be a uniform random variable, where the uniform measure

is relative to the Riemannian metric on S(H ). Almost surely д has �nitely many roots in Pn
. Let η

be one of them, randomly chosen with the uniform distribution. The probability distribution of the

random variable (д,η) ∈ V is denoted ρstd. ρstd

Let us assume that f = ( f1, . . . , fn ) ∈ S(H ) is a uniform random variable and write f as

fi = cix
di
0
+

√
dix

di−1

0

n∑
j=1

ai,jxi + f ′i (x0, . . . ,xn ),

for some ci , ai,j ∈ C and f ′i ∈ Hdi . Let f ′ = ( f ′
1
, . . . , f ′n ) ∈ H . It lies in the subspace R ⊂ H of all h

such that h(e0) = 0 and dh(e0) = 0. Let

M =
*...
,

a1,1 · · · a1,n c1

...
. . .

...
...

an,1 · · · an,n cn

+///
-

∈ Cn×(n+1) .

M/‖M ‖ and f ′/‖ f ′‖ are independent uniform random variables in S(Cn×(n+1) ) and S(R) respec-

tively and ‖ f ‖2 = ‖M ‖2 + ‖ f ′‖2. Almost surely, kerM has dimension 1. Let ζ ∈ S(Cn+1) be

the unique element of kerM ∩ S(Cn+1) whose �rst non-zero coordinate is a real positive number.

Let h = (h1, . . . ,hn ) ∈ H be de�ned by

hi =
√
di *

,

n∑
i=0

xiξi+
-

di−1 n∑
j=0

mi,jx j .

By construction h(ζ ) = 0. Let u ∈ U (n + 1), the unitary group of Cn+1
, such that u (e0) = ζ .

The choice of u is arbitrary but should depend only on ζ . For example, we can choose u, for

almost all ζ , to be the unique element of U (n + 1) with determinant 1 that is the identity on the

orthogonal complement of

{
e0,ζ

}
and that sends e0 to ζ . Finally, let д = f ′ ◦ u−1 + h ∈ H . By

construction д(ζ ) = 0 and we may check that ‖д‖ = 1. We de�ne BP( f ) = (д,ζ ) which is a point in BP( f )

the solution variety V .

Theorem 9 (Beltrán, Pardo
19

). If f ∈ S(H ) is a uniform random variable, then BP( f ) ∼ ρstd.

19
Beltrán and Pardo, “Fast linear homotopy to �nd approximate zeros of polynomial systems”, §2.3; Bürgisser and Cucker,
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Given f ∈ S(H ), Beltrán and Pardo’s algorithm proceeds in sampling a system д ∈ S(H ) from

the uniform distribution and then computing HC( f ,BP(д)). If the input f is a uniform random

variable then we can evaluate the expected number of homotopy steps E(K ( f ,BP(д))). Indeed,

let η be root of д, uniformly chosen, the theorem above asserts that BP(д) has the same probability

distribution as (д,η) so E(K ( f ,BP(д))) = E(K ( f ,д,η)). Thanks to Theorem 8(iii), it is not di�cult

to see that E(K ( f ,д,η)) 6 214D3/2E(µ (д,η)2). This is why the estimation of E(µ (д,η)2) is another

corner stone of the average complexity analysis of homotopy methods. Deriving from a identity of

Beltrán and Pardo, we obtain the following:

Theorem 10. If (д,η) ∼ ρ, then E(µ (д,η)p ) 6 3

4−p (nN )p/2 for any 2 6 p < 4.

Proof. Let s = p/2 − 1. Beltrán and Pardo
20

state that

E(µ (д,η)2+2s ) =
Γ(N + 1)

Γ(N − s )

n∑
k=1

(
n + 1

k + 1

)
Γ(k − s )

Γ(k )
n−k+s .

We use the inequality x−yΓ(x ) 6 Γ(x − y) 6 (x − 1)−yΓ(x ), for x ∈ [1,∞) and y ∈ (−1,1), which

comes from the log-convexity of Γ. In particular

Γ(N + 1)/Γ(N − s ) 6 N 1+s
and Γ(k − s ) 6 (k − 1)−sΓ(k ).

Thus

E(µ (д,η)2+2s ) 6 N 1+s *
,

(
n + 1

2

)
Γ(1 − s )

Γ(1)
ns−1 +

n∑
k=2

(
n + 1

k + 1

)
(k − 1)−sn−k+s+

-
On the one hand (1 − s )Γ(1 − s ) = Γ(2 − s ) 6 Γ(2) = Γ(1), so(

n + 1

2

)
Γ(1 − s )

Γ(1)
ns−1 6

(n + 1)n

2

1

1 − s
ns−1 6

n1+s

1 − s
.

On the other hand,

n∑
k=2

(
n + 1

k + 1

)
(k − 1)−sn−k+s 6 n1+s

n+1∑
k=3

(
n + 1

k

)
n−k

= n1+s
((

1 +
1

n

)n+1

− 1 −
n + 1

n
−

1

n2

(
n + 1

2

))
6

n1+s

4

6
n1+s

4(1 − s )
.

Putting together all above, we obtain the claim. �

2 Derandomization of the Beltrán-Pardo algorithm

2.1 Duplication of the uniform distribution on the sphere

An important argument of the construction is the ability to produce approximations of two inde-

pendent uniform random variables in S2N−1
from a single uniform random variable in S2N−1

given

with in�nite precision. More precisely, let Q be a positive integer. This section is dedicated to the

Condition, Chap. 17.

20
Beltrán and Pardo, “Fast linear homotopy to �nd approximate zeros of polynomial systems”, Theorem 23.
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contruction of two functions b−cQ and {−}Q from the sphere S2N−1
to itself, respectively called

the truncation and the fractional part of x at precision Q , such that bxcQ is close to x and such that

if x ∈ S2N−1
is uniformly distributed then {x }Q is nearly uniformly distributed in S2N−1

and nearly
independent from bxcQ in the following sense:

Lemma 11. For any x ∈ S2N−1, dS
(
bxcQ ,x

)
6 (2N )1/2/Q . Moreover, for any continuous non-

negative function Θ : S2N−1 × S2N−1 → R,

1

|S2N−1 |

∫
S2N−1

Θ
(
bxcQ , {x }Q

)
dx 6

exp

(
2N 3/2

Q

)
|S2N−1 |2

∫
S2N−1

∫
S2N−1

Θ
(
bxcQ ,y

)
dxdy.

For x ∈ R, let A(x ) denote the integral part of a and let AQ (a) = Q−1A(Qa) be the truncation

at precision Q . For x ∈ R2N−1
, let AQ (x ) ∈ R2N−1

be the vector (AQ (x1), . . . ,AQ (x2N−1)) and

let BQ (x ) = Q (x − AQ (x )), it is a vector in [0,1]
2N−1

. We note that ‖AQ (x ) − x ‖
2 6 (2N − 1)/Q2

,

because the di�erence is bounded componentwise by 1/Q .

Let C denote [−1,1)2N−1
and C+ denote [0,1)2N−1

and let F (x ) = (1 + ‖x ‖2)−N . We �rst show

that if x ∈ C is a random variable with probability density function F (divided by the appropriate

normalization constant) then BQ (x ) is nearly uniformly distributed in C+ and nearly independent

from AQ (x ).

Lemma 12. For any continuous non-negative function Θ : [−1,1]
2N−1 × [0,1]

2N−1 → R,∫
C
Θ

(
AQ (x ),BQ (x )

)
F (x )dx 6 exp

(
2N 3/2

Q

) ∫
C+

∫
C
Θ

(
AQ (x ),y

)
F (x )dxdy.

Proof. For any integers −Q 6 ki < Q , for 1 6 i 6 2N − 1, the function AQ is constant on

the set

∏
2N−1

i=1

[
ki
Q ,

ki+1

Q

)
, and these sets form a partition of X . Let U1, . . . ,U(2Q )2N−1 denote an

enumeration of these sets and let ak denote the unique value of AQ on Uk . The diameter of Uk

is

√
2N − 1/Q . Since the function x ∈ [0,∞) 7→ −N log(1 + x2) is N -Lipschitz continuous, we

derive that

max

Uk
F 6 eN

√
2N−1/Q

min

Uk
F . (8)

For any 1 6 k 6 (2Q )2N−1
we have∫

Uk
Θ

(
AQ (x ),BQ (x )

)
F (x )dx 6 max

Uk
F

∫
Uk

Θ (ak ,Q (x − ak )) dx ,

because AQ (x ) = ak on Uk and by de�nition of BQ (x ). A simple change of variable shows that∫
Uk

Θ (bk ,Q (x − bk )) dx = |Uk |

∫
C+

Θ(bk ,y)dy,

where |Uk | is the volume of Uk , namely Q−2N+1
. Besides,

Θ(bk ,y) 6
1

|Uk |minUk F

∫
Uk

Θ
(
AQ (x ),y

)
F (x )dx .

Putting together all above and summing over k gives the claim. �

Thanks to a method due to Sibuya, we may transform a uniform random variable of C+ into a

uniform random variable in S2N−1
. Let x = (x1, . . . ,x2N−1) ∈ C+, letu1, . . . ,uN−1 be xN+1, . . . ,x2N−1

11



arranged in ascending order, and let u0 = 0 and uN = 1. Let S (x ) ∈ R2N
denote the vector such that

for any 1 6 i 6 N

S (x )2i−1 =
√
ui − ui−1 cos(2πxi ) and S (x )2i =

√
ui − ui−1 sin(2πxi ). (9)

Proposition 13 (Sibuya
21

). If x a uniformly distributed random variable inC+, then S (x ) is uniformly
distributed in S2N−1.

We now de�ne b−cQ and {−}Q . Let Σ ∈ R2N
be the set of all x ∈ R2N

such that ‖x ‖∞ = 1. This

hypersurface is divided into 4N faces that are isometric toC : they are the sets Σεi = {x ∈ Σ | xi = ε },

for ε ∈ {−1,1} and 1 6 i 6 2N and the isometry is given by the map

ti,ε : Σεi → C, x 7→ (x1, . . . ,xi−1,xi+1, . . . ,xn ).

Through these isometries, we de�ne the functions A′Q and B′Q on Σ in the following way: for x ∈ Σεi
we set A′Q (x ) = t−1

i,ε (AQ (ti,ε (x ))) ∈ Σεi and B′Q (x ) = BQ (ti,ε (x )) ∈ C+. Let ν∞ : x ∈ S2N−1 7→

x/‖x ‖∞ ∈ Σ and its inverse ν2 : x ∈ Σ 7→ x/‖x ‖ ∈ S2N−1
. Finally, we de�ne, for x ∈ S2N−1 bxcQ , {x }Q

bxcQ
def

= ν2

(
A′Q (ν∞ (x ))

)
and {x }Q

def

= S
(
B′Q (ν∞ (x ))

)
. (10)

We may now prove Lemma 11.

Proof of Lemma 11. Let x ∈ S2N−1
. It is well-known that dS (bxcQ ,x ) 6

π
2
‖bxcQ − x ‖. Furthermore

the map ν2 is clearly 1-Lipschitz continuous so ‖bxcQ − x ‖ 6 ‖A
′
Q (ν∞ (x )) − ν∞ (x )‖ and we already

remarked that this is at most

√
2N − 1/Q .

Concerning the second claim, we consider partition of the sphere by the sets ν2 (Σ
ε
i ). The determi-

nant of the Jacobian of the di�erentiable map ti,ε ◦ ν∞ : ν2 (Σ
ε
i ) → C at ν2 (t

−1

i,ε (x )), for some x ∈ C , is

precisely F (x ). Thus∫
ν2 (Σ

ε
i )
Θ

(
bucQ , {u}Q

)
du =

∫
C
Θ

(
ν2

(
t−1

i,ε (AQ (x ))
)
,S (BQ (x ))

)
F (x )dx ,

and then Lemma 12 implies

6 exp

(
2N 3/2

Q

) ∫
C

∫
C+

Θ
(
ν2

(
t−1

i,ε (AQ (x ))
)
,S (y)

)
dy F (x )dx

and Proposition 13 gives the equality

=
exp

(
2N 3/2

Q

)
|S2N−1 |

∫
C

∫
S2N−1

Θ
(
ν2

(
t−1

i,ε (AQ (x ))
)
,y

)
dy F (x )dx ,

and applying the inverse change of variable ν2 ◦ t
−1

i,ε gives the claim. �

The orthogonal monomial basis ofH gives an identi�cationH ' R2N
and we de�ne this way the

truncation b f cQ and the fractional part

{
f
}
Q of a polynomial system f ∈ S(H ). The derandomiza-

tion relies on �nding a approximate root of b f cQ , for some Q large enough, and using

{
f
}
Q as the

source of randomness for the Beltrán-Pardo procedure. Namely, we compute HC(b f cQ ,BP(
{
f
}
Q )).

Almost surely, this computation produces an approximate root of b f cQ . If Q is large enough, it is

also an approximate root of f . The main technical di�culty is to choose a precision and to ensure

that the result is correct while keeping the complexity under control.

21
Sibuya, “A method for generating uniformly distributed points on N -dimensional spheres”.

12



2.2 Homotopy continuation with precision check

Let f , f ′, д ∈ S(H ) and let η ∈ Pn
be a root of д. Throughout this section, we assume that

dS ( f , f
′) 6 ρ, for some ρ > 0, that I2 ( f ,д,ζ ) < ∞ and that dS ( f ,д) 6 π/2. Up to changing д

into −д, the latter is always true, since dS ( f ,−д) = π − dS ( f ,д). The notations I2, M and M̃ used in

this section have been introduced in §1.2. If ρ is small enough, then HC( f ′,д,η) is an approximate

root not only of f ′ but also of f . But if ρ fails to be small enough, HC( f ′,д,η) may not even

terminate or, to say the least, HC( f ′,д,η) may take arbitrarily long to compute something that is

not an approximate root of f . To control the complexity of the new algorithm, it is important to be

able to recognize this situation at least as fast as HC( f ,д,η) would terminate.

As in §1.2, let ft = Γ(д, f ,t ) and f ′t = Γ(д, f ′,t ). Let t ∈ [0,1] → ζt ∈ Pn
be the homotopy

continuation associated to ft , on [0,1], and t ∈ J → ζ ′t ∈ P
n

be the one associated to f ′t , de�ned on

some maximal interval 0 ∈ J ⊂ [0,1]. Let µt = µ ( ft ,ζt ) and µ ′t = µ ( f
′
t ,ζ

′
t ).

Lemma 14. dS ( ft , f ′t ) 6 2dS ( f , f
′) for any t ∈ [0,1].

Proof. Let αt = dS ( ft , f
′
t ), β = dS ( f ,д) 6 π/2 and γ = dS ( f

′,д). Without loss of generality we may

assume that β 6 γ . The spherical law of cosines applied to the spherical triangle

{
д, ft , f

′
t
}

gives the

equality

cosαt = cos(tβ ) cos(tγ ) + sin(tβ ) sin(tγ ) cosA,

where A is the angle at д of the spherical triangle

{
f , f ′,д

}
. Thus

d cosαt
dt

= −
1

2

(1 + cosA) (γ − β ) sin(tγ − tβ ) −
1

2

(1 − cosA) (β + γ ) sin(tβ + tγ ).

If γ 6 π/2, then tβ + tγ 6 π and thus
d cosαt

dt 6 0, so in that case αt 6 α1 for all t ∈ [0,1]. In the

general case, let h be the the unique point on the spherical segment [f ′,д] such that dS (д,h) = β .

Since f ′, д andh lie on the same geodesic pathdS (Γ(д,h,t ), f
′
t ) = tdS ( f

′,h). MoreoverdS ( f ,h) 6 α1.

Since dS (д,h) 6 π/2, the argument above shows that dS ( ft ,Γ(д,h,t )) 6 dS (д,h). In the end, we

obtain

dS ( ft , f
′
t ) 6 dS ( ft ,Γ(д,h,t )) + dS (Γ(д,h,t ), f

′
t )

6 α1 + tdS ( f
′,h) 6 2dS ( f , f

′). �

Lemma 15. If D3/2M ( f ,д,ζ )2ρ 6 1

112
then for any t ∈ [0,1]:

(i) (1 + ε )−1µ ′t 6 µt 6 (1 + ε )µ ′t ;

(ii) D3/2µtdP (ζt ,ζ
′
t ) 6

1

51
.

Proof. Let S the set of all t ∈ [0,1] such that D3/2µtdP (ζt ,ζ
′
t ) 6

1

51
. It is a non empty closed subset

of I . Let t ∈ S . By Lemma 14, we have dP ( ft , f
′
t ) 6 2ρ, so

D3/2µ2

tdP ( ft , f
′
t ) 6

2

112

=
ε

4(1 + ε )
.

Proposition 5 implies that there exists a rootη of f ′t such thatdP (η,ζt ) 6 2(1+ε )µtρ and (1+ε )−1µt 6

µ ( f ′t ,η) 6 (1 + ε )µt . Because d (η,ζ ′t ) 6 d (η,ζt ) + d (ζt ,ζ
′
t ) and t ∈ S we obtain

D3/2µ ( f ′t ,η)d (η,ζ
′
t ) 6 D3/2 (1 + ε )µt

(
2(1 + ε )µt ρ +

1

51D3/2µt

)
6 (1 + ε )2

2

112

+ (1 + ε )
1

51

6
1

3

.
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Algorithm 2. Homotopy continuation with precision check

Input. f , д ∈ S(H ), z ∈ Pn and ρ > 0.

Output. w ∈ Pn or fail.

Speci�cations. See Proposition 16.

function HC
′
(f , д, z, ρ)

t ← 1/
(
101D3/2µ (д,z)2dS ( f ,д)

)
h ← д
while 1 > t and D3/2µ (h,z)2ρ 6 1

151
do

h ← Γ(д, f ,t )
z ← N (h,z)
t ← t + 1/

(
101D3/2µ (h,z)2dS ( f ,д)

)
end while
if D3/2µ (h,z)2ρ > 1

151
then

return fail

else
return z

end if
end function

and Theorem 2 implies that ζ ′t approximates η as a root of f ′t . Since it is also an exact root of f ′t ,

this implies ζ ′t = η. In particular D3/2µtdP (ζ
′
t ,ζt ) 6 2(1 + ε )D3/2µ2

t ρ <
1

51
. Thus t is in the interior

of S , which proves that S is open and �nally that S = [0,1]. �

This leads to the procedure HC
′
, see Algorithm 2. It modi�es procedure HC, Algorithm 1, in only

one respect: each iteration checks up on the failure condition D3/2µ (h,z)2ρ > 1

151
. If the failure

condition is never met, then HC
′

computes exactly the same thing as HC.

Proposition 16. If dS ( f ,д) 6 π/2 and d ( f , f ′) 6 ρ, then the procedure HC
′( f ′,д,η,ρ):

(i) terminates and performs at most 158D3/2dS ( f ,д)I2 ( f ,д,η) + 2 steps;

(ii) outputs an approximate root of f , or fails ;

(iii) succeeds if and only if D3/2M̃ ( f ′,д,η)2ρ 6 1

151
;

(iv) succeeds if D3/2M ( f ,д,η)2ρ 6 1

235
.

Proof. At each iteration, the value of t increases by at most 151ρ/(101dS ( f
′,д)), thus there are at

most 101dS ( f
′,д)/(151ρ) iterations before termination.

By construction, the procedure HC
′( f ′,д,η,ρ) fails if and only if at some point of the proce-

dure HC( f ′,д,η,ρ) it happens thatD3/2µ (h,z)2ρ > 1

151
. In other words, the procedure HC

′( f ′,д,η,ρ)

fails if and only if D3/2M̃ ( f ′,д,η)2ρ 6 1

151
, by de�nition of M̃ . And since the procedure terminates,

it succeeds if and only if it does not fail. This proves (iii).

Let us bound the number K ′( f ′,д,η,ρ) of iterations of the procedure HC
′( f ′,д,η,ρ) before

termination. If HC
′( f ′,д,η,ρ) succeeds, then K ′( f ′,д,η,ρ) = K ( f ′,д,η). Furthermore

K ′( f ′,д,η,ρ) = sup

{
K ( f ′s ,д,η)

�� s ∈ [0,1], HC
′( f ′s ,д,η,ρ) succeeds

}
. (11)
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Let s ∈ [0,1] such that HC
′( f ′s ,д,η,ρ) succeeds, that is to say D3/2M̃ ( f ′s ,д,η)

2ρ 6 1

151
. We note

that
1

151
6 1

112(1+ε )4 . Theorem 8(ii) shows that

(1 + ε )−2M ( f ′s ,д,η) 6 M̃ ( f ′s ,д,η) 6 (1 + ε )2M ( f ′s ,д,η).

In particular D3/2M ( f ′s ,д,ζ )
2ρ 6 1

112
and Lemma 15 shows that µt 6 (1 + ε )µt for all t 6 s . In

particular I2 ( f
′
s ,д,η) 6 (1 + ε )2I2 ( fs ,д,η).

K ( f ′s ,д,η) 6 136D3/2dS ( f
′
s ,д)I2 ( f

′
s ,д,η) by Theorem 8(iii)

6 136(1 + ε )2D3/2 (dS ( fs ,д) + 2ρ) I2 ( fs ,д,η) by Lemma 14

6 158D3/2dS ( fs ,д)I2 ( fs ,д,η) + 2 using I2 ( fs ,д,η) 6 M ( fs ,д,η)
2

6 158D3/2dS ( f ,д)I2 ( f ,д,η) + 2.

Together with Equation (11), this completes the proof of (i).

Let us assume that the procedure HC
′( f ′,д,η,ρ) succeeds and let z be its output, which is nothing

but HC( f ′,д,η). Theorem 8(v) shows that D3/2µ ′
1
dP (z,ζ

′
1
) 6 1

23
. As above, with s = 1, we check

that µ1 6 (1 + ε )µ ′
1

and D3/2µ ′
1
dP (ζ1,ζ

′
1
) 6 1

51
using Lemma 15. Thus

D3/2µ1dP (z,ζ1) 6 (1 + ε )
(

1

23

+
1

51

)
<

1

3

.

Then z approximates ζ1 as a root of f1, by Theorem 2. This proves (ii).

Lastly, let us assume that D3/2M ( f ,д,η)2ρ 6 1

235
6 1

112(1+ε )10
. Lemma 15 implies that M ( f ,д,η) >

(1 + ε )−1M ( f ′,д,η) and Theorem 8(ii) shows that M ( f ′,д,η) 6 (1 + ε )−2M̃ ( f ′,д,η). Thus

D3/2M̃ ( f ′,д,η)2ρ 6 (1 + ε )6D3/2M ( f ,д,η)2ρ 6
1

112(1 + ε )4
6

1

151

and HC
′( f ′,д,η,ρ) succeeds. This proves (iv). �

2.3 A deterministic algorithm

Let f ∈ S(H ) be the input system to be solved and let Q > 1 be a given precision. We compute

f ′ = b f cQ , (д,η) = BP(
{
f
}
Q ), ε = sign(π/2 − dS ( f ,д)) and ρ = (2N )1/2/Q .

Lemma 14 shows that dS ( f , f
′) 6 ρ. Then we run the homotopy continuation procedure with

precision check HC
′( f ′,εд,η,ρ), which may fail or output a point z ∈ Pn

. If it does succeed, then

Proposition 16 ensures that z is an approximate root of f . If the homotopy continuation fails,

then we replace Q by Q2
and we start again, until the call to HC

′
succeeds. This leads to the

deterministic procedure DBP, Algorithm 3. If the computation of DBP( f ) terminates then the result

is an approximate root of f . Section 2.4 studies the average number of homotopy steps performed

by DBP( f ) while Section 2.5 studies the average total cost of an implementation of DBP in the BSS

model extended with the square root.

2.4 Average analysis

Let f ∈ S(H ) be the input system, a uniform random variable, and we consider a run of the

procedure DBP( f ). Let Qk be the precision at the k th
iteration, namely Qk = N 2

k
. We set also Qk

fk , дk , ηk , εk , ρkfk = b f cQk , (дk ,ηk ) = BP(
{
f
}
Qk

), εk = sign(π/2 − dS ( f ,дk )) and ρk = (2N )1/2/Qk .

15



Algorithm 3. Deterministic variant of Beltrán-Pardo algorithm

Input. f ∈ H

Output. z ∈ Pn

Postcondition. z is an approximate root of f

function DBP(f )

Q ← N
repeat

Q ← Q2

f ′ ← b f cQ
(д,η) ← BP(

{
f
}
Q )

ε ← sign(Re〈f ,д〉) . ε = sign(dS ( f ,д) − π/2)
ρ ← (2N )1/2/Q
z ← HC

′( f ′,εд,η,ρ)
until HC

′
succeeds

return z
end function

Let Ω be the least k such that the homotopy continuation with precision check HC
′( fk ,εkдk ,ηk ,ρk ) Ω

succeeds. Note that Ω is a random variable. Let (д,η) ∈ V be a random variable with distribution ρstd д, η, ε

and independent of f and let ε be the sign of π/2 − dS ( f ,дk ).

Lemma 17. Let Θ : H ×V → R be any non-negative measurable function. For any k > 1,

E (Θ( fk ,дk ,ηk ) 6 5E (Θ( fk ,д,η)) .

Proof. It is an application of Lemma 11:

E (Θ( fk ,дk ,ηk )) =
1

|S(H ) |

∫
S(H )

Θ
(
b f cQk ,BP(

{
f
}
Qk

)
)

df

6
exp

(
2N 3/2

Qk

)
|S(H ) |2

∫
S(H )×S(H )

Θ
(
b f cQk ,BP(д)

)
df dд

=
exp

(
2N 3/2

Qk

)
|S(H ) |

∫
H

∫
V
Θ

(
b f cQk ,д,η

)
df dρstd (д,η)

= exp

(
2N 3/2

Qk

)
E (Θ( fk ,д,η)) ,

where the second last equality comes from Theorem 9. Since Qk > N 2
and e

√
2 6 5, this gives the

lemma. �

Lemma 18. E(Ip ( f ,εд,ζ )) = E(µ (д,η)p ) for any p > 1.

Proof. Let ht = Γ(εд, f ,t ), for t ∈ [0,1], and let ζt be the associated homotopy continuation.

Let τ ∈ [0,1] be a uniform random variable independent from f and (д,η). Clearly E(Ip ( f ,εд,ζ )) =

E(µ (hτ ,ζτ )
p ), so it is enough to prove that (hτ ,ζτ ) ∼ ρstd. The systems f and д are independent

and uniformly distributed on S(H ). So their probability distributions is invariant under any

unitary transformation of H . Then so is the probability distribution of ht for any t ∈ [0,1], and

16



there is a unique such probability distribution: the uniform distribution on S(H ). The homotopy

continuation makes a bijection between the roots of д and those of ht . Since η is uniformly chosen

among the roots of д, so is ζt among the roots of ht . That is, (ht ,ζt ) ∼ ρstd for all t ∈ [0,1], and

then (hτ ,ζτ ) ∼ ρstd. �

Lemma 19. P(Ω > k ) 6 10
5 D9/4n3/2N 7/4Q−1/2

k .

Proof. The probability that Ω > k is no more than the probability that HC
′( fk ,дk ,ηk ,ρk ) fails. By

Lemma 17, P (HC
′( fk ,εkдk ,ηk ,ρk ) fails) 6 5P (HC

′( fk ,εд,η,ρk ) fails). Given that dS ( f , fk ) 6 ρk ,

P
(
HC
′( fk ,εд,η,ρk ) fails

)
6 P

(
D3/2M ( f ,εд,η)2ρk >

1

235

)
by Proposition 16(iv)

6 P

(
D9/2I3 ( f ,εд,η)

2ρk >
1

235 · 151
2

)
by Proposition 7

6 151

√
235D9/4ρ1/2

k E (I3 ( f ,εд,η)) by Markov’s inequality.

Lemma 18 and Theorem 10 imply then

E (I3 ( f ,εд,η)) 6 E
(
µ (д,η)3

)
6 3(nN )3/2.

All in all, and since ρk = (2N )1/2/Qk ,

P(Ω > k ) 6 5 · 151

√
235D9/4 · 21/4N 1/4Q−1/2

k · 3n3/2N 3/2 6 10
5 D9/4n3/2N 7/4Q−1/2

k �

Lemma 20. Forp = logN /(logN −1) and for any sequence (Xk )k>1 of non-negative random variables

E
( Ω∑
k=1

Xk
)
6 7 max

k>1

E(X
p
k )

1/p .

In particular, E(Ω) 6 7.

Proof. We �rst write the expectation as

E
( Ω∑
k=1

Xk
)
=

∞∑
k=1

E(Xk1Ω>k ).

Let q = 1/ logN , so that
1

p +
1

q = 1. From Hölder’s inequality

E(Xk1Ω>k ) 6 E(X
p
k )

1/pP(Ω > k )1/q

By Lemma 19

P(Ω > k )1/q 6
(
10

5 D9/4n3/2N 7/4N −2
k−2

) 1

logN
=

(
10

5 D9/4n3/2N 7/4

) 1

logN e−2
k−2

.

Since D9/4n3/2N 7/4 6 N 5
, we have

(
10

5 D9/4n3/2N 7/4

) 1

logN 6 10
5/ logN e5 6 10

9
. Besides the

probability P(Ω > k ) is at most one. Thus, for any integer A > 1,

E
( Ω∑
k=1

Xk
)
6

(
max

k>1

E(X
p
k )

1/p
)

*.
,
A − 1 + 10

9

∑
k>A

exp(−2
k−2)+/

-
.

17



Since

{
2
k−2 ��� k > A

}
⊂

{
k2

A−2 ��� k > 1

}
,∑

k>A

exp(−2
k−2) 6

∑
k>1

exp(−2
A−2k ) =

exp(−2
A−2)

1 − exp(−2
A−2)
.

With A = 6, we compute that

A − 1 + 10
9

exp(−2
A−2)

1 − exp(−2
A−2)
6 7,

and this concludes the proof. �

LetK ( f ) be the total number of homotopy steps performed by procedure DBP( f ) and let the num- K ( f )

ber of homotopy steps performed by procedure HC
′( fk ,εkдk ,ηk ,ρk ) be denoted byK ′( fk ,εkдk ,ηk ,ρk ),

so that

K ( f ) =
Ω∑
k=1

K ′( fk ,εkдk ,ηk ,ρk ),

Theorem 21. If N > 21 then E(K ( f )) 6 10
4 nD3/2N .

Proof. Let p = logN /(logN − 1). If N > 21 then 2p 6 3. By Lemma 17 and Proposition 16(i),

E
(
K ′( fk ,εkдk ,ηk ,ρk )

p )1/p 6 5E

((
158D3/2dS ( f ,εд)I2 ( f ,εд,η) + 2

)p )1/p
,

and because dS ( f ,εд) 6
π
2

and by Minkowski’s inequality, we obtain

6 5

(
79D3/2πE

(
I2 ( f ,εд,η)

p )1/p
+ 2

)
.

Jensen’s inequality implies that I2 ( f ,εд,η)
p 6 I2p ( f ,εд,η). Then E

(
I2p ( f ,εд,η)

)
6 (nN )p , by

Lemma 18 and Theorem 10. In the end,

E
(
K ′( fk ,εkдk ,ηk ,ρk )

p )1/p 6 1251nD3/2N .

Lemma 20 applies to the expectation of the sum K ( f ) and gives the result, with 7 · 1251 6 10
4
. �

2.5 Implementation in the BSS model with square root

Algorithms HC
′

and DBP (Algorithms 2 and 3 respectively) have been described assuming the

possibility to compute exactly certain non rational functions: the square root, the trigonometric

functions cos and sin and the operator norm of a linear map. A BSS machine can only approximate

them, but it can do it e�ciently. I propose here an implementation in the BSS model extended

with the ability of computing the square root of a positive real number at unit cost. We could

reduce further to the plain BSS model at the cost of some lengthy and nearly irrelevant technical

argumentation. We now prove the main result of this article:

Theorem 22. There exists a BSS machine A with square root and a constant c > 0 such that for any
positive integer n and any positive integers d1, . . . ,dn :

(i) A( f ) computes an approximate root of f for almost all f ∈ H ;

(ii) if f ∈ S(H ) is a uniform random variable, then the average number of operations performed
by A( f ) is at most cn2D3/2N (N + n3).
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Firstly, we describe an implementation of Algorithms HC
′

and DBP in the extended BSS model.

The �rst di�culty is the condition number µ ( f ,z): it rests upon the operator norm for the Euclidean

distance which is not computable with rational operations. While there are e�cient numerical

algorithms to compute such an operator norm in practice, it is not so easy to give an algorithm

that approximates it in good complexity in the BSS model.
22

The simplest workaround is to

replace the operator norm ‖A‖, for A ∈ Cn×n
by the Frobenius norm ‖A‖F =

( ∑
i j |ai j |

2

)
1/2

, which

satis�es n−1/2‖A‖F 6 ‖A‖2 6 ‖A‖F . Instead of computing µ ( f ,z), we compute

µF ( f ,z)
def

= ‖ f ‖‖Θ( f ,z)‖F ,

with the notations of §1.1, which we can do in the exended BSS model. The factor n−1/2
is responsible

for a extra factor n in the estimated number of homotopy steps, and thus in the overall complexity.

The second di�culty lies in the use of the trigonometric functions sin and cos. They �rst appear

in the de�nition of the geodesic path Γ, Equation (3), which is used in Algorithm 2. In the case

where dS ( f ,д) 6 π/2, it is good enough to replace Γ(д, f ,δ ) by

δ f + (1 − δ )д

‖δ f + (1 − δ )д‖
.

This is classical and implies modi�cations in the constants only.
23

The trigonometric functions also

appear in Sibuya’s function S , see Equation (9).

Lemma 23. There is a BSS machine with square root that computes, for any N and any x ∈ [0,1]
2N−1,

a point S̃ (x ) ∈ S2N−1 such that∫
[0,1]

2N−1

Θ(S̃ (x ))dx 6
2

|S2N−1 |

∫
S2N−1

Θ(y)dy,

with O (N logN ) operations.

Sketch of the proof. For any positive integer Q , let FQ (x ) be the Taylor series expansion, truncated

at xQ , of the entire function (exp(2iπx ) − 1)/(x − 1). It is a polynomial of degree Q that can be

computed O (Q ) operations, assuming that that π is a constant of the machine, by using the linear

recurrence (n + 2)un+2 = (2iπ + n + 2)un+1 + 2iπun satis�ed by the coe�cients of FQ . Let CosQ (x )

and SinQ (x ) be the real and imaginary parts of (1 + (x − 1)FQ (x ))/|(1 + (x − 1)FQ (x )) | respectively.

The function x ∈ [0,1] → (CosQ (x ),SinQ (x )) gives a parametrization of the circle S1
whose

Jacobian is almost constant: we can check that there is a constant C > 0 such that

���Cos
′
Q (x )

2 + Sin
′
Q (x )

2 − 2π ��� 6 Ce
−Q .

Thus for any continuous function θ : S1 → R∫
1

0

θ (CosQ (x ),SinQ (x ))dx 6
1 +Ce−Q

2π

∫
S1

θ (y)dy.

Let S̃ be the function [0,1]
2N−1 → S2N−1

de�ned in the same way as S , Equation (9), but with CosQ

and SinQ in place of sin and cos repectively, with some Q ∼ logN such that (1 +Ce−Q )N 6 2. It is

easy to check that S̃ satis�es the desired properties. �

22
See for example Armentano, Beltrán, Bürgisser, Cucker, and Shub, A stable, polynomial-time algorithm for the eigenpair
problem or Armentano and Cucker, “A randomized homotopy for the Hermitian eigenpair problem”; unfortunately the

Gaussian distribution that they assume does not �t the situation here.

23
See for example Bürgisser and Cucker, Condition, §17.1.
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In Algorithm DBP, there is no harm in using S̃ in place of S . We obtain this way variants of

Algorithms HC
′

and DBP that �t in the BSS model with square root. It only remains to evaluate the

overall number of operations. Concerning the computational cost of Newton’s iteration N ( f ,z), it

is clear that this can be done in O (nN ) operation for the computation of df (z) and f (z) and O (n3)

operations more for the computation of df (z) |−1

z⊥ ( f (z)). It is also well known that this can be

signi�cantly improved, as a consequence of a theorem of Baur and Strassen.
24

It applies to the

computation of µF ( f ,z) too.

Lemma 24. There exists a BSS machine that compute µF ( f ,z)2 and N ( f ,z), for any f ∈ H and z ∈
Pn , in O (N + n3) operations.

The expected total number of homotopy steps is O (n2D3/2N ). The extra factor n, in comparison

with Theorem 21, comes from the use of µF instead of µ. Each homotopy step costs O (N + n3), by

Lemma 24. The k th
iteration in Algorithm DBP performs O (N logQk ) operations, excluding the call

to HC
′
: it is dominated by the computation of BP(b f cQ ). Naturally, the integral part bxc of a real

number x is not a rational function of x but it can be computed in the BSS model in O (log(1 + |x |))

operations using the recursive formula, say for x > 0,

bxc =




0 if x < 1

2bx/2c if x < 2bx/2c + 1

2bx/2c + 1 else.

Therefore, for f ∈ S(H ), one can compute b f cQ in O (N logQ ) operations. From b f cQ , one

computes

{
f
}
Q in O (N logN ) operations, by Lemma 23, using S̃ in place of S . Finally, one com-

putes BP(
{
f
}
Q ) in O (N 2) operations. Thus, the overall expected cost of the algorithm is

O
(
n2D3/2N (N + n3) + E

( Ω∑
k=0

N 2 + N logQk
))
.

Lemma 25. E
(∑Ω

k=1
logQk

)
= O (logN )

Proof. Because Qk = N 2
k
,

E
( Ω∑
k=1

logQk
)
=

∞∑
k=1

logQk P(Ω > k ) = logN
∞∑
k=1

2
k P(Ω > k ).

We proceed in the same fashion as for Lemma 20 and split the sum at A = 5, so that 5 < 2
A−2

.

Lemma 19 and the inequality D9/4n3/2N 7/4 6 N 5
imply

∞∑
k=1

2
k P(Ω > k ) 6 2

A + 10
5N 5

∞∑
k=A

2
k N −2

k−2

= 2
A + O

(
N 5−2

A−2
)
= O (1). �

This concludes the proof of Theorem 22.

24
Baur and Strassen, “The complexity of partial derivatives”.
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